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Abstract
Much effort has been expended on investigation of the physical properties of

disordered media (complex systems) including how the heat transfers on the media.
In mathematics, these properties have been actively studied for over 30 years. In
particular, probabilistic methods have been developed extensively to analyze random
walks and their scaling limits on the media. This chapter provides a discussion of
the behavior of random walks and diffusions on typical disordered media.

1 Introduction

Around the mid-1960s, mathematical physicists started investigating the anomalous
behavior of heat transfer on disordered media (e.g., see Ben-Avraham and Havlin
2000). Examples of disordered media include polymers, complex networks, and
growth of mold and crystal. In this chapter, we consider “disordered media” as a
subclass of “complex systems.” Mathematical progress on these problems started in
the late 1980s. The first systematical progress was made on fractals, which are in some
sense ideal disordered media because they have exact self-similarity. Meanwhile,
analytical methods and techniques were gradually developed that enabled us to
analyze quantitative estimates for heat transfer on some random media that had
higher complexity. Probabilistic approaches to the problems are used to investigate
random walks (RWs) and diffusions. Because one cannot expect smoothness on the
objects, it is not easy to construct differential operators directly. Probability theory
does not require smoothness of the objects, and it works well to analyze them.
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Fig. 1 Example of percolation cluster.

In this survey, we discuss behavior of random walks and diffusions on fractals
and random media. In particular, we focus on the three random media presented in
the following sections.

1.1 Bond Percolation on the Lattice

The first model is the bond percolation on d-dimensional lattice Zd , where Z is the
set of integers. Let d ≥ 2. On each bond with length 1, we flip a coin and open (resp.
close) the bond if it lands on heads (resp. tails). Let p ∈ [0, 1] be the probability that
the coin lands on heads. (If p , 1/2, it is not a fair-coin.) We assume that flipping
each coin is independent of flipping other coins. When all the coins are flipped, we
have a set of open bonds; this model is called bond percolation. Let C(0) be the
set of vertices in Zd that is connected to the origin by open bonds and let θ(p) be
the probability that the set C(0) is an infinite set. Then, it is known that this model
enjoys phase transition in the following sense: there exists pc ∈ (0, 1) such that
θ(p) = 0 if p < pc and θ(p) > 0 if p > pc . The percolation model is one of the most
fundamental models in statistical physics that has phase transitions. Our interest is
in how heat transfers on random media.

1.2 The Erdős-Rényi Random Graph

The second model is the so-called Erdős-Rényi random graph, which is a standard
model in the field of disordered networks. Let N ≥ 2 be a natural number and set
VN := {1, 2, · · · , N }. For each pair of distinct points i, j ∈ VN , i , j, we connect
the bond {i, j} with probability p ∈ [0, 1] and disconnect it with probability 1 − p.
As before, whether each bond is connected is independent of the situations of other
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Fig. 2 Example of Erdős-Rényi random graph.

bonds. The resulting random graph is called the Erdős-Rényi random graph. When
p = 1, it is the complete graph with vertices VN , so the Erdős-Rényi random graph is
the bond percolation for the complete graph on VN . Let CN be the largest connected
component of the graph. It is known that this model enjoys sharp phase transition
around p = c/N with c = 1. Namely, the following holds with high probability:

c < 1 =⇒ |CN | = O(log N ),

c > 1 =⇒ |CN | ≍ N,

c = 1 =⇒ |CN | ≍ N
2
3 .

Here |A| is the number of the element in A, and we write f (N ) ≍ g(N ) if there exist
c1, c2 > 0 such that c1 f (N ) ≤ g(N ) ≤ c2 f (N ) for all N .

1.3 Two-Dimensional Uniform Spanning Tree

The third example of random media is the two-dimensional uniform spanning tree
(2-Dim UST). Let ΛN := [−N, N]2 ∩ Z2 and consider the graph that connects each
neighboring bond with length 1. A loopless connected subgraph whose vertices
consist of all the elements of ΛN is called a spanning tree. Let U (N ) be a random
graph that picks up one among all the spanning trees on ΛN uniformly at random.
The uniform spanning tree U is the limit of U (N ) as N → ∞. This model is
extremely important in modern probability theory. Some readers may have heard
of the Schramm-Loewner evolution (SLE). It is a stochastic process heavily related
to the works of two Fields medalists, W. Werner and S. Smirnov. 2-Dim UST is
the model that O. Schramm, who invented the SLE, studied the scaling limit in his
celebrated paper in 2000 that introduced SLE for the first time.
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Fig. 3 Example of uniform spanning tree.

2 RW on the Lattice and Brownian Motion on Rd

Before explaining RW on random media (random graphs), let us first explain simple
random walk (SRW) on the d-dimensional square latticeZd and Brownian motion on
the Euclidean space Rd that appears as a scaling limit of the SRW. Let Y = {Yn}n∈N
be the SRW on Zd , namely it is a random motion such that for x, y ∈ Zd with
|x − y | = 1,

P(Yn+1 = y |Yn = x) =
1

2d
.

In other words, it is a random motion of a particle that jumps to one of the nearest
neighborhoods with equal probability.

Let us consider the scaling limit of the SRW by taking the mesh size of the lattice
smaller and smaller. The geometric picture is that we take the limit ε → 0 of εZd so
the spatial scaling limit isRd . Now let us consider the SRW εYn on εZd . If we merely
take ε → 0, then the limiting process does not move at all, so we should speed up
the time n depending on ε. It is known that we have the nontrivial (nondegenerate)
limit process if we speed up the time by multiplying ε−2, namely

lim
ε→0
εY[ t

ε2 ] = Bt

and the limit process {Bt }t≥0 is called Brownian motion, which is a random motion
of a particle on Rd . Brownian motion is related to the heat transfer on Rd because
the differential operator (to be precise, the generator of the semigroup) determined
by Brownian motion is

1
2
∆ :=

1
2

d∑
i=1

∂2

∂x2
i

,

that is 1/2 times of the Laplace operator on Rd . In fact, for a bounded continuous
function f on Rd , define u(t, x) = E[ f (Bt ) |B0 = x] (where E is the average with
respect to Brownian motion). Then this u(t, x) is the solution to the heat equation
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Fig. 4 Transition probability of two-dimensional simple random walk.

∂u
∂t
=

1
2
∆u, lim

t→0
u(t, x) = f (x).

The heat kernel (fundamental solution to the heat equation) is the following Gauss
kernel:

pt (x, y) =
1

(2πt) d
2

exp
(
− |x − y |2

2t

)
.

We note that the time scale factor ε−2 for the SRW to have the scaling limit (which is
Brownian motion) is related to the fact that the Laplace operator is the second-order
differential operator.

3 RW on Fractal Graphs and Brownian Motion on Fractals

We next consider SRWs on the fractal graphs and their scaling limits. As a typical
fractal, we consider the Sierpinski gasket, which is shown on the left of Fig. 5.
Note that a standard Sierpinski gasket is a compact one, say K . We extend it to an
unbounded one by letting the left bottom vertex of the triangle as the origin and
define K̂ = ∪∞

m=02mK . Let G be the Sierpinski gasket graph as shown on the right
of Fig. 5, where the length of each bond is 1. Now let Y = {Yn}n∈N be the SRW
on G, namely the particle jumps at one of the neighboring points (which is a point
that is connected by a bond) with equal probability after 1 second. Let us consider
the SRW 2−mYn on 2−mG. As before, if we merely take m → ∞, then the limiting
process does not move at all, so we should speed up the time n depending on m. It
turns out that if we speed up the time by multiplying 5m, then we have the nontrivial
(nondegenerate) limit process, namely

lim
m→∞

2−mY[5mt] = Bt,
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00
Fig. 5 Sierpinski gasket K̂ and Sierpinski gasket graph G.

and the limit process {Bt }t≥0 on the gasket is called Brownian motion, which is
a random motion of a particle on K̂ . Brownian motion on the gasket was first
constructed by Goldstein (1987) and Kusuoka (1987) independently.

The Laplace operatorL that corresponds to Brownian motion was first constructed
by Kigami (1989) and it can be determined as follows:

L f (x) = lim
m→∞

5m
( ∑
xi : x

m∼xi

f (xi) − 4 f (x)
)
, x ∈ ∪m≥02−mG \ {0}.

Here x m∼ y means that x and y are neighborhood on 2−mG. We note that the classical
Laplace operator on R can be written as ∆ f (x) = limm→∞ 22m( f (x + 2−m) + f (x −
2−m) − 2 f (x)) for f ∈ C2(R). Let dw = log 5/ log 2 (hence 5 = 2dw ). Naively, we
can say that the Laplacian on the gasket is a “differential operator of order dw”. (One
mathematical justification of this is that the domain of the so-called Dirichlet form
on the gasket is a Besov space of order dw/2.)

We can consider a d-dimensional gasket in a similar way in Rd from the family of
(d + 1)-th contraction maps with contraction rate 1/2. (For d = 1, K̂ = [0,∞).) The
Hausdorff (fractal) dimension and the walk dimension of the d-dimensional gasket
are d f = log(d + 1)/ log 2 and dw = log(d + 3)/ log 2, respectively.

Let d(x, y) be the shortest distance between x and y in K̂ . It is known that
there exists a heat kernel (fundamental solution of the heat equation) pt (·, ·) and the
following sub-Gaussian heat kernel estimates holds for all t > 0, x, y ∈ K̂ (Barlow-
Perkins 1988):

c1t−
d f
dw exp

(
− c2

( d(x, y)dw

t

) 1
dw−1

)
≤ pt (x, y)

≤ c3t−
d f
dw exp

(
− c4

( d(x, y)dw

t

) 1
dw−1

)
.(1)

The simple random walk on G also enjoys (1) for d(x, y) ≤ t ∈ N (Jones 1996).
Recall that for Brownian motion on Rd , pt (x, y) = 1

(2πt)d/2 exp(−|x − y |2/(2t)). On
fractals, we do not have explicit equality, but a generalized version of the heat kernel
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estimates hold, which is already good enough to deduce various analytical properties
of the process. Note that when d f = d and dw = 2, (1) boils down to the Gaussian
estimates.

dw is heavily related to properties of Brownian motion on the gasket. Indeed, by
integrating (1), we have c5t1/dw ≤ Ex[d(x, B(t))] ≤ c6t1/dw ; that is, dw is the order
of the average diffusion speed of particles. Given that dw > 2, the behavior of the
process is anomalous (for a long time, it diffuses slower than Brownian motion on
Rd , so the behavior is sub-diffusive). Set ds/2 = d f /dw . ds , which will appear in (2)
again, gives the asymptotic growth of the eigenvalue counting function for Laplacian
on the compact gasket K , and it is called the spectral dimension. In analysis, it is
extremely important to analyze spectral properties of the Laplacian; on fractals, these
properties have been extensively studied since early 1990s (Fukushima-Shima 1992
etc.).

There are many other fractals on which natural diffusion processes are constructed
and studied; for instance, on nested fractals and p.c.f. self-similar sets, and also on
Sierpinski carpets. It turns out that the theory of Dirichlet forms is applicable to this
area. For example, see Barlow (1998) for details.

4 SRW on the Percolation Cluster

In the following three sections, we discuss RWs on random media and their scaling
limits. From now on, the space we consider is always random (note that there are
two randomnesses, one is that of the space and the other is that of the RW). Let us
write ω for the randomness of the media. That is, the random objects we denoted
by C and U in Section 1 will be denoted by C(ω) and U (ω) when we take one
realization of the random graph.

In this section, we discuss the percolation cluster. Denote the SRW on the percola-
tion cluster by Y = {Yω

n }n∈N. Namely, Yω
n is located on one of the neighborhoods of

Yω
n−1 and it is equally distributed among all the neighborhoods. As mentioned above,
ω stands for the randomness of the media; we fix C(0) = C(0)(ω) and consider SRW
on it. SRW on the percolation cluster is sometimes called “the ant in the labyrinth.”

4.1 Supercritical Case

We first consider the supercritical case, that is, when p > pc . In this case, it is known
that there is a unique infinite open cluster. In the following, we condition on the case
|C(0) | = ∞. Then, the SRW on the cluster enjoys similar long-time behavior as that
of the SRW on Zd although there are many holes on the media. Indeed, it is known
that this SRW enjoys the following Gaussian heat kernel estimates for large n almost
surely with respect to the randomness of the media (Barlow 2004):
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c1n−
d
2 exp

(
−c2
|x − y |2

n

)
≤ pωn (x, y) + pωn+1(x, y) ≤ c3n−

d
2 exp

(
−c4
|x − y |2

n

)
.

Furthermore, the scaling limit of the SRW is similar to that of the SRW on Zd . That
is, there exists a (nonrandom) constant σ > 0 such that the following holds almost
surely with respect to the randomness of the media (Sidoravicius-Sznitman 2004;
Berger-Biskup 2007; Mathieu-Piatnitski 2007):

lim
ε→0
εYω

[ t

ε2 ] = σBt .

As we see, for the supercritical case, although there are many holes in the media, the
long-time behavior of the SRW is similar to that of the SRW without holes. [In fact,
if we search more detailed properties of the SRW, we can find differences between
the two SRWs. We omit details and refer to Biskup (2011) and Kumagai (2014).]

4.2 Critical Case

Alexander and Orbach (1982) conjectured that the behavior of SRW on the critical
percolation is completely different from that of SRW on Zd . As before, let pωn (x, y)
the heat kernel for the SRW. We call the following quantity (if the limit exists)
spectral dimension:

ds := −2 lim
n→∞

log pω2n(x, x)

log n
. (2)

One mathematical formulation of the Alexander-Orbach conjecture is that the spec-
tral dimension for the SRW on the critical percolation is 4/3 regardless of the
dimension d ≥ 2. For SRW on Zd , it holds that ds = d, so this conjecture says the
SRW on the critical percolation is anomalous like those on fractals.

To tackle this conjecture, the first problem is that there is no infinite cluster at
p = pc (that is θ(pc) = 0) at least for d = 2 and d ≥ 11. [In fact, it is a major open
problem in this area whether θ(pc) = 0 for all d ≥ 2 or not. It is believed that it is the
case.] It is known that RWs on finite graphs converge to the stationary state under
very mild conditions, so the limit in (2) will be 0, which is not what we want. So,
we consider the so-called incipient infinite cluster (IIC), which is defined as follows.
Consider the conditional probability that C(0) intersects with the boundaries of the
box of length N centered at 0 and then take N → ∞; IIC is the (unique) infinite
cluster on the probability space. It is known that at p = pc , with high probability
there is an open cluster with length of order n in the box of size n. So one can
naturally believe that the mesoscopic behavior for the RW on the large finite cluster
is similar to the long-time behavior of the RW on the IIC.

In general, analysis at critical probability is very difficult. So far, the IIC is
rigorously constructed only for d = 2 and d ≥ 19. (The former uses planar properties
of d = 2 and the latter uses the renormalization technique at criticality called the
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lace expansion.) Let Y = {Yω
n }n∈N be the SRW on IIC and pωn (x, y) be its heat

kernel. Recently (2) has been proved with ds = 4/3 almost surely with respect to the
randomness of the media when the dimension is very high, namely the Alexander-
Orbach conjecture is proved affirmatively in this case (Kozma-Nachmias 2009; cf.
Barlow-Járai-Kumagai-Slade 2008). It was also revealed that the number 4/3 comes
from the Hausdorff dimension of IIC d f = 2 and the walk dimension dw = 3 via a
formula ds = 2d f /dw . It is conjectured that the Alexander-Orbach conjecture does
not hold for d ≤ 5, but there is no mathematically rigorous proof. Of note, disproving
the conjecture for d = 2 is one of the challenging open problems in this area.

5 SRW on the Erdős-Rényi Random Graph

As observed in Section 1.2, the Erdős-Rényi random graph enjoys phase transition
around p = 1/N . Here we fix λ ∈ R, choose p = N−1+λN−4/3, and study the spatial
scaling limit at the critical window. When p is in this critical window, it is known
that |CN | ≍ N2/3 (Aldous 1997).

Let us first explain the geometrical scaling limit of the random graph. We regard
CN as a metric space with origin. Then it is proved that when N → ∞, there exists
a random compact setM =Mλ such that the following holds,

N−
1
3 CN −→ M,

(Addario-Berry, Broutin, Goldschmidt 2012). Here the convergence is in the sense
of Gromov-Hausdorff, but we omit details. Let {Y CN

n }n≥0 be the SRW on CN . Then
the following holds,

lim
N→∞

N−
1
3 Y C

N

[Nt] = BMt ,

(Croydon 2012). Here {BMt }t≥0 is the Brownian motion onM. Furthermore, there
exists the heat kernel pMt (·, ·) for Brownian motion such that the following estimates
hold for all x, y ∈ M and t ≤ 1 (Croydon 2012),

pMt (x, y) ≤c1t−
d f
dw ℓ(t−1)θ exp

−c2

(
d(x, y)dw

t

) 1
dw−1

ℓ

(
d(x, y)

t

)−θ , (3)

pMt (x, y) ≥c3t−
d f
dw ℓ(t−1)−θ exp

−c4

(
d(x, y)dw

t

) 1
dw−1

ℓ

(
d(x, y)

t

)θ . (4)

Here θ > 0, ℓ(x) := 1 ∨ log x, d f = 2, dw = d f + 1 = 3 and d(·, ·) is the metric
naturally defined on M. As discussed above, Brownian motion on fractals enjoy
similar sub-Gaussian heat kernel estimates with ℓ(x) = 1. SRWs around critical
probability and their scaling limits enjoy heat kernel estimates similar to the sub-
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Gaussian estimates, and because of the randomness of the media, there is oscillation
of the logarithmic order.

6 SRW on the 2-Dim UST

Let us first explain the geometrical scaling limit of the 2-Dim UST. In the paper of
Schramm (2000), topological properties of a candidate of a scaling limit of the UST
were analyzed. The space is R2 as a set, but the topological structure of the space is
given by the embedding of some tree into R2, and it is very different from the one we
usually consider using the Euclidean metric. Later, Lawler-Schramm-Werner proved
that the scaling limit exists uniquely. UST can be constructed as a collection of some
random paths called the loop-erased RW, and it is known that the scaling limit of the
loop-erased RW is SLE2, which is in the class of the Schramm-Loewner evolutions.
The scaling limit of the 2-Dim UST is thus heavily related to the theory of SLE.

We next discuss SRW on the 2-Dim UST. As before, we regard U as a metric
space with origin and let XU be the SRW on U starting at 0. Then the following
holds (Barlow-Croydon-Kumagai 2017; Holden-Sun 2018):

lim
ε→0
εXU

ε
− 13

4 t
= Yt . (5)

Here {Yt }t≥0 is a stochastic process onR2, but it is completely different from Brownian
motion onR2. Indeed, there exists the heat kernel of {Yt }t≥0 such that (3) and (4) hold
with ℓ(x) := 1∨ log x and d f = 8/5, dw = d f +1 = 13/5. Here d(·, ·) is the metric on
the tree that embeds intoR2, and it is completely different from the Euclidean metric.
d f = 8/5 is the Hausdorff dimension of R2 with respect to the metric d(·, ·) (note
that if we use the Euclidean metric, then the dimension of R2 is clearly 2), hence
if we observe the exponents with respect to the Euclidean metric, then it should be
multiplied by 5/4. Indeed, the exponent 13/4 = (5/4) · dw appearing in (5) is the
walk dimension of the process with respect to the Euclidean metric.

7 Conclusions

As observed in several concrete examples, SRWs on disordered random media and
their scaling limits enjoy similar properties as those on fractals, which are anomalous
and quite different from those on Zd or on Rd . These examples may have various
applications such as dynamics on the Internet (for instance, how the viruses spread
out on the Internet), and various other open problems. The interested reader may
refer to Kumagai (2014) and references therein.
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