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Abstract

We obtain heat kernel estimates for the simple random walk on the family tree

of the critical branching process with finite variance, conditioned on non-extinction.

We show that the spectral dimension of the random walk is 4/3.

§1. Introduction

There has been a lot of work by mathematical physicists on the behaviour

of random walk on percolation clusters (see [6] and the references therein).

Through numerical computations, it was observed that random walk on a su-

percritical percolation cluster on Z
d behaves in a diffusive fashion whereas at

the criticality, it behaves anomalously.

On the other hand, mathematically rigorous results appear quite recently,

even in the supercritical case, for the quenched estimates (i.e. almost sure

estimates with respect to the randomness of the media). In [3], Barlow ob-

tained both sides Gaussian-type quenched heat kernel estimates. Using these

estimates, the quenched invariance principle was established ([7, 11, 12]).

Critical percolation clusters are believed to be finite in all dimensions,

and it is rigorously proved when d = 2 or d ≥ 19. To avoid finite-size issues

associated with random walk on a finite cluster, it is convenient to consider

random walk on the incipient infinite cluster (IIC), which can be understood as a

critical percolation cluster conditioned to be infinite. Note that the existence of

the IIC is in general a highly non-trivial problem; so far it has been constructed
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only when d = 2, and d > 6 in the spread-out case. (For trees, it is not difficult

to construct the IIC, as mentioned below.)

On the IICs for Z
2 and trees, Kesten [9, 10] proved that the random walk

is subdiffusive, i.e., spread more slowly than the random walk on the Euclidean

lattice. In [4], heat kernel estimates for the random walk are given on the

spread-out oriented percolation on Z
d × Z+ for d > 6. As a consequence, it

is proved that the random walk is subdiffusive. In [5], detailed sub-Gaussian

heat kernel estimates are established for the simple random walk on the IICs

of family trees of critical branching processes whose offspring distributions are

binomial.

In this note, we estimate the heat kernel of the simple random walk on

the IICs for more general family trees. We only assume that the offspring

distribution has finite variance, so it does not need to be bounded.

In the following of this section, we give some notation, explain the frame-

work we work on, and state our main results.

Let Γ = (G, E) be an infinite graph, with the vertex set G and the edge

set E. We assume that Γ is connected. We write x ∼ y if {x, y} ∈ E, and

assume that (G, E) is locally finite, i.e. µy < ∞ for each y ∈ G, where µy is

the number of bonds that contain y. For A ⊂ G, set µ(A) =
∑

x∈A µx. Let

d(x, y) be the length of the shortest path connecting x and y, and denote

B(x, r) := {y ∈ G : d(x, y) ≤ r}, V (x, r) := µ(B(x, r)).

Let X = (Xn, n ∈ Z+, P x, x ∈ G) be the discrete-time simple random walk

on Γ. Then X has transition probabilities

P x(X1 = y) =
1

µx
, y ∼ x.

We define the discrete-time heat kernel (or the transition density) of X by

pn(x, y) = P x(Xn = y)
1

µy
;

we have pn(x, y) = pn(y, x). Let 0 ∈ G be fixed. For each R ≥ 0, let

τR = min{n ≥ 0 : d(0, Xn) ≥ R}.

The spectral dimension of G, denoted ds(G), is defined by

ds(G) = −2 lim
n→∞

log p2n(x, x)

log n
, (1.1)
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if the limit exists. Here x ∈ G; it is easy to see that the limit is independent of

the choice of x. Note that ds(Z
d) = d.

Next, let {G(ω) : ω ∈ Ω} be the realization of the IIC, where ω expresses

the randomness of the media. For each ω ∈ Ω we can define the simple random

walk X = (Xn, n ∈ Z+, P x
ω , x ∈ G(ω)). Let pω

n(x, y) be the discrete-time heat

kernel of X .

Alexander-Orbach [1] conjectured that, if G(ω) is the IIC for the critical

percolation on Z
d, d ≥ 2, then ds(G(ω)) = 4/3. It is now thought that this is

unlikely to be true for small d. This conjecture is true for the simple random

walk on the IIC of the critical branching process with binomial offspring dis-

tributions ([5]), and for the random walk on the IIC of the spread-out oriented

percolation on Z
d × Z+ for d > 6 ([4]). We will show that the conjecture is

true for the IIC for the critical branching process whose offspring distribution

has finite variance.

We now introduce the random family tree and give the assertion com-

pletely. This graph is a family tree with randomness of a number of children

for each vertex. We assume that {pj}j≥0 is a non-negative sequence with
∑∞

j=0 pj = 1.

First, put a vertex which we call a root. This is said to be in the zeroth

generation. We denote it by 0. The root gives birth to j0 vertices (children)

with probability pj0 . We denote them by (0, l1), 1 ≤ l1 ≤ j0. They are said

to be in the first generation. Second, each vertex (0, l1) in the first genera-

tion gives birth to j(0,l1) vertices (children) with probability pj(0,l1)
, which we

denote by (0, l1, l2), 1 ≤ l2 ≤ j(0,l1). They are said to be in the second genera-

tion. In general, each vertex (0, l1, l2, . . . , ln) in the n-th generation gives birth

to j(0,l1,l2,...,ln) vertices (children) with probability pj(0,l1,l2,...,ln)
independently,

which we denote by (0, l1, l2, . . . , ln, ln+1), 1 ≤ ln+1 ≤ j(0,l1,...,ln). These chil-

dren are said to be in the (n + 1)-th generation. The number of children for

each parent in each generation obeys the law {pj} and is independent of each

other. Finally, we connect the parent and their children with edges. We denote

this random graph by G′ and the law by P .

Let {Zn}n≥0 be random variables representing a number of vertices in

the n-th generation. {Zn}n≥0 is called a Bienaymé-Galton-Watson branching

process, and the law {pj} is called an offspring distribution. In particular,

P [Z1 = j] = pj . When E[Z1] < 1, the number of vertices of G ′ is finite.

When E[Z1] > 1, G′ is an infinite graph with positive probability. The case

where E[Z1] = 1 is critical. Here we treat the critical case, i.e., we assume

E[Z1] =
∑∞

j=0 jpj = 1.
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In this case G′ is a finite graph P -a.s. So we modify G ′ to have infinite

vertices.

Let A be a family tree. We denote the subgraph of A restricted to (resp.

up to) the n-th generation by An (resp. A≤n). We have

Lemma 1.1. ([10, Lemma1.14]) Let A be a tree up to the k-th genera-

tion. Then

lim
n→∞

P [G′
≤k = A|Zn 6= 0] = |Ak|P [G′

≤k = A]

and writing P0[A] = |Ak|P [G′
≤k = A], P0 has a unique extension to a probability

measure P on the set of infinite family trees.

Let G be a family tree chosen with the distribution P: we call this the

incipient infinite cluster (IIC).

We assume

σ2 := V ar[Z1] = E[(Z1 − 1)2] =

∞
∑

j=0

(j − 1)2pj < ∞.

In order to obtain the assertions, the following estimates for the volume

growth and the effective resistance are essential.

Proposition 1.1. (1) There exist q0, c1 > 0 such that for each R > 1,

P[Reff(0, B(0, R)c) ≥ λ−1R] ≥ 1 −
c1

λq0
. (1.2)

(2) E[V (0, R)] ≤ c2R
2.

(3) E[1/V (0, R)] ≤ c3R
−2.

The definition of Reff(A, B) in (1.2) will be given in (3.3).

We prove this proposition in the following sections.

Once this proposition is proved, then using Proposition 1.6 and Theorem

1.7 in [4], we can obtain the following results.

Theorem 1.1. (1) There exist α1, α2 < ∞, and a subset Ω0 with P(Ω0) =

1 such that the following statements hold.

(a) For each ω ∈ Ω0 and x ∈ G(ω) there exists Nx(ω) < ∞ such that

(log n)−α1n−2/3 ≤ pω
2n(x, x) ≤ (log n)α1n−2/3, n ≥ Nx(ω).

In particular, ds(G) = 4
3 , P-a.s., and the random walk is recurrent.

(b) For each ω ∈ Ω0 and x ∈ G(ω) there exists Rx(ω) < ∞ such that

(log R)−α2R3 ≤ Ex
ωτR ≤ (log R)α2R3, R ≥ Rx(ω).
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Hence

lim
R→∞

log Ex
ωτR

log R
= 3.

(2) The following estimates hold:

c1R
3 ≤ E(E0

ωτR) ≤ c2R
3 for all R ≥ 1,

c3n
−2/3 ≤ E(pω

2n(0, 0)) ≤ c4n
−2/3 for all n ≥ 1,

c5n
1/3 ≤ E(E0

ωd(0, Xn)) for all n ≥ 1.

(1) gives quenched estimates, i.e., estimates for a.e. ω ∈ Ω, whereas (2)

is the annealed estimates (i.e., taking the average over the randomness of the

media, which is denoted by E).

Remark. 1) We can not take α1 to be 0 in general (see [5, Lemma5.1]).

2) We can deduce more estimates for the heat kernel etc. from Proposition

1.1. See Proposition 1.5 and Theorem 1.7, 1.8 in [4] (or Proposition 1.2.3 and

Theorem 1.2.4 in [8]).

3) In [5], further off-diagonal heat kernel estimates are obtained, whereas we

only obtain on-diagonal estimates. This is because we do not know how to

maintain good uniform control of the laws Px in our setting, where Px is the

law of the IIC conditioned that the vertex x is in the IIC.

Example 1. We have the Poisson distribution with parameter 1

pj =
1

j!
e−1, j ∈ Z+

as an example of the offspring distribution. In this case, the expectation and

the variance are 1, so it has finite variance. But it is not bounded, therefore is

not treated in [5].

In Section 2, we will give some estimates for the branching process and in

Section 3, we will prove Proposition 1.1.

This note is based on the Master Thesis by the first named author ([8]).

§2. Bienaymé-Galton-Watson branching process

As we mentioned above, we assume

σ2 := V ar[Z1] = E[(Z1 − 1)2] < ∞.

We will use this assumption for the proof essentially.
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In the following of this section, we estimate the volume of G ′
≤n.

Let f be the generating function of the offspring distribution, so that

f(s) = E[sZ1 ] =

∞
∑

k=0

pksk.

From [2, p.19 (2)] we have

P [Zn > 0] ∼
2

nσ2
. (2.1)

Let

Yn =

n
∑

k=0

Zk, gn(s) = E[sYn ], fn(s) = E[sZn ].

Then conditioning on Z1 we obtain that fn+1(s) = f(fn(s)), gn+1(s) =

sf(gn(s)). And

fn(1−) = 1, f ′
n(1−) = E[Zn] = 1, f ′′

n (1−) = E[Zn(Zn − 1)] < ∞, (2.2)

gn(1−) = 1, g′
n(1−) = E[Yn] = n + 1. (2.3)

Lemma 2.1. There exists c > 0 such that for any n > 0

E[Y 2
n ] ≤ cn3.

Proof. Let Z
(l)
i , l = 1, 2, · · · be independent copies of Zi. Then,

V ar[Zn+1] = E[(Zn+1 − 1)2] =

∞
∑

y=0

E[(Zn+1 − 1)2|Zn = y]P [Zn = y]

=

∞
∑

y=0

E[(

y
∑

l=1

Z
(l)
1 − 1)2]P [Zn = y]

=
∞
∑

y=0

E[{

y
∑

l=1

(Z
(l)
1 − 1)}2 + (y − 1)2]P [Zn = y]

=

∞
∑

y=0

{yσ2 + (y − 1)2}P [Zn = y] = σ2E[Zn] + E[(Zn − 1)2]

= σ2 + V ar[Zn] = (n + 1)σ2.

Let i < j, then

E[ZiZj ] = E[E[ZiZj |Zi]] =
∞
∑

y=0

E[

y
∑

l=0

yZ
(l)
j−i]P [Zi = y] = E[Z2

i ],
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since E[
∑y

l=0 yZ
(l)
j−i] = y2. Using the two equalities above, we have

E[Y 2
n ] = E[(

n
∑

i=0

Zi)
2] =

n
∑

i=0

E[Z2
i ] + 2

∑

i<j

E[ZiZj ] =
n

∑

i=0

E[Z2
i ] + 2

∑

i<j

E[Z2
i ]

=

n
∑

i=0

(iσ2 + 1) + 2

n
∑

i=0

(n − i)(iσ2 + 1) ≤ cn3.

The next lemma is Lemma 2.3(a) in [5]. Since the proof is the same, we

omit it.

Lemma 2.2. There exist c0 > 0, p0 > 0 such that

P [Yn > c0n
2] ≥

p0

n
.

We will need to consider the following modified branching process. Let

Z̃ = (Z̃n, n ≥ 0) be a branching process with Z̃0 = 1 and the same offspring

distribution as Z, except that at the first generation we have

P [Z̃1 = j] = (j + 1)pj+1.

For the generating function of Z̃1, we have

E[sZ̃1 ] =

∞
∑

k=0

(k + 1)pk+1s
k = f ′(s),

and
∑∞

k=0(k +1)pk+1 = f ′(1−) = 1 by (2.2). So {(j +1)pj+1} is a probability.

The generating function of Z̃n is expressed by f as

E[sZ̃n ] = E[E[sZ̃n |Z̃1]] =

∞
∑

y=0

E[s
Py

l=1 Z
(l)
n−1 ]P [Z̃1 = y]

= E[E[sZn−1 ]Z̃1 ] = E[fn−1(s)
Z̃1 ] = f ′(fn−1(s)),

where {Z
(l)
n−1}l are independent copies of Zn−1. The expectation of Z̃n is finite

since we assume the offspring distribution has finite variance:

E[Z̃n] =
d

ds
f ′(fn−1(s))|s=1− = f ′′(fn−1(1−))f ′

n−1(1−) = f ′′(1−) < ∞. (2.4)

Let ζ be a random variable. We write ζ[n] for a random variable with the

distribution of
∑n

i=1 ζi, where ζi are i.i.d. with ζi
(d)
= ζ. Using (2.4) and the

Chebyshev inequality, we can easily obtain the following lemma.
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Lemma 2.3. There exists c > 0 such that for any n, λ > 0

P [Z̃n[n] ≥ λn] ≤
c

λ
.

Let Ỹn =
∑n

k=0 Z̃k. We then have the following, which corresponds to

Lemma 2.3(b), 2.5(b) in [5]. Again, we omit the proof since it is the same as

that of [5], given the estimates above.

Lemma 2.4. There exists c1 > 0 such that for any λ, n with 0 < λ <
c0

4
, n >

√

c0

4λ
,

P [Ỹn[n] < λn2] ≤ e
− c1√

λ ,

where c0 is the constant in Lemma 2.2.

§3. Proof of Proposition 1.1

In this section, we estimate the graph G(ω) and give the proof of Proposi-

tion 1.1.

We remark that P-a.s. G has exactly one infinite descending path from 0,

which we call the backbone, and denote by B. We denote the vertex on the

backbone in the n-th generation by bn.

By [10, Corollary 2.13], we see that a parent on the backbone has l children,

excluding the one on the backbone, with probability P [Z̃1 = l] = (l + 1)pl+1.

On the other hand, we can easily see that a parent off the backbone has l

children with probability P [Z1 = l] = pl.

For each x, y ∈ G, let γ(x, y) be the unique geodesic path connecting x and

y. We write D(x) for the set of descendants of x. Note that x ∈ D(x). We set

D(x; z) := {y ∈ D(x) : γ(x, y) ∩ γ(x, z) = {x}}.

We also set

Dr(x; z) := {y ∈ D(x; z) : d(x, y) = r}, D≤r(x; z) := ∪r
i=0Di(x; z).

We estimate the volume of balls with a center at the origin.

If the root has no bond, we define µ0 = 1 for convenience. Note that as G

is a tree, we have

|B(x, r)| ≤ V (x, r) ≤ 2|B(x, r + 1)|. (3.1)
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Lemma 3.1. There exists c > 0 such that for any λ > 0,

E[V (0, n)] ≤ cn2.

Proof. By (3.1), it is enough to bound |B(0, n)|. Recall that bn is the

vertex on the backbone in the n-th generation.

h(s) : = E[s|B(0,n)|] = E[s|∪
n
k=0D≤k(bn−k;bn−k−1)|] = E[s

Pn
k=0 Ỹ

(k)
k ] = Πn

k=0E[sỸk ]

= sΠn
k=1E[E[sỸk |Z̃1]] = sΠn

k=1

∞
∑

y=1

E[s1+
Py

l=1 Y
(l)

k−1 ]P [Z̃1 = y]

= sΠn
k=1

∞
∑

y=1

sE[sYk−1 ]yP [Z̃1 = y] = sΠn
k=1(sE[gk−1(s)

Z̃1 ])

= sn+1Πn
k=1f

′(gk−1(s)) = sn+1Πn−1
k=0f ′(gk(s)),

where {Y
(k)
· }k are independent copies of Y.. Using this, we have

h′(s) = (n + 1)snΠn−1
k=0f ′(gk(s)) + sn+1

n−1
∑

l=0

f ′′(gl(s))g
′
l(s)Π

n−1
m=0,m6=lf

′(gm(s)).

So using (2.2), (2.3),

E[|B(0, n)|] = h′(1−) = n + 1 +

n−1
∑

l=0

f ′′(1−)(l + 1) ≤ cn2. (3.2)

Using Lemma 2.4, we can prove the following in the same way as Propo-

sition 2.7 of [5].

Proposition 3.1. There exists c1 > 0 such that for any λ, n with 0 <

λ <
c0

4
, n > 3

√

c0

4λ
,

P[V (0, r) < λr2] ≤ e
− c1√

λ ,

where c0 is the constant in Lemma 2.2.

Proposition 3.2. There exists c > 0 such that for any r > 0,

E[
1

V (0, r)
] ≤

c

r2
.
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Proof. First, note that V (0, r) ≥ 1. From Proposition 3.1, we have

P[
1

V (0, r)
>

λ

r2
] ≤ e−c1

√
λ

for 4/c0 ≤ λ ≤ 4n2/9c0. So

E[
1

V (0, n)
]

≤
4 · 32

9c0n2
P[

1

V (0, n)
≤

4 · 32

9c0n2
]

+

n−1
∑

k=3

4 · (k + 1)2

9c0n2
P[

4 · k2

9c0n2
<

1

V (0, n)
≤

4 · (k + 1)2

9c0n2
] + 1 · P[

4 · n2

9c0n2
<

1

V (0, n)
]

≤
4 · 32

9c0n2
+

n−1
∑

k=3

4 · (k + 1)2

9c0n2
P[

4 · k2

9c0n2
<

1

V (0, n)
] + P[

4 · n2

9c0n2
<

1

V (0, n)
]

≤
4 · 32

9c0n2
+

n−1
∑

k=3

4 · (k + 1)2

9c0n2
e−ck + e−cn ≤

c

n2
.

In the following of this section, we estimate the effective resistance for G.

For the purpose, we first estimate the connectivity in the ball.

Definition 3.1. Let x ∈ G, r ≥ 1. Let M(x, r) be the smallest number

m such that there exists A = {z1, . . . , zm} ⊂ G with d(x, zi) ∈ [r/4, 3r/4] for

each i, such that any path γ from x to B(x, r)c must pass through the set A.

Since G is a tree, the best choice of such a set A will in fact be the points

at a distance dr/4e from x.

Using the previous estimates such as (2.1) and Lemma 2.3, we can prove

the following similarly (in fact, more easily) to the proof of [5, Proposition

2.10].

Proposition 3.3. There exists c > 0 such that for each m ≥ 2, r ≥ 4,

P[M(0, r) ≥ m] ≤
c

m
.

Finally, we estimate the effective resistance. To define the effective resis-

tance, we define a quadratic form E by

E(f, f) =
1

2

∑

x,y∈G,x∼y

(f(x) − f(y))2.
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Let A, B be disjoint subsets of G. The effective resistance between A and B is

defined by

Reff(A, B)−1 := inf{E(f, f) : f |A = 1, f |B = 0}. (3.3)

Proposition 3.4. There exists c > 0 such that for any r ≥ 4, λ ≤ 1/4,

P[Reff(0, B(0, r)c) < λr] ≤ cλ.

Proof. Let

A =
⋃

z∈γ(0,bdr/4e)\{bdr/4e}
Ddr/4e(z, bdr/4e), A∗ = {z ∈ A : Ddr/4e(z) 6= ∅}.

Then any path from 0 to B(0, r)c must pass through A∗∪{bdr/4e}, so M(0, r) ≤

|A∗| + 1. Let A∗∗ be the set of ancestors at level dr/4e of A∗ ∪ {bdr/4e}, and

we define a function f on G as follows: if z ∈ γ(0, x) for some x ∈ A∗∗,

f(z) = |z|/dr/4e, otherwise f(z) = f(a(z, 1)), where |z| is the level of the vertex

and a(z, 1) is the parent of z. Since G is a tree, we see that M(0, r) = |A∗∗|.

Then

1

Reff(0, B(0, r)c)
≤ E(f, f) ≤

1

2
(

1

dr/4e
)2 · dr/4e · M(0, r) =

2M(0, r)

r
,

so Reff(0, B(0, r)c) ≥ r
2M(0,r) . Using Proposition 3.3, we deduce that

P[Reff(0, B(0, r)c) < λr] ≤ P[
r

2M(0, r)
< λr] ≤ P[M(0, r) >

1

2λ
] ≤ cλ.

By Lemma 3.1, Proposition 3.2 and Proposition 3.4, the proof of Proposi-

tion 1.1 is completed.
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