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Abstract

We consider a certain class of non-symmetric Markov chains and obtain heat
kernel bounds and parabolic Harnack inequalities. Using the heat kernel es-
timates, we establish a sufficient condition for the family of Markov chains
to converge to non-symmetric diffusions. As an application, we approximate
non-symmetric diffusions in divergence form with bounded coefficients by non-
symmetric Markov chains. This extends the results by Stroock-Zheng ([SZ]) to
the non-symmetric divergence forms. c© 2000 Wiley Periodicals, Inc.

1 Introduction

Consider a diffusion operator in divergence form in Rd :

L f (x) =
1

ρ(x)

d

∑
i, j=1

∂xi

(
ai j(x)∂x j f (x)

)
, f ∈C2(Rd),

which is uniformly elliptic and bounded: the coefficients ρ,ai j are real measurable
functions such that

(1.1) ∀x ∈ Rd ,
1

C0
≤ ρ(x)≤C0, |ai j(x)| ≤C1,

and

(1.2) ∀x ∈ Rd ,∀ξ ∈ Rd ,
d

∑
i, j=1

ai j(x)ξiξ j ≥ ε

d

∑
i=1

ξ
2
i .
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Formally this corresponds a diffusion process with the non-symmetric Dirichlet
form

E ( f ,g) =
∫

Rd
∇ f (x) ·a(x)∇g(x)dx, f ,g ∈W 1,2(Rd),

and the based measure ν(dx) = ρ(x)dx. We can rewrite the operator

L f (x) =
d

∑
i, j=1

ãi j(x)∂xi∂x j f (x)+
d

∑
i=1

bi(x)∂xi f (x)

where ã(x) is the symmetric diffusion matrix

ãi j(x) =
1

ρ(x)
1
2
(ai j(x)+a ji(x))

and bi(x) is the formal drift

bi(x) =
1

ρ(x)

d

∑
j=1

∂x j ai j(x).

Then the classical theory developed by E. De Giorgi, J. Nash and J. Moser in
the fifties and sixties of the last century shows that non-negative solutions u to
the calorific (parabolic) equation (∂t + L )u = 0 satisfy the scale-invariant para-
bolic Harnack principle, also the associated kernel have some Hölder regularity
and with both upper and lower Gaussian bounds, cf. [SC]. The remarkable fact
is that no assumption on the regularity of the coefficients is needed. This is par-
ticularly useful for example when the coefficients depend on disordered random
media. These purely analytical tools can be used in order to construct the diffusion
process {Zt , t ≥ 0} on Rd , although the standard stochastic differential equation
formalism may fail, since the corresponding drift bi(x) might not even be defined.

An alternative, more probabilistic, way to construct this diffusion is the approxi-
mation by finite range random walks {Y (n)

t , t ≥ 0} on the rescaled lattice Sn = 1
nZd .

In case of smooth coefficients ai j ∈C1(Rd), this approach is well known cf. [SV].
The non-smooth symmetric case, where ai j(x) = a ji(x) has been the object of

several papers. In this situation, the diffusion process can be approximated by
symmetric Markov chains. The explicit construction of [SZ] is based on a discrete
analogy of the De Giorgi-Nash-Moser theory for symmetric uniformly irreducible
walks which shows Hölder regularity for the corresponding rescaled heat kernels.
These a priori estimates give compactness for the heat kernels and play a crucial
role in the proof of the convergence. Further results allowing unbounded jump
ranges converging to symmetric processes with both diffusions and jumps have
been obtained by [BK] and [BKU], however all of these results so far have been
restricted to the symmetric case for which the discrete theory of De Giorgi-Nash-
Moser has been extensively developed.

The objective of this paper is to treat the general uniformly elliptic non-symmetric
case under assumptions (1.1) and (1.2). We first identify a broad class of random
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walks on Sn corresponding to diffusions in divergence form with uniform ellip-
tic coefficients as the class of random walks with bounded cycle decomposition
sometimes also called centered walks, cf. [Birk], [Ma], see also some related work
dealing with random walks on groups in [Al], [Du].

More precisely, these uniformly irreducible random walks on Sn admit a cycle
decomposition with bounded range, bounded length of cycles and bounded jump
rates (cf. Assumptions 2.1 and 2.3 below). Our first objective is to show that
for such class of random walks, the diffusive scale-invariant parabolic Harnack
principle holds and we derive Hölder regularity and Gaussian estimates for the
corresponding heat kernel. To our knowledge, this is the first paper that shows such
results in the non-symmetric setting, cf. Theorem 3.9 and Theorem 3.10 below.

This is the core of our paper. It should be noted that upper bounds of the Carne
Varopoulos-type have already been obtained for the time discrete kernel by Math-
ieu in [Ma], from which we get heat kernel upper bounds for the time-continuous
process via Poissonization procedure and Nash’s inequalities.

Our derivation of the lower bounds and parabolic Harnack inequality is new.
It is based on non-symmetric Dirichlet forms, the weighted Poincaré inequalities
and differential inequalities, and is partially inspired by previous derivations in the
symmetric case in [BK], [BKU] and [SZ]. However the lack of symmetry requires
special care and new methods. A key step is played by a Jensen-type inequality
(3.11) which allows us to control the non-symmetric part of the Dirichlet form.

Note that parabolic Harnack inequality also holds in the context of random
walks in random environments with bounded cycle decompositions as introduced
in [DK]. In view of the parabolic Harnack inequality, the quenched invariance prin-
ciple proved in [DK] extends easily to a quenched local limit theorem, it suffices
to apply the method presented in [BaH]; cf. Theorem 4.7.

Equipped with these regularity results for the heat kernel we can then focus on
the convergence of the associated rescaled process. In particular tightness follows
from the upper bound while the Hölder regularity implies the compactness of the
corresponding heat kernels. We show that weak convergence of the random walks
{Y (n)

t , t ≥ 0} to the diffusion process {Zt , t ≥ 0} takes place, once the coefficients of
the discrete non-symmetric Dirichlet form converge locally in L1(Rd) to the given
matrix ai j.

Although both regularity results and convergence theorem have some interest
in their own, we can view them as preparation to our main result: the explicit
construction of uniformly irreducible random walks with bounded cycle decom-
position on Sn converging to the diffusion process in divergence form for given
measurable uniformly elliptic bounded matrix a : Rd 3 x 7→ (ai j(x))1≤i, j≤d ∈ Rd2

,
satisfying (1.1) and (1.2).

Our concrete construction of the cycles and weights is based on a two scale
methods. In particular it avoids an intermediate smoothing procedure of the matrix
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a(x) as proposed by [SZ] in the symmetric case. Also we give a procedure to pro-
duce a diagonalized form of symmetric matrices based on the Feshbach transfor-
mation, with no need to compute of the eigenvalues and eigenvectors. Our method
is very simple and gives explicit bounds on the range and length of correspond-
ing cycles, and thus could be easily numerically implemented, cf. Theorem 5.5
below. The paper is organized as follows. In Section 2 we give the framework
with the precise definitions of bounded cycle decomposition. Section 3 deals with
heat kernel estimates; The upper bound follows from Mathieu’s result obtained
for discrete time walks and a standard Poissonization procedure, while the lower
bound is new, based on the Jensen-type key inequality in Proposition 3.7 and the
weighted Poincaré inequalities. Section 4 presents the weak convergence of the
random walks to the non-symmetric diffusion process in divergence form. In Sec-
tion 5, for given matrix ai j we construct explicitly a family of bounded cycles such
that the corresponding process converges weakly to the diffusion process.

2 Framework

For n ∈ N, let Sn = n−1Zd . Let | · | be the Euclidean norm and Bn(x,r) :=
{y ∈ Sn : |x− y| < r}. Let µn

x := n−d for all x ∈ Sn and for each A ⊂ Sn, define
µn(A) = ∑y∈A µn

y .
We call a cycle a finite oriented sequence of points

γ = (x0,x1, · · · ,xl(γ) = x0)

where x j = (x1
j , · · · ,xd

j )∈Zd and l(γ) is the length of the cycle. We allow cycles of
the form (x0,x0) or (x0,x1,x0). Sometimes, we identify the cycle γ with a sequence
of oriented edges, namely γ = ((x0,x1), · · · ,(xl(γ)−1,x0)). By writing (x,y) ∈ γ , we
mean that the oriented edge (x,y) belongs to the cycle. We suppose that cycles are
edge self-avoiding (meaning that (xi,xi+1) = (x j,x j+1) implies i = j), but we do
not assume cycles are vertex self-avoiding. We define the range of the cycle γ as

Range(γ) := max{|xi− xi+1| : xi ∈ γ}.

Let Γ = {γi : i = 1,2, · · ·} be a family of cycles such that {x ∈ Zd : there exists
γ ∈ Γ such that x ∈ γ}= Zd . We define weights of cycles by a map α : Γ→ (0,∞).

We define a quadratic form by

E ( f ,g) = ∑
γ∈Γ

α(γ)Eγ( f ,g) ∀ f ,g ∈F ,

F = { f : Zd → R | ∑
γ∈Γ

α(γ)Eγ( f , f ) < ∞},

and

Eγ( f ,g) =
l(γ)−1

∑
j=0

( f (x j)− f (x j+1))g(x j).
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Since ∑
l(γ)−1
j=0 ( f (x j)− f (x j+1)) = 0, it holds that

(2.1) Eγ( f ,g) =
l(γ)−1

∑
j=0

( f (x j)− f (x j+1))(g(x j)−A)

for any constant A. It should be noted that two different sets of cycles and weights
can give the same quadratic form E , that is the cycle decomposition, which has
been introduced for Markov chains on finite sets by G. Birkhoff in [Birk], is not
unique.

For a cycle γ = (x0,x1, ...,xl(γ) = x0), the reversed cycle is given by

γ
∗ = (xl(γ),xl(γ)−1, ...,x0 = xl(γ)).

Then if we set
α(γ∗) = α(γ)

and Γ∗ = {γ∗ : γ ∈ Γ} we have

E ∗( f ,g) = ∑
γ∗∈Γ∗

α(γ∗)Eγ∗( f ,g) = E (g, f ) ∀ f ,g ∈F .

Note that for each cycle γ of length at most two: `(γ) ≤ 2 we have γ∗ = γ . In
particular the form is symmetric, E ( f ,g) = E (g, f ) if and only if we can find a
cycle decomposition with cycles of length at most two.

Also we have
1
2
(E ( f ,g)+E (g, f )) = ∑

γ∈Γ

α(γ)Ẽγ( f ,g) ∀ f ,g ∈F ,

where

Ẽγ( f ,g) =
1
2

l(γ)−1

∑
j=0

( f (x j)− f (x j+1))(g(x j)−g(x j+1)).

The quadratic form on Sn is defined by

E n( f ,g) = n2−d
∑

γn∈Γn

αn(γn)Eγn( f ,g) ∀ f ,g ∈F n,

F n = { f : Sn → R | ∑
γn∈Γn

αn(γn)Eγn( f , f ) < ∞},

where Γn is a family of (a countable number of) cycles on Sn and αn(γn) ∈ (0,∞)
is the weight of the cycle γn. As we will see below, the factor n2−d corresponds to
a diffusive scaling, where space is rescaled by 1

n and time by n2.
For each n∈N and y∈Sn, let νn

y be a positive number and let νn be the measure
on Sn defined by νn(A) = ∑y∈A νn

y for A ⊂ Sn. We assume the following for the
triple (αn,Γn,νn),n ∈ N which we call bounded cycle decomposition:
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Assumption 2.1. Bounded length, bounded weights and bounded range. There
exist M1, · · · ,M5 < ∞ such that the following holds for all n ∈ N:

`(γn)≤ M1,0 < αn(γn)≤ M2,Range(γn)≤
M3

n
for all cycles γn,(2.2)

M4n−d ≤ ν
n
y ≤ M5n−d for all y ∈Sn.(2.3)

In some sense, Assumption 2.1 corresponds to the boundedness condition (1.1)
for the diffusion matrix.

Under Assumption 2.1, (E n,F n) is a closed form that satisfies the following
(strong) sector condition;

E n( f ,g)2 ≤CE n( f , f )E n(g,g),

for all f ,g∈F n that are compactly supported (see [Ma, Lemma 2.12]). Here C de-
pends only on M1 in (2.2). – It fact, (E n,L2(Sn,ν

n)) is a regular (non-symmetric)
Dirichlet form, but we do not use this fact explicitly (see [MR] for the general
theory of non-symmetric Dirichlet forms). Let us introduce the scalar product

(2.4)
〈

f ,g
〉

νn := ∑
y∈Sn

f (y)g(y)νn
y

and the infinitesimal generator A n such that〈
A n f ,g

〉
νn =−E n( f ,g), f ,g ∈F n.

That is

A n f (x) = ∑
y∈Sn

qn(x,y)( f (y)− f (x))

with

qn(x,y) =
n2−d

νn
x

∑
γn∈Γn

αn(γn)1{(x,y)∈γn} =
n2−dan(x,y)

νn
x

and

an(x,y) := ∑
γn∈Γn

αn(γn)1{(x,y)∈γn}.

Under our assumption, it is easy to see that L2(Sn,µn) = L2(Sn,ν
n) ⊂ F n.

Also, note that from (2.2), we can deduce the following:

(2.5) an(x) := ∑
y∈Sn:y6=x

an(x,y)≤ M6 for all x ∈ X .

Indeed, since the range is uniformly bounded, each point will only have a bounded
number of cycles (at most 2(2M1M3)d

). These cycles have at most M1 elements and
the weights are bounded by M2, so taking M6 = 2(2M1M3)d

M1M2 suffices.
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Let Y (n)
t be the corresponding continuous time Markov chains on Sn. In fact,

Y (n)
t can also be constructed from a discrete time Markov chain. Let {X (n)

m } be the
discrete time Markov chain defined by

(2.6) Px(X (n)
1 = y) = p(n)

1 (x,y) =
an(x,y)
an(x)

for all x,y ∈Sn.

Let {Ux,n
i : i ∈ N,x ∈ Sn} be an independent sequence of exponential random

variables, where the parameter for Ux,n
i is n2−dan(x)/νn

x , that is independent of
{X (n)

m }m, and define

(2.7) T (n)
0 = 0, T (n)

m =
m

∑
k=1

U
X (n)

k−1,n
k .

Set Ỹ (n)
t = X (n)

m if T (n)
m ≤ t < T (n)

m+1; then the laws of Ỹ (n) and Y (n) are the same,
and hence Ỹ (n) is a realization of Y (n). Note that under Assumption 2.1, the mean
exponential holding time at each point for Ỹ (n) can be controlled uniformly from
above and below by n2.

Remark 2.2. Note that under Assumption 2.1, {Y (n)
t } is conservative. Indeed, let-

ting {PX (n)

m } be the semigroup corresponding to X (n), PX (n)

1 1(x) = ∑y∈Sn Px(X (n)
1 =

y) = 1 by (2.6). So inductively we have PX (n)

m 1 = 1 for all m ∈ N, so that {X (n)
m } is

conservative. As we mentioned above, {Y (n)
t } is a time changed process of {X (n)

m },
and under Assumption 2.1, the mean exponential holding time at each point for
Y (n) can be controlled uniformly from above and below by n2, so we conclude
Pn

t 1 = 1 for all t > 0.

We make a second important assumption, which corresponds to the uniform
elliptic condition given in (1.2) for the diffusion matrix:

Assumption 2.3. Uniform Irreducibility. There exist δ > 0 and N ≥ 1, such that
for all x ∈Sn, and i = 1, ...,d we can find k = k(x,±ei)≤ N such that

(2.8) p(n)
k (x,x± ei/n) = Px(X (n)

k = x± ei/n)≥ δ , ∀i = 1,2, · · · ,d,

where ei is a unit vector in Zd whose i-th component is 1.
Moreover, there exist M7 > 0 such that the following hold for all n∈N and x∈Sn:

(2.9) an(x)≥ M7.

Remark 2.4. Given Γn, we can define the graph distance associated with Γn as
follows: For each x,y ∈Sn, we write x ∼ y if there exists a cycle γ = (x0, ...,x` =
x0) such that either xi = x,xi+1 = y or xi = y,xi+1 = x holds for some 0 ≤ i ≤
l(γ)−1. That is, in view of the above if and only if p(n)

1 (x,y)+ p(n)
1 (y,x) > 0. For

each z,w ∈Sn, a path between z and w is a sequence z = z0,z1,z2, · · · ,zm = w such
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that zi ∼ zi+1 for 0 ≤ i ≤ m− 1. m is called the length of the path. Now for each
x,y ∈Sn, let

dn(x,y) = min{m : ω = (ω0, · · · ,ωm) is a path between x and y},

if x 6= y and let dn(x,x) = 0. This dn is the graph distance on Sn. Sometimes it
is convenient to work with the graph distance rather than the Euclidean distance.
However, since lengths of cycles are uniformly bounded, bounded range and uni-
form irreducible, there exist c1,c2 > 0 such that

(2.10) c1dn(x,y)/n ≤ |x− y| ≤ c2dn(x,y)/n ∀x,y ∈Sn,∀n ∈ N.

So we will use the Euclidean distance in this paper.

Let pn(t,x,y) be the transition density for Y (n)
t with respect to νn, namely,

pn(t,x,y) = Px(Y (n)
t = y)/ν

n
y .

Then the semigroup Pn
t

Pn
t ( f )(x) = ∑

y∈Sn

pn(t,x,y) f (y)νn
y

has the infinitesimal generator A n:

(2.11)
d
dt

〈
Pn

t f ,g
〉

νn =
〈
A n(Pn

t f ),g
〉

νn =−E n(Pn
t f ,g).

In particular the density is a solution of the backward equation: for all y ∈Sn

pn(t,x,y) =
1

νn
y

1y(x)+
∫ t

0

(
∑

z∈Sn

qn(x,z)(pn(s,z,y)− pn(s,x,y))
)

ds, ∀x ∈Sn.

Denote Y ∗,(n)
t as the dual process of Y (n)

t , E ∗,n, A ∗,n, P∗,nt be its corresponding
Dirichlet form, generator and semigroup:

(2.12) E ∗,n( f ,g) =−
〈
A ∗,n f ,g

〉
= E n(g, f ),

〈
Pn

t f ,g
〉

νn =
〈

f ,P∗,nt g
〉

νn .

That is, the Dirichlet form is expressed in terms of the reversed cycles. The corre-
sponding heat kernel can be expressed by

p∗,n(t,x,y) = pn(t,y,x).

3 Heat kernel estimates

We assume Assumptions 2.1 and 2.3 throughout this section. We derive some
estimates for the transition density. We first deal with the upper bound in Section
3.1 and then prove the corresponding lower bound in Section 3.2.
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3.1 Heat kernel upper bound and exit time estimates
For p ≥ 1, define ‖ f‖p

p,n = ∑x∈Sn

∣∣ f (x)∣∣pµn
x . For f ∈ L2(Sn,µn), let

(3.1) E n
NN( f , f ) =

n2−d

2 ∑
x,y∈Sn

|x−y|=n−1

( f (x)− f (y))2,

which is the Dirichlet form for the rescaled simple symmetric random walk on Sn.

Lemma 3.1. Under Assumptions 2.1 and 2.3, we have the following estimates.

E n
NN( f , f )≤ c1E

n( f , f ), for all f ∈F n,(3.2)

pn(t,x,y)≤ c1t−d/2, p∗,n(t,x,y)≤ c1t−d/2, for all x,y ∈Sn, t > 0.(3.3)

PROOF. First, note that under Assumption 2.3, we have

M7 ≤ inf
x

an(x) = inf
x ∑

y:y6=x
an(x,y)

and therefore with an(x,y)≥ M7 p(n)
1 (x,y),

E n( f , f ) =
n2−d

2 ∑
x,y

ãn(x,y)( f (x)− f (y))2 ≥ M7
n2−d

2 ∑
x,y

p(n)
1 (x,y)( f (x)− f (y))2,

where ãn(x,y) = (an(x,y)+an(y,x))/2. Also, using the Cauchy-Schwarz, we have
( f (x)− f (y))2 ≤ k ∑

k−1
i=0 ( f (xi)− f (xi+1))2 where x0 = x,xk = y. So,

n2−d

2 ∑
x,y

p(n)
k (x,y)( f (x)− f (y))2 ≤ k2 n2−d

2 ∑
x,y

p(n)
1 (x,y)( f (x)− f (y))2 ≤ k2

M7
E n( f , f ).

Using this, in view of Assumption 2.3, we get

E n
NN( f , f )≤ 1

δ

N

∑
k=1

n2−d

2 ∑
x,y

p(n)
k (x,y)( f (x)− f (y))2 ≤ c1E

n( f , f ),

which gives (3.2). Now using (3.2) and [BK, Proposition 3.1], there exists c1 > 0
independent of n such that for any f ∈F n,

(3.4) ‖ f‖2(1+2/d)
2,n ≤ cE n

NN( f , f )‖ f‖4/d
1,n ≤ c1E

n( f , f )‖ f‖4/d
1,n .

Given (3.4), one can deduce (3.3) by a similar way as that of the case of symmetric
Dirichlet forms (see, for example [CKS], for the proof of the symmetric case). �

For r≥ n−1, let E n,r be the Dirichlet form corresponding to {Y (n),r
t := r−1Y (n)

r2t , t ≥
0}with based measure νn,r, where νn,r(A) := r−dνn(rA) for each A⊂Snr := {x/r :
x ∈Sn}= (nr)−1Zd . By simple computations, we have

E n,r( f ,g) = (nr)2−d
∑
γn

α(γn)Er−1γn
( f ,g),



10 JEAN-DOMINIQUE DEUSCHEL AND TAKASHI KUMAGAI

where r−1γn = (r−1x0,r−1x1 · · · ,r−1xl(γ)). Define

(3.5) pn,r(t,x,y) := rd pn(r2t,rx,ry).

Then pn,r(t,x,y) is the heat kernel for E n,r with respect to νn,r.

Lemma 3.2. There exist c1,c2 > 0 such that for all m,n,r ∈N, the following holds.

Px(sup
k≤m

dn(x,X
(n)
k )≥ r)≤ c11{M3m≥r} exp(−c2r2/m).

PROOF. Since X (n)
m started at x cannot reach z ∈ Sn with dn(z,x) > M3m, we may

assume M3m ≥ r. By [Ma, Theorem 2.8], we have

(3.6) Px(X (n)
m = y)≤ c1ν

n
y exp(−c2dn(x,y)2/m).

Summing over all y ∈ Sn with dn(x,y) ≥ r and noting c3Rd ≤ ∑y:dn(x,y)≤nR νn
y ≤

c4Rd for all R ∈ N, we have

Px(dn(x,X
(n)
m )≥ r)≤ c5 exp(−c6r2/m).

Now applying [BBCK, Lemma 3.8], we obtain the desired estimate. �

Proposition 3.3. For A > 0 and 0 < B < 1, there exists t0 = t0(A,B) ∈ (0,1) such
that for every n ∈ N, r ≥ n−1 and x ∈Sn,

(3.7) Px

(
sup

t≤r2t0
|Y (n)

t −Y (n)
0 |> rA

)
= Px

(
sup
t≤t0

|Y (n),r
t −Y (n),r

0 |> A
)
≤ B.

Further, the same estimates hold for the dual processes Y ∗,(n) and Y ∗,(n),r.

PROOF. The first equality of (3.7) holds by definition of Y (n),r
t . Let N(n)

t = sup{m∈
N : T (n)

m ≤ t}where {T (n)
m }m is as in (2.7). Then, Y (n)

t = X (n)

N(n)
t

, and E x[N(n)
t ]≤ c1n2t,

Px(N(n)
t = 0)≥ exp(−c1n2t) by Assumption 2.1. So for each λ > 1,

Px(|Y (n)
r2t −Y (n)

0 |> rA) = Px(Y (n)
r2t /∈ B(x,rA))

≤ Px(Y (n)
r2t /∈ B(x,rA),N(n)

r2t ≤ λ r2tn2)+Px(N(n)
r2t > λ r2tn2)

≤ Px( sup
k≤λ r2tn2

dn(x,X
(n)
k )≥ rnA)+

1
λ r2tn2 E x[N(n)

r2t ]

≤ c2 exp
(
− c3

(rnA)2

[λ r2tn2]+1

)
1{M3λ r2tn2≥rnA}+

c1

λ
,(3.8)

where we used (2.10) in the second inequality, and Lemma 3.2 in the last inequality.
Now fix A and consider first the case r > (An)−1. In this case, since rnA > 1,

we have

c2 exp
(
− c3

(rnA)2

[λ r2tn2]+1

)
1{M3λ r2tn2≥rnA} ≤ c2 exp

(
− c4

A2

λ t

)
.
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Take δ > 0 small enough so that c2 exp(−c4δ−1) ≤ B/4, and choose t0 such that
t0/(A2δ ) < min{1,B/(4c1)}. Then, for t ≤ t0, choosing λ = A2δ/t (which is larger
than 1 by the choice of t0), we have

(RHS of (3.8))≤ c2 exp(−c4δ
−1)+

c1t
A2δ

< B/2.

For the case r ≤ (An)−1, since rA ≤ n−1, we have

Px(|Y (n)
r2t −Y (n)

0 |> rA) = Px(Y (n)
r2t /∈ B(x,rA))

≤ Px(N(n)
r2t > 0) = 1−Px(N(n)

r2t = 0)

≤ 1− exp(−c1n2r2t)≤ 1− exp(−c1A−2t)≤ B/2

for all t ≤ t0 by choosing t0 such that exp(−c1A−2t0)≥ 1−B/2.

So for both cases, we conclude Px(|Y (n)
r2t −Y (n)

0 |> rA)≤B/2 for all t ≤ t0. (Note
that the choice of constants are independent of n ∈ N.) Thus, applying [BBCK,
Lemma 3.8], we obtain (3.7). The dual process version holds similarly by using
the dual process version of Lemma 3.2. �

For A ⊂Sn and a process Zt on Sn, let

τ
n = τ

n
A(Z) := inf{t ≥ 0 : Zt /∈ A}, T n

A = T n
A (Z) := inf{t ≥ 0 : Zt ∈ A}.

Lemma 3.4. Given δ > 0 there exists κ such that for each n ∈ N, if x,y ∈Sn and
C ⊂Sn with dist(x,C) and dist(y,C) both larger than κt1/2 where t ≥ n−1, then

Px(Y (n)
t = y,T n

C ≤ t)≤ δ t−d/2n−d .

PROOF. The proof is similar to that of [BK, Lemma 4.5], but some minor changes
are needed due to the non-symmetry of the process. We sketch the proof, mention-
ing where to modify because of the lack of symmetry.

First, using (3.3), (3.7) and the strong Markov property, we have

(3.9) Px(Y (n)
t = y,T n

C ≤ t/2)≤ δ

2
(tn2)−d/2.

We next consider Px(Y (n)
t = y, t/2≤ T n

C ≤ t). If SC = sup{s≤ t : Y (n)
s ∈C}, then

clearly
Px(Y (n)

t = y, t/2 ≤ T n
C ≤ t)≤ Px(Y (n)

t = y, t/2 ≤ SC ≤ t).
Using the dual of the heat kernel p, the following equality holds (cf. [BK, (4.7)]
for symmetric case).

(3.10) Px(Y (n)
t = y, t/2 ≤ SC ≤ t) = Py(Y ∗,(n)

t = x,T n
C (Y ∗,(n))≤ t/2)

νn
y

νn
x
.

Now, arguing similarly to the proof of (3.9) and using (2.3), the right hand side of
(3.10) is bounded from above by δ

2 (tn2)−d/2, and combining with (3.9) proves the
proposition. �
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3.2 Lower bounds and regularity for the heat kernel
In order to establish the lower bound, we use a weighted Poincaré inequality

and a differential inequality along the lines of [SZ, BK, BKU]. Since our process
is non-symmetric, we need a new inequality (Proposition 3.7 ii)) to establish the
differential inequality. We also use (3.3), Proposition 3.3 and the dual process.

The next proposition provides lower bounds for the heat kernel killed on exiting
balls and is the key step for the proof of the Hölder continuity of pn(t,x,y).

Proposition 3.5. There exist c1 > 0 and θ ∈ (0,1) such that for each n ∈ N, if
|x− x0|, |y− x0| ≤ t1/2, x,y,x0 ∈Sn, t ≥ n−1 and r ≥ t1/2/θ , then

Px(Y (n)
t = y,τn

B(x0,r) > t)≥ c1t−d/2n−d .

To prove this we first need some preliminary lemmas. Noting (2.3), the proof of
the following weighted Poincaré inequality is almost the same as in [SZ, Lemma
1.19] and [BK, Lemma 4.3].

Lemma 3.6. Let

gn(x) = c1(n)
d

∏
i=1

e−|xi| x ∈Sn,

where c1(n) is determined by the equation ∑x∈Sn gn(x)νn
x = 1. Then there exists

c2 > 0 such that

c2

〈
( f −〈 f 〉gn,νn)2

〉
gn,νn

≤ n2−d
∑

l∈Sn

gn(l)
d

∑
i=1

(
f (l+

ei

n
)− f (l)

)2
, f ∈ L2(Sn),

where
〈 f 〉gn,νn = ∑

l∈Sn

f (l)gn(l)νn
l .

Since our process is non-symmetric, we cannot apply the usual proof of near di-
agonal heat kernel lower bounds for symmetric processes directly. The next lemma
plays the key role to overcome the difficulty of non-symmetry in proving a function
inequality (3.20) in Proposition 3.8.

Proposition 3.7. i) For each l ∈ N, there exist c1 > 0 such that

(3.11)
1
l

l

∑
j=1

eα j − c1

l

l

∑
j=1

α
2
j ≥ 1,

for all (α1, · · · ,αl) ∈ Rl with ∑ j α j = 0.
ii) For each l ∈ N and M > 0, there exist c2,c3 > 0 such that

(3.12)
l

∑
j=1

(eα j −1)ew̄ j/n + c2/n2− c3

l

∑
j=1

α
2
j ≥ 0,

for all n≥ 1, (α1, · · · ,αl),(w̄1, · · · , w̄l)∈Rl with ∑ j α j = ∑ j w̄ j = 0 and max j |w̄ j| ≤
M.
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PROOF. i) We will prove (3.11) for l +1 instead of l. Since αl+1 =−∑
l
j=1 α j, we

need to prove

F(α1, · · · ,αl) :=
l

∑
j=1

eα j + e−∑
l
j=1 α j − c1

l

∑
j=1

α
2
j − c1(

l

∑
j=1

α j)2 ≥ l +1

for all (α1, · · · ,αl) ∈Rl . It is easy to see that if one of α1, · · · ,αl,(−∑
l
j=1 α j) goes

to ∞, then F(α1, · · · ,αl) goes to ∞ and F(α1, · · · ,αl) is continuous. So the infimum
of F(α1, · · · ,αl) over all Rl is attained at least at one point. Let (a1, · · · ,al) be one
of such points. Then,
(3.13)
∂xiF(a1, · · · ,al)= g(ai)−g(−∑

j
a j)= 0, ∀i∈{1,2, · · · , l}, where g(x)= ex−2c1x,

so g(ai) = g(−∑ j a j) for all i. Note that g(x) attains the global minimum at x =
log(2c1), and if g(x) = g(y) for x ≤ y, we have either x = y or x < log(2c1) < y.
Next,

∂xi∂xk F(a1, · · · ,al) = δik(eai −2c1)+ e−∑ j a j −2c1, ∀i,k ∈ {1,2, · · · , l},

so defining HF(a) as a Hessian matrix of F at a = (a1, · · · ,al), we have
(3.14)
vtHF(a)v = ∑

j
(ea j −2c1)v2

j +(e−∑ j a j −2c1)(∑
j

v j)2 ≥ 0, ∀v = (v1, · · · ,vl) ∈ Rl.

Taking vi =−v j and vk = 0 for k 6= i, j in (3.14), we have

(3.15) eai −2c1 + ea j −2c1 ≥ 0.

Also, taking vi = 1 and vk = 0 for k 6= i in (3.14), we have

(3.16) eai −2c1 + e−∑ j a j −2c1 ≥ 0.

Now suppose there exists i such that ai ≤ log(2c1). Without loss of general-
ity, we may assume i = 1. Then, by (3.15) and (3.16), we have ak ≥ log(2c1)
for k 6= 1 and −∑ j a j ≥ log(2c1). By (3.13) and the property of g mentioned
above, we have a2 = · · · = al = −∑ j a j =: s. Now define T : Rl → Rl by T (x) =
(−∑ j x j,x2, · · · ,xl). Then clearly T ◦T is an identity map and F(x) = F(T (x)). So,
T (a) = (s, · · · ,s) also attains the minimum of F and s ≥ log(2c1). We can obtain
the same conclusion if ai ≥ log(2c1) for all i. Therefore, we conclude that there is
a point (s, · · · ,s) ∈ Rl with s ≥ log(2c1) that attains the minimum of F .

Define f (s) := F(s, · · · ,s) = les−e−ls−c1ls2−c1l2s2 for s≥ log(2c1). By easy
calculations, we see that f ′′′(s) = 0 when s = 2(l +1)−1 log l and f ′′(x)≥ f ′′(2(l +
1)−1 log l) = (l + 1)l2/(l+1) − 2c1l(l + 1). So by choosing c1 ≤ 2−1l−(l−1)/(l+1),
f ′′(x) ≥ 0 for all x ≥ log(2c1). This means f ′(x) is monotone increasing. As
f ′(0) = 0, f ′(z) ≤ 0 for log(2c1) ≤ z ≤ 0 and f ′(y) ≥ 0 for y ≥ 0. Thus, f (s) ≥
f (0) = l +1 so we obtain the desired result.
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ii) Denote the left hand side of (3.12) as ψ(α) where α = (α1, · · · ,αl), and let
α̃i = αi + w̄i/n. Then we have

ψ(α) = ∑
j

eα̃ j − l− (∑
j

e
w̄ j
n − l)+

c2

n2 −2c3 ∑
j

α̃
2
j + c3(∑

j
α̃

2
j +

2
n ∑

j
w̄ jα̃ j −

1
n2 ∑

j
w̄2

j)

≥ −(∑
j

e
w̄ j
n − l)+

c2

n2 + c3 ∑
j
(α̃ j +

w̄ j

n
)2−2c3 ∑

j

w̄2
j

n2 ,

where i) is used with c3 = c1/2. Now, since ∑ j w̄ j = 0, there exists cM > 0 such

that ∑ j e
w̄ j
n − l ≤ cM ∑ j w̄2

j/n2. So

ψ(α)≥−cM ∑
j

w̄2
j

n2 +
c2

n2 −2c3 ∑
j

w̄2
j

n2 ≥ 1
n2 {c2− (cM +2c3)lM2} ≥ 0,

by taking c2 ≥ (cM +2c3)lM2, and the proof is completed. �

Given the above lemma, the following key estimate can be proved by some
modifications of the proof of [BK, Lemma 4.4].

Proposition 3.8. There is an ε > 0 such that

(3.17) pn(t,x,y)≥ εt−d/2,

for all n ∈ N, (t,x,y) ∈ (n−1,∞)×Sn×Sn with |x− y| ≤ 2t1/2.

PROOF. It is enough to prove the following: there is an ε > 0 such that

∑
l∈Snr

log
(

pn,r(1
2 ,k, l +m)

)
gnr(l)ν

n,r
l ≥ 1

2 logε,(3.18)

∑
l∈Snr

log
(

p∗,n,r(1
2 ,k, l +m)

)
gnr(l)ν

n,r
l ≥ 1

2 logε,(3.19)

for any n ∈ N, r ≥ n−1 and k,m ∈Sn with |k−m| ≤ 2. Indeed, by the Chapman-
Kolmogorov equation and the fact that gnr( j)≤ 1 for all k,m ∈Snr,

pn,r(1,k,m)≥ ∑
j∈Snr

pn,r(1
2 ,k, j + k)p∗,n,r(1

2 ,m, j + k)gnr( j)νn,r
j .

Taking logarithm on both side, by Jensen’s inequality,

log pn,r(1,k,m)≥ ∑
j∈Snr

log
(

pn,r(1
2 ,k, j+k)

)
ν

n,r
j + ∑

j∈Snr

log
(

p∗,n,r(1
2 ,m, j+k)gnr( j)

)
ν

n,r
j .

Thus, (3.18) and (3.19) yield

rd pn(r2,rk,rl) = pn,r(1,k, l)≥ ε n ≥ 1, |k− l| ≤ 2.

Taking t = r2, this gives (3.17).
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So it is enough to prove (3.18) and (3.19). Since the arguments are parallel, we
only prove (3.18). Let k,m ∈Sn satisfy |k−m| ≤ 2 and set ut(l) = pn,r(t,k, l +m).
Define

G(t) = ∑
l∈Snr

log(ut(l))gnr(l)ν
n,r
l .

By Jensen’s inequality, we see that G(t)≤ 0. Further, by (2.11) and (2.12),

G′(t)= ∑
l∈Snr

∂u
∂ t

(l)
gnr(l)
ut(l)

ν
n,r
l =−E ∗,n,r(ut ,

gnr

ut
)=−(nr)2−d

∑
γ∗n

α(γ∗n )Er−1γ∗n
(ut ,

gnr

ut
).

Write r−1γ∗n = (x0,x1, · · · ,xl(γn) = x0) and define

Fγn =
1

l(γn)

l(γn)

∑
j=1

d

∑
k=1

|xk
j|, w̄ j = nr(Fγn −

d

∑
k=1

|xk
j|),

where xk
j is the k-th coordinate of x j. Note that there exists M which is independent

of γ∗n such that sup j |w̄ j| ≤ M due to (2.2), and ∑
l(γn)−1
j=0 w̄ j = 0. Further, gnr(x j) =

c1(rn)e−Fγn ew̄ j/(nr). Applying Proposition 3.7 ii) with αi = logut(xi+1)− logut(xi),
we have

−Er−1γ∗n
(ut ,

gnr

ut
) =

l(γn)−1

∑
i=0

ut(xi+1)
ut(xi)

gnr(xi)−
l(γn)−1

∑
i=0

gnr(xi)

= c1(rn)e−Fγn

l(γn)−1

∑
i=0

(
ut(xi+1)
ut(xi)

−1)ew̄i/(nr)

≥ c′1e−Fγn

(
c3 ∑

i
(logut(xi+1)− logut(xi))2− c2/(nr)2

)
≥ c′1e−Fγn

(
c4 ∑

i
(logut(xi+1)− logut(xi))2ew̄i/(nr)− c2/(nr)2

)
,

where c1(nr)≥ c′1 for all nr is used in the first inequality, and nr≥ 1 and sup j |w̄ j| ≤
M are used in the last inequality. Thus, since α(γ∗n ) ≤ M for any cycle γ∗n (due to
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Assumption 2.1 i)), we have

G′(t) =−(nr)2−d
∑
γ∗n

α(γ∗n )Er−1γ∗n
(ut ,

gnr

ut
)

≥ (nr)2−d
∑
γ∗n

α(γ∗n )c′1e−Fγn

(
c4 ∑

i
(logut(xi+1)− logut(xi))2ew̄i/(nr)− c2/(nr)2

)
≥ c5(nr)2−d

∑
γ∗n

α(γ∗n )∑
i
(logut(xi+1)− logut(xi))2gnr(xi)− c6M∑

γ∗n

e−Fγn /(nr)d

≥ c7(nr)2−d
∑
γ∗n

α(γ∗n )∑
i
(logut(xi+1)− logut(xi))2gnr(xi)− c8

≥ c9(nr)2−d
∑

l∈Snr

d

∑
j=1

(
logut

(
l +

e j

nr

)
− logut(l)

)2
gnr(l)− c8

≥ c10(nr)−d
∑

l∈Snr

(logut(l)−G(t))2gnr(l)− c8.

(3.20)

Here the fourth inequality can be verified similarly to the proof of (3.2), and we
used Lemma 3.6 in the last inequality.

Given these estimates and (3.3), (3.7), the rest of the proof is very similar to
that of [BK, Lemma 4.4], so we omit it. �

PROOF OF PROPOSITION 3.5. We have from Proposition 3.8 and (2.3) that there
exists ε such that

(3.21) Px(Y (n)
t = y) = pn(t,x,y)νn

y ≥ εt−d/2n−d

if |x− y| ≤ 2t1/2. If we take δ = ε/2 and C = Bn(x0,r)c in Lemma 3.4, then
provided r > (κ +1)t1/2, we have

(3.22) Px(Y (n)
t = y,τn

Bn(x0,r) ≤ t)≤ ε

2
t−d/2n−d .

Subtracting (3.22) from (3.21), we have

Px(Y (n)
t = y,τn

Bn(x0,r) > t)≥ ε

2
t−d/2n−d

if |x− y| ≤ t1/2, which is equivalent to what we want. �

We introduce the space-time process Z(n)
s := (Us,Y

(n)
s ), where Us = U0 + s.

The filtration generated by Z(n) satisfying the usual conditions will be denoted
by {F̃s; s ≥ 0}. The law of the space-time process s 7→ Z(n)

s starting from (t,x)
will be denoted by P(t,x). We say that a non-negative Borel measurable function
q(t,x) on [0,∞)×Sn is parabolic in a relatively open subset B of [0,∞)×Sn if for
every relatively compact open subset B1 of B, q(t,x) = E (t,x)

[
q(Z(n)

τn
B1

)
]

for every

(t,x) ∈ B1, where τn
B1

= inf{s > 0 : Z(n)
s /∈ B1}.
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We denote T0 := t0(1/2,1/2) < 1 the constant in (3.7) corresponding to A =
B = 1/2. For (t,x) ∈ [0,∞)×Sn and r > 0, we define

Qn(t,x,r) := [t, t +T0r2]×Bn(x,r),

where Bn(x,r) = {y ∈Sn : |x− y|< r}.
Given the estimate in Proposition 3.5, one can prove the uniform Hölder conti-

nuity of the heat kernel pn(t,x,y) by standard arguments.

Theorem 3.9. There are constants c > 0 and β > 0 (independent of R,n) such
that for every 0 < R < ∞, every n ≥ 1, and every bounded parabolic function q in
Qn(0,x0,4R),

(3.23) |q(s,x)−q(t,y)| ≤ c‖q‖∞,R R−β

(
|t− s|1/2 + |x− y|

)β

holds for (s,x), (t,y) ∈ Qn(0,x0,R), where ‖q‖∞,R := sup(t,y)∈[0,(4R)2]×Sn
|q(t,y)|.

In particular, for the transition density function pn(t,x,y) of Y (n),
(3.24)

|pn(s,x1,y1)− pn(t,x2,y2)| ≤ ct−(d+β )/2
0

(
|t− s|1/2 + |x1− x2|+ |y1− y2|

)β

,

for any n−1 < t0 < 1, t, s ≥ t0 and (xi,yi) ∈Sn×Sn with i = 1,2.

PROOF. Given Proposition 3.5, there are at least two ways to prove this. One way
of the proof is to show the oscillation inequality and then use it iteratively to prove
the uniform Hölder continuity. See for example [FS] Section 3 or [BGK]. (Note
that the symmetry of the process is not used in the proof.) The other way of the
proof is to follow the arguments in [BK]. Corollary 4.6 and Lemma 4.7 in [BK]
can be proved exactly in the same way. Using them, Theorem 3.9 can be proved
similarly to the proof of [BK, Theorem 4.9]. (In fact, the proof is easier since [BK]
handles Markov chains with unbounded range of jumps whereas here jumps are all
bounded.) �

Given Proposition 3.5, one can also prove the uniform Gaussian heat kernel
estimates and the uniform parabolic Harnack inequality.

Theorem 3.10. 1) There exist fixed constants C1, · · · ,C4 > 0 such that

(3.25) C1t−d/2 exp
(
−C2

|x− y|2

t

)
≤ pn(t,x,y)≤C3t−d/2 exp

(
−C4

|x− y|2

t

)
,

for all n ∈ N, (t,x,y) ∈ [n−1,∞)×Sn×Sn with |x− y| ≤ tn.
2) There exist fixed constants C1,C2 > 0 such that the following holds for all

n ∈ N. If u = u(t,x) is a non-negative parabolic function on Qn(0,x0,R), then

(3.26) sup
(t,x)∈Qn(T0R2/4,x0,R/2)

u(t,x)≤C2 inf
(t,x)∈Qn(3T0R2/4,x0,R/2)

u(t,x),

for all R ∈ [n−1,∞) and all x ∈Sn.
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PROOF. 1) The upper bound is a consequence of (3.3) and [Ma, Theorem 2.10]. It
also follows from (3.3), (3.6) and the following relation which is due to (2.3):

(3.27) pn(t,x,y)≤ e−c1n2t
∞

∑
m=1

(c2n2t)m

m!
Px(X (n)

m = y)/ν
n
y .

The lower bound follows from (3.17) and the usual chain argument (see for ex-
ample, [FS, Theorem 2.7] or [BGK] – similar arguments work for non-symmetric
case as well).

2) Given Proposition 3.5, one can prove the parabolic Harnack inequality sim-
ilarly to [FS, Section 3] or [BGK]. In fact, the equivalence of (3.25) and (3.26)
are well-known in a general context (see for example, [BGK] – similar arguments
work for non-symmetric case as well). �

4 Weak convergence of the process

In view of both heat kernel estimates and regularity, it is clear that tightness
holds for the law of the processes. In order to identify the limiting process, we need
more detailed investigations. We adapt here the method introduced in [BK, BKU]
to the non-symmetric situation.

For a cycle γ = (x1,x2, · · · ,xl+1 = x0), let l(γ) = l and z+ := xi+1 when z = xi.
For each f ,g ∈ L2(Sn,ν

n),

E n( f ,g) = n2−d
∑

γ∈Γn

α(γ)
l(γ)−1

∑
j=0

( f (x j)− f (x j+1))g(x j)

= n2−d
∑

γ∈Γn

α(γ)
l(γ)−1

∑
j=0

( f (x j)− f (x j+1))(g(x j)−
1

l(γ)

l(γ)−1

∑
k=0

g(xk))

= n2−d
∑

γ∈Γn

α(γ)
l(γ)

l(γ)−1

∑
j=0

l(γ)−1

∑
k=0

( f (x j)− f (x j+1))(g(x j)−g(xk))

= n2−d
∑

x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

( f (x)− f (x+))(g(x)−g(y)).

Starting from this form, we will show the weak convergence under Assumption 4.3
below.

First, if g is defined on Rd , we define Rn(g) to be the restriction of g to Sn:

Rn(g)(x) = g(x), x ∈Sn.

If g is defined on Sn, we define Eng to be the extension of g to Rd defined by

Eng(x) = g([x]n),

where [x]n = ([nx1]/n, [nx2]/n, . . . , [nxd ]/n) for x = (x1,x2, . . . ,xd) ∈ Rd .
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We now specify some notation in order to make a precise statement of our
convergence theorem. For n ∈ N, set

|x− y|n := n|x1− y1|+n|x2− y2|+ · · ·+n|xd − yd | for x,y ∈Sn.

Note that 1 ≤ |x− y|n ≤ dn|x− y| holds for any x,y ∈Sn with x 6= y, where |x− y|
is the Euclidean distance between x and y. Clearly |x−y|n is always a non-negative
integer.

Let α i = ei if i = 1,2, . . . ,d and α i = −ei−d if i = d + 1, . . . ,2d. A nearest
neighbor path σ from x to y is a sequence of points pi ∈ Sn for i = 0,1,2, . . . ,k
(k ≥ |x− y|n), which we denote by σ = σ(p0, . . . , pk), so that p0 = x, pk = y and
for any ` = 0,1, . . . ,k−1, there exists j ∈ {1,2, . . . ,2d} such that

p` = p`−1 +
1
n

α j.

Fix M0 ≥ 1 and let P(x,y) be a family of nearest neighbor paths σ = σ(p0, . . . , pk)
from x to y that satisfy k ≤ M0|x− y|n. For σ ∈ P(x,y), define a function Dσ

defined on Sn×Sn as follows:

Dσ (w,z) :=

{
1, if there exists ` such that w = p` and z = p`+1,

0, otherwise.

For any function u defined on Sn and for any x,y ∈Sn, we easily see that

u(x)−u(y) =
1

]P(x,y) ∑
σ∈P(x,y)

∑
z,w∈Sn

Dσ (w,z)
(
u(w)−u(z)

)
.

Now let

Px,y(w,z) =
1

]P(x,y) ∑
σ∈P(x,y)

Dσ (w,z).

For h ∈ R, x ∈ Rd and i = 1,2, . . . ,d, let

∇
i
hu(x) =

u(x+hei)−u(x)
h

.

We then have the following. (See [BKU, Lemma 5.1] for the proof.)

Lemma 4.1.

u(x)−u(y) =
1
n

d

∑
i=1

∑
z∈Sn

(
Px,y(z+ ei/n,z)−Px,y(z,z+ ei/n)

)
∇

i
1/nu(z).

Remark 4.2. Let x = (x1, · · · ,xd) and y = (y1, · · · ,yd) be elements in Sn. Below
are some examples of P(x,y):

(i) Let Lxy be the union of the line segment from x to (y1,x2, · · · ,xd), the line
segment from (y1,x2, · · · ,xd) to (y1,y2,x3 · · · ,xd), · · · , and the line segment from
(y1, · · · ,yd−1,xd) to y. Set P(x,y) = {Lxy} so that ]P(x,y) = 1. This was used in
[BK], and we do use this in the next section.
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(ii) Set P(x,y) be the set of nearest neighbor paths from x to y such that k =
|x− y|n for each σ = σ(p0, . . . , pk) ∈P(x,y). In this case

]P(x,y) =
(|x− y|n)!(

n|x1− y1|
)
!
(
n|x2− y2|

)
! · · ·

(
n|xd − yd |

)
!
.

(iii) Let H(x,y) be the d-dimensional cube whose vertices consist of {(z1, · · · ,zd) :
zi is either xi or yi for i = 1, · · · ,d}. Let P(x,y) be the set of nearest neighbor
paths from x to y that consist of a union of the edges of H(x,y). In this case
]P(x,y) = d !.

Using Lemma 4.1, we can write E n(u,v) as follows:
(4.1)

E n(u,v) = n2−d
∑

x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

(u(x)−u(x+))(v(x)− v(y))

= n−d
∑

x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

d

∑
i, j=1

∑
z,w∈Sn

(
Px,x+(z+ ei/n,z)−Px,x+(z,z+ ei/n)

)
×
(

Px,y(w+ e j/n,w)−Px,y(w,w+ e j/n)
)

∇
i
1/nu(z)∇ j

1/nv(w).

For i, j = 1,2, . . . ,d and w,z ∈Sn, set

Gn
i j(z,w) := ∑

x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

(
Px,x+(z+ ei/n,z)−Px,x+(z,z+ ei/n)

)
×
(

Px,y(w+ e j/n,w)−Px,y(w,w+ e j/n)
)

;(4.2)

then we see that

(4.3) E n(u,v) =
1
nd

d

∑
i, j=1

∑
w,z∈Sn

∇
i
1/nu(z)∇ j

1/nv(w)Gn
i j(z,w).

For i, j = 1,2, . . . ,d and z ∈Sn, let

Fn
i j(z) := ∑

w∈Sn

Gn
i j(z,w)

= ∑
x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ)

(
Px,x+(z+ ei/n,z)−Px,x+(z,z+ ei/n)

)
∑

y∈Sn
y∈γ

n(x j − y j),(4.4)

where x j,y j are the j-th coordinate of x,y respectively. Here the equality in (4.4) is
because

∑
w∈Sn

(
Px,y(w+ e j/n,w)−Px,y(w,w+ e j/n)

)
= n(x j − y j).

Note that by Assumption 2.1, Fn
i j is uniformly bounded, i.e. supi, j,n ||Fn

i j||∞ < ∞.
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From now on, we extend the conductances Gn
i j(x,y) to Rd ×Rd as follows:

Gn
i j(x,y) = Gn

i j([x]n, [y]n) for x,y ∈ Rd .

We extend Fn
i j(·) to Rd similarly.

We now give an additional assumption needed to obtain weak convergence of
the processes.

Assumption 4.3. i) There exist a matrix-valued functions a(x) = (ai j(x)) on Rd

(which is non-symmetric in general) so that for any i, j = 1,2, . . . ,d, the functions
Fn

i j(x) converge to ai j(x) locally in L1(Rd).
ii) There exists a Borel measure ν on Rd such that νn converges vaguely to ν as
n → ∞.

Remark 4.4. 1) Saying that the Fn
i j converge locally in L1(Rd) means that for every

compact set B,

‖Fn
i j −ai j‖B :=

∫
B
|Fn

i j(x)−ai j(x)|dx → 0.

Since the Fn
i j are uniformly bounded, the convergence locally in L1(Rd) is equiv-

alent to the convergence in measure on each compact set. In particular, a subse-
quence will converge almost everywhere.
2) One may consider the weaker condition that the Fn

i j are uniformly bounded and
converge to ai j weakly. However, this condition is not sufficient for Theorem 4.6
to hold (see the example at the end of the introduction in [SZ]).
3) By Assumptions 2.1 and 2.3, we can easily see that there exists λ > 0 such that

λ
−1|ξ |2 ≤

d

∑
i, j=1

ξiξ jai j(x)≤ λ |ξ |2, x,ξ ∈ Rd .

4) Note that by (2.3), {νn}n is tight and there is a convergent subsequence even
without the above assumption. Also, the limiting measure ν is absolutely continu-
ous with respect to the Lebesgue measure on Rd . Further, it holds that M4

∫
A f 2dx≤∫

A f 2dν ≤ M5
∫

A f 2dx for all Borel subset A of Rd , in particular L2(Rd ,dx) =
L2(Rd ,ν).

Since a is uniformly elliptic, if we define

E ( f ,g) :=
∫

Rd
∇ f (x) ·a(x)∇g(x)dx

then (E ,C1
c (Rd)) is a closable Markovian form on L2(Rd ,dx); cf. [MR] page 49

etc.. Denote the closure by (E ,F ). Then we have the following.

Lemma 4.5. Let W 1,2(Rd) := { f ∈ L2(Rd ,dx) : ∇ f ∈ L2(Rd ,dx)}. Then,

(4.5) { f ∈ L2(Rd ,dx) : E ( f , f ) < ∞}= W 1,2(Rd) = F .

Moreover, if F ′ is a subset of L2(Rd ,dx) such that (E ,F ′) is a regular Dirichlet
form on L2(Rd ,dx), then F ′ = W 1,2(Rd).
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PROOF. Because E (·, ·) is comparable to the Dirichlet integral ‖(∇ ·)‖2
2, the first

equality of (4.5) is clear. Now suppose (E ,F ′) is a regular Dirichlet form on
L2(Rd ,dx); then since W 1,2(Rd) is the maximal domain (due to the first equality
in (4.5)), we have F ′ ⊂W 1,2(Rd). Using the comparability of E (·, ·) and ‖(∇ ·)‖2

2
again, (‖∇ · ‖2

2,F
′) is a regular Dirichlet form. This implies F ′ = W 1,2(Rd) (so

W 1,2(Rd) = F as well) and the proof is complete. �

Under the above set-up we have the following, which is the main theorem of
this paper.

Theorem 4.6. Suppose Assumptions 2.1, 2.3 and 4.3 hold. Then for each x and
each t0 the P[x]n-laws of {Y (n)

t ;0 ≤ t ≤ t0} converge weakly with respect to the
topology of the space D([0, t0],Rd). If Zt is the canonical process on D([0, t0),Rd)
and Px is the weak limit of the P[x]n-laws of Y (n), then the process {Zt ,Px} is the
Markov process corresponding to the Dirichlet form E with domain W 1,2(Rd) with
the based measure ν .

We also have the following local limit theorem.

Theorem 4.7. Suppose Assumptions 2.1, 2.3 and 4.3 hold. Then the limiting pro-
cess {Zt ,Px} in Theorem 4.6 enjoys the jointly locally Hölder continuous heat ker-
nel p(t,x,y) for (t,x,y) ∈ (0,∞)×Rd ×Rd . Further, the following holds for each
T > 0:

(4.6) lim
n→∞

sup
x,y∈Rd

sup
t≥T

|pn(t, [x]n, [y]n)− p(t,x,y)|= 0,

where [x]n = ([nx1]/n, [nx2]/n, · · · , [nxd ]/n).

PROOF. Given the a priori estimates of p(·, ·, ·) and Theorem 4.6, the proof is stan-
dard. So, we only give a sketch. By (3.3), (3.24) and by the Ascoli-Arzelà theorem,
there exists a subsequence of pn(·, [·]n, [·]n) which converges uniformly to a jointly
continuous function p(·, ·, ·), say. Thanks to Theorem 4.6, it can be easily checked
that p(·, ·, ·) is the heat kernel of the limiting process. Since the limiting process is
unique, we can prove the convergence of the full sequence of pn(·, [·]n, [·]n). The
uniform convergence in (4.6) is again a consequence of (3.24). �

To prove Theorem 4.6, we first extend E n and define a quadratic form on
L2(Rd ,dx). Define

Hn :=
{

Enu : u is a function on Sn

}
∩L2(Rd ,dx).

For f = Enu ∈Hn, define

Ē n( f , f ) = n2+d
d

∑
i, j=1

∫∫
x 6=y

∇
i
1/nu(x)∇ j

1/nu(y)Gn
i j(x,y)dxdy.
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Then we see

(4.7) Ē n( f , f ) = n2+d
d

∑
i, j=1

∑
w,z∈Sn

∇
i
1/nu(z)∇ j

1/nu(w)Gn
i j(z,w)n−2d = E n(u,u).

Before proving Theorem 4.6, we state a proposition showing tightness of the
laws of Y (n).

Proposition 4.8. Suppose Assumptions 2.1 and 2.3 hold and let {n j} be a subse-
quence. Then there exists a further subsequence {n jk} such that

(a) For each C∞ function f on Rd with compact support, En jk
(P

n jk
t Rn jk

( f )) con-
verges uniformly on compact subsets; if we denote the limit by Pt f , then the opera-
tor Pt is linear and extends to all continuous functions on Rd with compact support
and is the semigroup of a strong Markov process on Rd .

(b) For each x and each t0 the P[x]n jk law of {Y (n jk )
t ;0≤ t ≤ t0} converges weakly

to a probability Px.

Given Proposition 3.3 and Theorem 3.9, the proof of this proposition is very
similar to that of [BK, Proposition 6.2], so we omit it.

In the following, we write for h1,h2 : Sn → R

〈h1,h2〉νn := ∑
x∈Sn

h1(x)h2(x)νn
x , 〈h1,h2〉n = n−d

∑
x∈Sn

h1(x)h2(x),

cf. (2.4), and for f1, f2 ∈ L2(Rd ,dx) = L2(Rd ,ν),

〈 f1, f2〉ν
:=
∫

Rd
f1(x) f2(x)dν , 〈 f1, f2〉 :=

∫
Rd

f1(x) f2(x)dx.

PROOF OF THEOREM 4.6. Let Uλ
n be the λ -resolvent for Y (n); this means that

Uλ
n h(x) = E x

∫
∞

0
e−λ th(Y (n)

t )dt

for x ∈ Sn and h : Sn → R. First, note that any subsequence {n j} has a further
subsequence {n jk} such that Uλ

n jk
(Rn jk

f ) converges uniformly on compacts when-

ever f ∈Cc(Rd), that is, when f is continuous with compact support. This can be
proved similarly to Proposition 4.8, so we refer the reader to [BK].

Now suppose we have a subsequence {n′} such that the Uλ

n′ (Rn′ f ) are equicon-
tinuous and converge uniformly on compacts whenever f ∈Cc(Rd). Fix such an f
and let H be the limit of Uλ

n′ (Rn′ f ).
In the following, we drop the primes for legibility. Set un =Uλ

n (Rn f ) for λ > 0.
We will prove that

(4.8) H ∈W 1,2(Rd) and E n(un,g)→ E (H,g), ∀g ∈C2
c (Rd)
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along some subsequence. Once we have (4.8), then

E (H,g) = limE n(un,g) = lim(〈 f ,g〉
νn −λ 〈un,g〉νn)

= 〈 f ,g〉
ν
−λ 〈H,g〉

ν
,

the limit being taken along the subsequence. By (4.8), H ∈ W 1,2(Rd), and the
equality

(4.9) E (H,g) = 〈 f ,g〉
ν
−λ 〈H,g〉

ν

holds for all g ∈ C2
c (Rd). By Lemma 4.5, the closure of C2

c (Rd) with respect to
(E (·, ·)+ 〈·, ·〉

ν
)1/2 is equal to W 1,2(Rd), and so (4.9) holds for all g ∈W 1,2(Rd).

Since W 1,2(Rd) is the maximal domain due to (4.5), this implies that H is the λ -
resolvent of f for the process corresponding to (E ,W 1,2(Rd)), that is, H = Uλ f .
We can then conclude that the full sequence Uλ

n (Rn f ) (without the primes) con-
verges to Uλ f whenever f ∈Cc(Rd). The assertions about the convergence of P[x]n

then follow as in the proof of [BK, Proposition 6.2]. The rest of the proof will be
devoted to proving (4.8).

Step 1. The first step is to show H ∈W 1,2(Rd). This can be proved similarly to
Step 1 in the proof of [BKU, Theorem 5.5], so we omit the proof.

Step 2. We will show that for some subsequence {n′},

E n′(un′ ,g)−→
∫

Rd
∇H(x) ·a(x)∇g(x)dx = E (H,g)

for any g ∈ C2
c (Rd). Recall (4.3); since Gn

i j(x,y) = 0 if |x− y| > M∗/n for some
M∗ > 0 and the w,z are on the nearest neighbor paths in P(x,y), P(x,x+) respec-
tively, it is enough to consider w’s only for |w− z| ≤ M/n for some M > 0 in the
sum of the right hand side of (4.3). So

E n(un,g) =
1
nd

d

∑
i, j=1

∑
z∈Sn

∇
i
1/nun(z) ∑

w∈Sn
|w−z|≤M/n

∇
j
1/ng(w)Gn

i j(z,w)

=
1
nd

d

∑
i, j=1

∑
z∈Sn

∇
i
1/nun(z)∇

j
1/ng(z) ∑

w∈Sn
|w−z|≤M/n

Gn
i j(z,w)

+
1
nd

d

∑
i, j=1

∑
z∈Sn

∇
i
1/nun(z) ∑

w∈Sn
|w−z|≤M/n

(
∇

j
1/ng(w)−∇

j
1/ng(z)

)
Gn

i j(z,w)

=: In
1 + In

2 .

Let K be the support of g ∈ C2
c (Rd). Since 1/n ≤ M/n ≤ 1 for large n and |w−

z| ≤ M/n in the summation defining In
2 , the z’s must lie in the set K1∩Sn, where
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K1 = {x ∈ Rd : d(K,x) ≤ 1}. By using the mean value theorem for g and the
definition of ∇i

1/nun, we see that for some 0 < θ , θ̃ < 1 depending on z and w,

|In
2 | =

∣∣∣n−d
d

∑
i, j=1

∑
z∈Sn

∇
i
1/nun(z) ∑

w∈K1∩Sn
|w−z|≤M/n

(
∇

j
1/ng(w)−∇

j
1/ng(z)

)
Gn

i j(z,w)
∣∣∣

=
∣∣∣n1−d

d

∑
i, j=1

∑
z∈Sn

(
un(z+ ei/n)−un(z)

)
× ∑

w∈K1∩Sn
|w−z|≤M/n

(
∂x j g(w+θe j/n)−∂x j g(z+ θ̃e j/n)

)
Gn

i j(z,w)
∣∣∣

≤
(

sup
|z−z′|≤1/n

∣∣un(z)−un(z′)
∣∣) · sup

j
||∂ 2

x j
g||∞×

(
n−d

d

∑
i, j=1

∑
z∈Sn

∑
w∈K1∩Sn
|w−z|≤M/n

∣∣Gn
i j(z,w)

∣∣)

=:
(

sup
|z−z′|≤1/n

∣∣un(z)−un(z′)
∣∣) · sup

j
||∂ 2

x j
g||∞× In

3 .

We now estimate In
3 . Let K2 = {x ∈ Rd : d(K1,x)≤ 1}. Then,

In
3 = n−d

d

∑
i, j=1

∑
z∈Sn

∑
w∈K1∩Sn
|w−z|≤M/n

∣∣∣ ∑
x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

(
Px,x+(z+ ei/n,z)−Px,x+(z,z+ ei/n)

)

×
(

Px,y(w+ e j/n,w)−Px,y(w,w+ e j/n)
)∣∣∣

≤ n−d
∑

x∈K2∩Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

{ d

∑
i=1

∑
z∈Sn

(
Px,x+(z+ ei/n,z)+Px,x+(z,z+ ei/n)

)

×
d

∑
j=1

∑
w∈K1∩Sn
|w−z|≤M/n

(
Px,y(w+ e j/n,w)+Px,y(w,w+ e j/n)

)}
.

Note that for x ∈ Sn and γ 3 x, we have |x− x+|1 ≤ M/n, |x− y|1 ≤ M/n for all
y ∈ γ , where |x|1 := ∑

d
i=1 |xi|. So

d

∑
j=1

∑
w∈K1∩Sn
|w−z|≤M/n

(
Px,y(w+ e j/n,w)+Px,y(w,w+ e j/n)

)

≤
d

∑
j=1

∑
w∈Sn

(
Px,y(w+ e j/n,w)+Px,y(w,w+ e j/n)

)
≤ M0n|x− y|1 ≤ M0M
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for some M0 > 0 and similarly
d

∑
i=1

∑
z∈Sn

(
Px,x+(z+ ei/n,z)+Px,x+(z,z+ ei/n)

)
≤ M0n|x− x+|1 ≤ M0M.

So we obtain,

In
3 ≤ n−d

∑
x∈K2∩Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ) ∑

y∈Sn
y∈γ

(M0M)2 ≤Cµ
n(K2).

So, In
3 is uniformly bounded in n and hence In

2 converges to 0 as n tends to ∞ since
the {un} are equicontinuous.

Finally we consider the term In
1 :

In
1 =

1
nd

d

∑
i, j=1

∑
z∈Sn

∇
i
1/nun(z)∇

j
1/ng(z)Fn

i j(z)

=
d

∑
i, j=1

∫
Rd

∇
i
1/nEnun(x)∇

j
1/nEng(x)Fn

i j(x)dx.

Observe that if fn converges to f weakly in L2(Rd) and gn converges to g bound-
edly and almost everywhere, then fngn converges to f g weakly. To see this, if
h ∈ L2(Rd),∫

( fngn)h−
∫

( f g)h =
∫

fn(gn−g)h+
[∫

fngh−
∫

f gh
]
.

The term inside the brackets on the right hand side goes to 0 since fn converges
to f weakly and the boundedness of g implies that gh is in L2(Rd). The first term
on the right hand side is bounded, using Cauchy-Schwarz, by ‖ fn‖2 ‖(gn−g)h‖2.
The factor ‖ fn‖2 is uniformly bounded since fn converges weakly in L2(Rd), while
‖(gn−g)h‖2 converges to 0 by dominated convergence.

Since some subsequence of ∇i
1/nEnun converges to vi = ∂xiH weakly in L2(Rd ,dx)

(this can be verified when proving H ∈W 1,2(Rd) in Step 1; see the proof of [BKU,
Theorem 5.5]), and for some further subsequence Fn

i j converges to ai j boundedly
and almost everywhere (by Assumption 4.3 and Remark 4.4) and ∇

j
1/nEng con-

verges to ∂x j g uniformly on compact sets (because g ∈C2
c (Rd)), we see that, along

this further subsequence, the right hand side goes to
d

∑
i, j=1

∫
Rd

∂xiH ∂x j gai j dx =
∫

Rd
∇H(x) ·a(x)∇g(x)dx.

Hence
E n′(un′ ,g)→ E (H,g).

This completes the proof of (4.8) and hence the theorem. �



MARKOV CHAIN APPROXIMATIONS TO NON-SYMMETRIC DIFFUSIONS 27

5 Discrete approximation

In this section, we show how the results of the previous sections can be applied
to approximate a non-symmetric diffusion in divergence form by a sequence of
Markov chains with bounded cycle decomposition. In Section 5.1, we present two
special examples which will play the role of building blocks for our construction.
In Section 5.2, we apply a two scale methods for the concrete approximation.

5.1 Some computation of Fn
i j(·)

In this subsection, we compute Fn
i j(·) in (4.4) for two particular cases. The

computation is useful in the next subsection. First, for each x ∈Sn and γ 3 x, set

(5.1) K(x,γ) j := ∑
y∈Sn
y∈γ

n(x j − y j).

Then, by (4.4) we have,

(5.2) Fn
i j(z) = ∑

x∈Sn

∑
γ∈Γn
γ3x

α(γ)
l(γ)

(
Px,x+(z+ ei/n,z)−Px,x+(z,z+ ei/n)

)
K(x,γ) j

for z ∈Sn, i, j = 1,2, . . . ,d.
From now on, for each x,y ∈ Sn, we choose P(x,y) as in Remark 4.2 (i),

namely we set P(x,y) = {Lxy} where Lxy is the union of the line segments from x
to y mentioned in Remark 4.2 (i). We now consider two concrete choices of Γn.

Example 1: Let Λn be a subset of unordered pair {x,y},x 6= y of Sn and let
Γn = {γxy = (x,y,x) : {x,y} ∈ Λn}, where γxy is a cycle of length 2 that consists of
x and y. Note that (x,y,x) = (y,x,y) and γxy = γyx. For simplicity we write

α(γxy) = α(x,y) = α(y,x), {x,y} ∈ Λn.

We call such a cycle a two cycles. In this case, we have K(x,γxy) j = n(x j − y j), so
that (5.2) can be written as

(5.3) Fn
i j(z) = ∑

γxy∈Γn

α(x,y)
(

Px,y(z+ ei/n,z)−Px,y(z,z+ ei/n)
)

n(x j − y j).

Now for x,y ∈ Sn satisfying xi ≤ yi, set M(x,y, i) = {z ∈ Sn : zk = yk for all k <
i,xi ≤ zi ≤ yi−1/n,zk′ = xk′ for all k′ > i}. Note that ]M(x,y, i) = n(yi−xi). Then,
we can easily see

Px,y(z+ ei/n,z)−Px,y(z,z+ ei/n) = 0−1M(x,y,i)(z) =−1M(x,y,i)(z),

for all x,y ∈Sn with xi ≤ yi. Plugging this into (5.3), we obtain

(5.4) Fn
i j(z) = ∑

γxy∈Γn
xi≤yi

α(x,y)n(y j − x j)1M(x,y,i)(z).
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In particular let us consider the collection Λn = {{w,w +V (w)/n},w ∈ Sn}
where V : Sn −→ Zd \{0}, V (z) = (V1(z), · · · ,Vd(z)), is a given map of bounded
range L, that is

(5.5) L = L(V ) =
d

max
i=1

sup
z∈Sn

|Vi(z)|< ∞

and we set
α(γw,w+V (w)/n) =: α(w).

Note that there is no ambiguity for this notation because by definition of Λn, for
each w ∈Sn we can naturally choose one element of Γn in this case.

For fixed z ∈ Sn and i = 1, ...,d, let N+(z, i) = {w ∈ Sn : Vi(w) > 0,wk +
Vk(w)/n = zk, for all k < i,wi ≤ zi ≤ wi +Vi(w)/n− 1/n,wk′ = zk′ , for all k′ > i}
and N−(z, i) = {w ∈ Sn : Vi(w) < 0,wk = zk, for all k < i,wi +Vi(w)/n ≤ zi ≤
wi − 1/n,wk′ +Vk′(W )/n = zk′ , for all k′ > i}. Note that in view of (5.5) we see
that

(5.6) N+(z, i),N−(z, i)⊂ Dn(z,L) := {w ∈Sn :
d

max
i=1

|zi−wi| ≤ L/n.}

In particular

(5.7) 0 ≤ ]N+(z, i), ]N−(z, i)≤ ]Dn(z,L)≤CLd .

The computation of Fn
i j , yields

(5.8) Fn
i j(z) =

(
∑

w∈N+(z,i)
α(w)Vj(w)− ∑

w∈N−(z,i)
α(w)Vj(w)

)
.

Set

(5.9) F̄n
i j(z) = α(z)Vi(z) ·Vj(z).

Then

(5.10) Fn
i j(z) = F̄n

i j(z)+R1,n
i j (z)+R2,n

i j (z)+R3,n
i j (z),

where

(5.11) R1,n
i j (z) = ∑

w∈N+(z,i)

(
α(w)−α(z)

)
Vj(w)− ∑

w∈N−(z,i)

(
α(w)−α(z)

)
Vj(w),

(5.12) R2,n
i j (z) = α(z)

(
∑

w∈N+(z,i)

(
Vj(w)−Vj(z)

)
− ∑

w∈N−(Z,i)

(
Vj(w)−Vj(z)

))
,

and

(5.13) R3,n
i j (z) = α(z)Vj(z)

(
]N+(z, i)− ]N−(z, i)−Vi(z)

)
.

This simplifies greatly if the vector V (·) is a (2L/n)-piecewise constant func-
tion, that is V (x) = V (2L[ x

2L ]n) for x ∈Sn (in other words, V (·) is constant inside
each cell of (2L)Sn). Let z ∈Sn be such that

(5.14) V (w) = V (z), ∀w ∈ Dn(z,L).
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Then we simply have

N+(z, i) = {Vi(z) > 0}∩{w = (z1 +V1(z)/n, ...,zi−1 +Vi−1(z)/n,wi,zi+1, .......,zd)
: wi ≤ zi ≤ wi +Vi(z)/n−1/n},(5.15)

and

N−(z, i) = {Vi(z) < 0}∩{w = (z1, ...,zi−1,wi,zi+1 +Vi+1(z)/n, ...,zd +Vd(z)/n)
: wi +Vi(z)/n ≤ zi ≤ wi−1/n},(5.16)

and thus

]N+(z, i) = Vi(z) ·1{Vi(z)>0}, ]N−(z, i) =−Vi(z) ·1{Vi(z)<0}.

We see that

(5.17) R2,n
i j (z) = R3,n

i j (z) = 0,

and

R1,n
i j (z) =

(
∑

w∈N+(z,i)
(α(w)−α(z))− ∑

w∈N−(z,i)
(α(w)−α(z))

)
·Vj(z).(5.18)

Example 2: Fix N ≥ 1 and 1 ≤ l 6= m ≤ d, and for given x ∈Sn let γ
(l,m)
N,x be a

cycle of length 8N with range 1 (that is to nearest neighbors) that makes a regular
square with vertices

x,x− 2N
n

el,x−
2N
n

el −
2N
n

em,x− 2N
n

em.

We call such a cycle a rotational cycle of length 8N. Note that γ
(m,l)
N,x passes through

the same points, but with a different orientation.
Let us consider the family of cycles

Γn = {γ
(l,m)
N,x : x ∈Sn}

with weights

α(γ(l,m)
N,x ) =: α(x), x ∈Sn.

As in Example 1, there is no ambiguity for this notation because by definition of
Λn, for each x ∈Sn we can naturally choose one element of Γn in this case. In this
case, Px,x+(z + ek/n,z)−Px,x+(z,z + ek/n) is 1 if x = z + ek/n, x+ = z, it is −1 if
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x = z, x+ = z+ ek/n, and 0 otherwise. Plugging this into (5.2), we have

Fn
i j(z) = ∑

γ∈Γn
γ3z

α(γ)
8N

(−δz+,z+ 1
n ei

)K(z,γ) j + ∑
γ∈Γn

γ3z+ei/n

α(γ)
8N

δ(z+ 1
n ei)+,zK(z+

1
n

ei,γ) j

=
1

8N

{
−

2N

∑
k=1

α(z+
2N
n

em +
k
n

el)K(z,γ(l,m)
N,z+ 2N

n em+ k
n el

) j ·δil

−
2N

∑
k=1

α(z+
k
n

em)K(z,γ(l,m)
N,z+ k

n em
) j ·δim +

2N

∑
k=1

α(z+
k
n

el)K(z+
1
n

el,γ
(l,m)
N,z+ k

n el
) j ·δil

+
2N

∑
k=1

α(z+
2N
n

el +
k
n

em)K(z+
1
n

em,γ
(l,m)
N,z+ 2N

n el+ k
n em

) j ·δim

}
.(5.19)

By definition, we have

K(z+
1
n

el,γ
(l,m)
N,z+ k

n el
) j = K(z,γ(l,m)

N,z+ k−1
n el

) j and

K(z+
1
n

em,γ
(l,m)
N,z+ 2N

n el+ k
n em

) j = K(z,γ(l,m)
N,z+ 2N

n el+ k−1
n em

) j.

Now we compute K(z,γ(l,m)
N,z+ k

n ep
) j for p∈{l,m}. First, if p 6= j, then K(z,γ(l,m)

N,z+ k
n ep

) j =

0 unless {p, j}= {l,m}. A simple computation gives

K(z,γ(l,m)
N,z+ k

n ep
) j = {2

2N

∑
s=1

s+2N(2N−1)}δ{p, j},{l,m} = δ{p, j},{l,m}8N2.

Second, if p = j, then

K(z,γ(l,m)
N,z+ k

n ep
) j =−2

k

∑
s=1

s−k(2N−1)+2
2N−k

∑
s=1

s+(2N−k)(2N−1) = 8N(N−k).

Similarly, for p,q such that {p,q}= {l,m}, we have

K(z,γ(l,m)
N,z+ 2N

n eq+ k
n ep

) j =

{
−δ{p,q},{l,m}8N2 if p 6= j,
8N(N− k) if p = j.
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Putting these into (5.19), we have for all z ∈Sn, Fn
i j(z) = 0, i, j /∈ {l,m} and

Fn
lm(z) = N

2N

∑
k=1

(
α(z+

2N
n

em +
k
n

el)+α(z+
k
n

el)
)
,

Fn
ml(z) = −N

2N

∑
k=1

(
α(z+

2N
n

el +
k
n

em)+α(z+
k
n

em)
)
,

Fn
ll (z) =

(
α(z+

1
n

el)+α(z+
2N
n

em +
2N
n

el)
)

N

+
2N−1

∑
k=1

(
α(z+

k +1
n

el)−α(z+
2N
n

em +
k
n

el)
)
(N− k),

Fn
mm(z) =

(
α(z+

2N
n

em)+α(z+
2N
n

el +
1
n

em)
)

N

+
2N−1

∑
k=1

(
α(z+

2N
n

el +
k +1

n
em)−α(z+

k
n

em)
)
(N− k).

As above set

(5.20) F̄n
lm(z) =−F̄n

lm(z) = 4N2
α(z), F̄n

ll (z) = F̄n
mm(z) = 2Nα(z)

then

(5.21) Fn
i j(z) = F̄n

i j(z)+R4,n
i j (z)

where

R4,n
lm (z) = N

2N

∑
k=1

(
α(z+

2N
n

em +
k
n

el)+α(z+
k
n

el)−2α(z)
)
,

R4,n
ml (z) = −N

2N

∑
k=1

(
α(z+

2N
n

el +
k
n

em)+α(z+
k
n

em)−2α(z)
)
,

R4,n
ll (z) =

(
α(z+

1
n

el)+α(z+
2N
n

em +
2N
n

el)−2α(z)
)

N

+
2N−1

∑
k=1

(
α(z+

k +1
n

el)−α(z+
2N
n

em +
k
n

el)
)
(N− k),

R4,n
mm(z) =

(
α(z+

2N
n

em)+α(z+
2N
n

el +
1
n

em)−2α(z)
)

N

+
2N−1

∑
k=1

(
α(z+

2N
n

el +
k +1

n
em)−α(z+

k
n

em)
)
(N− k).

5.2 Discrete approximation
In this last subsection, we give a concrete approximation of non-symmetric

diffusions in divergence form.
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For a matrix a = (ai j)d
i, j=1 we denote by ã the symmetric and by â the antisym-

metric part. Also for ξ ∈ Rd , let〈
ξ ,aξ

〉
=

d

∑
i, j

ξiai jξ j =
d

∑
i, j

ξiãi jξ j and ‖a‖ := ‖a‖∞→∞ = max
i

∑
j
|ai j|.

For ε,M1,M2 > 0 be denote by

Md(ε,M1.M2) = {a = ã+ â :
〈
ξ ,aξ

〉
≥ ε
〈
ξ ,ξ

〉2 and ‖ã‖ ≤ M1, ‖â‖ ≤ M2}
the set of uniformly elliptic, bounded matrices. Clearly a is symmetric if and only
if M2 = 0.

Given a measurable map a : Rd →Md(ε,M1,M2), our goal is to find a sequence
of Markov chains that approximate the diffusion process whose divergence form is
determined by a. Thanks to Theorem 4.6, all we need is to find a sequence (Γn,αn)
where Γn is a collection of cycles γn

i , i ∈ I in Sn with weights αn(γn
i )≥ 0 such that

(2.2), (2.8) and (2.9) are satisfied and the corresponding Fn
i j( ·) converges locally

in L1(Rd) to ai j, that is, for all K compact subset of Rd

(5.22) lim
n→∞

‖Fn
i j −ai j‖K = lim

n→∞

∫
K
|Fn

i j(x)−ai j(x)|dx = 0, ∀i, j = 1, ..,d,

where as usual we write Fn
i j(x) = Fn

i j([x]n) for x ∈Rd . In Theorem 5.5, which is our
main theorem, we will prove that it is possible to find such a sequence.

Clearly, if an : Rd →Md(ε,M1,M2) is a sequence such that

(5.23) lim
n→∞

‖an
i j −ai j‖K = 0 and lim

n→∞
‖Fn

i j −an
i j‖K = 0,

then by the triangle inequality (5.22) holds.
Our construction will be based on a two scale procedure: we will discretize

the matrix a(·) at intermediate scale rn = [n1−β ]/n, for some β ∈ (0,1) and then
construct the corresponding chain on Sn at microscopic scale 1/n.

More precisely, take β ∈ (0,1), set rn = [n1−β ]/n ∈ (1/n)Z+, Jrn = rnZd ⊂Sn,
and let

Q(x,rn) = {y ∈ Rd : 0 ≤ min
i

(yi− xi)≤ max
i

(yi− xi) < rn}, x ∈ Jrn ,

be a partition of disjoint cubes of Rd . For a measurable map a : Rd →Md(ε,M1,M2),
set

(5.24) an
i j(y) = ∑

x∈Jrn

( 1
rd

n

∫
Q(x,rn)

ai j(z)dz
)

1Q(x,rn)(y), y ∈ Rd .

Then
an(x) ∈Md(ε,M1,M2), ∀x ∈Sn,

and for every compact K ⊂ Rd we have

(5.25) lim
n→∞

‖an
i j −ai j‖K = 0.
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Furthermore, an
i j(x) is a rn-piecewise constant function, that is

(5.26) an
i j(x) = an

i j

(
(rn[

x1

rn
], · · · ,rn[

xd

rn
])
)
, x = (x1, · · ·xd) ∈Sn.

As we see, rn is an “intermediate” scale and an
i j is an approximation of ai j which

is constant in each cell of Jrn .
We start with a trivial observation: let (Γ1

n,α
1
n ) and (Γ2

n,α
2
n ) be two such col-

lections and consider the merged collection Γn = Γ1
n ∪Γ2

n with weights αn(γn) =
α i

n(γn) if γn ∈ Γi
n, then the corresponding Fn satisfies the additive rule

(5.27) Fn
i j = F1,n

i j +F2,n
i j .

Also if both (Γi
n,α

i
n) satisfy (2.2) then of course (Γn,αn) satisfy (2.2).

This additive rule will be a very useful tool for our construction and we will
proceed iteratively. We will be dealing with the symmetric part ã(x) and anti-
symmetric part â(x) separately. We will need to represent the symmetric part in
diagonalized form, that is

(5.28)
〈
ξ , ã(x)ξ

〉
=

d

∑
k=1

νk(x)
〈
ξ ,V k(x)

〉2
,

where νk(x) ≥ 0 and V k(x) ∈ Rd . Of course both coefficients νk(x) and vectors
V k(x) are not unique. In particular one can always replace, for each k, νk(x) by
νk(x)/α2 and V k(x) by α ·V k(x) for any α > 0. In particular using rescaling we
get a normalized diagonalized form such that

(5.29) |V k(x)|2 :=
〈
V k(x),V k(x)

〉
= 1 ∀x ∈ Rd , k = 1, ...,d.

Usually one chooses νk(x) = λk(x) to be the eigenvalues and V k(x) the normalized
eigenvectors of the matrix ã(x). However this is of course not the only choice to
represent the quadratic form in diagonalized form. Denoting by λmax(ã(x)) the
largest eigenvalue of ã(x), assuming the normalization (5.29) we see that

(5.30) 0 ≤ νk(x)≤ λmax(ã(x))≤
√

d‖ã(x)‖ ∀x ∈ Rd , k = 1, ...,d.

This follows from the simple fact that

λmax(ã(x))≥
〈
Vk(x), ã(x)Vk(x)

〉
=

d

∑
j=1

ν j(x)
〈
Vj(x),Vk(x)

〉2 ≥ νk(x),

and, for positive definite symmetric matrix ã(x),

λmax(ã(x)) = ‖ã(x)‖2→2 ≤
√

d‖ã(x)‖.

The following iterative procedure based on the Feshbach map, cf. [BFS] shows
how to find a representation in diagonalized form, avoiding the computation of the
eigenvalues and eigenvectors of ã(x).
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Take a symmetric positive definite matrix a ∈ Rd×d and set

ν =
1

a11
> 0 V t = (a11,a12, ...,a1d) ∈ Rd .

Next define the symmetric matrix a′ ∈ Rd×d , in terms of the quadratic form

(5.31)
〈
ξ ,a′ξ

〉
=
〈
ξ ,aξ

〉
−ν
〈
ξ ,V

〉2
, ξ ∈ Rd ,

that is a′ = a−ν V ·V t . Note that the first row and column of the matrix a′ vanish:

a′1i = a′i1 = 0, i = 1, ...,d.

The Feshbach transform of the matrix a is a matrix Fd(a) ∈ R(d−1)×(d−1) and it is
given by

(Fd(a))i−1, j−1 = a′i j, 2 ≤ i, j ≤ d.

Lemma 5.1. For a symmetric positive definite matrix a∈Rd×d , let λmin(a),λmax(a)
be the smallest and largest eigenvalue of a. Then

λmin(a)≤ λmin(Fd(a))≤ λmax(Fd(a))≤ λmax(a).

PROOF. Let µ ∈ R be an eigenvalue of a′. Clearly µ = 0 is eigenvalue. We claim
that if µ 6= 0 then

λmin(a)≤ µ ≤ λmax(a).
This shows the lemma. We may assume that µ 6= λi, i = 1, ...,d, where λ1 =
λmin(a)≤ λ2 ≤ ...≤ λd = λmax(a) are the eigenvalues of the matrix a. Let S∈Rd×d

be the orthogonal matrix such that

S ·a ·St = D

where D is the diagonal matrix of the eigenvalues of a and set Z = SV . Then

0 = det(a′−µI) = det(S(a′−µI)St) = det((D−µI)− 1
a11

Z ·Zt).

Since µ 6= λi, (D−µI)−1 exists and thus

f (µ) := det(I− (D−µI)−1 1
a11

Z ·Zt) = 1− 1
a11

d

∑
i=1

Z2
i

λi−µ
= 0.

Here, the first equality is due to the following fact: for d-dimensional vectors U
and V , det(I−UV t) = 1−

〈
U,V

〉
where UV t is a (d× d)-matrix. Note that f is

monotone decreasing on (−∞,λ1)∪ (λd ,∞). Thus, if µ 6= 0 and f (µ) = 0, then
µ ∈ (λ1,λd). �

We introduce the following iterative procedure to represent a symmetric matrix
ã(x) ∈ Md(ε,M1,0) in diagonalized form: We define a sequence of symmetric
matrices a1(x), ...,ad(x) as follows

a1(x) = ã(x)〈
ξ ,ak+1(x)ξ

〉
=
〈
ξ ,ak(x)ξ

〉
−νk(x)

〈
Vk(x),ξ

〉2
, k = 1, ...,d−1,
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where for k = 1, ...,d

νk(x) =
1

ak
kk(x)

, (Vk(x))t = (0, ...,0,ak
kk(x), ...,a

k
kd(x)) ∈ Rd .

For example when d = 2, we simply have

ν1(x) =
1

a11(x)
, V1(x) = (a11(x),a12(x))

and

ν2(x) =
1

a22(x)− (a12(x))2

a11(x)

, V2(x) = (0,a22(x)−
(a12(x))2

a11(x)
).

By construction we have that

ak
i j(x) ≡ 0, 1 ≤ min{i, j} ≤ k−1,

(Fd−k+1((ak
pq(x))k≤p,q≤d))i−k, j−k = ak+1

i j (x), k +1 ≤ i, j ≤ d,

and (5.28) holds. By Lemma 5.1, we see that

λmin(ã(x))≤ ak
kk(x)≤ λmax(ã(x)).

Indeed, for k = 2 we have

λmin(ã(x))
〈
ξ ,ξ

〉
≤ λmin(Fd(ã(x)))

〈
ξ ,ξ

〉
≤
〈
ξ ,Fd(ã(x))ξ

〉
≤ λmax(Fd(ã(x)))

〈
ξ ,ξ

〉
≤ λmax(ã(x))

〈
ξ ,ξ

〉
,

so take ξ t = (0,1,0, · · · ,0). (k = 1 is easier; simply take ã(x) instead of Fd(ã(x))
and put ξ t = (1,0, · · · ,0).) For k ≥ 3, we can obtain the estimate similarly by
applying Lemma 5.1 iteratively. Therefore

(5.32)
1

λmax(ã(x))
≤ νk(x)≤

1
λmin(ã(x))

, x ∈ Rd .

Next, let us introduce the set of strongly uniformly elliptic bounded symmetric
matrices:

M
(3)
d (ε,M1) = {a = ã : aii− ∑

j: j 6=i
|ai j| ≥ ε, i = 1, ...,d, ‖a‖ ≤ M1},

and for N ∈ N the set of “almost” antisymmetric bounded matrices:

M
(1)
d (N,M2) = {a : ai j =−a ji, 1 ≤ i < j ≤ d, aii =

1
2N ∑

j: j 6=i
|ai j|,‖a‖ ≤ M2}.

The appearance of the diagonal term will be explained below.
Next for given L ∈ N, let

M
(2)
d (L,M1) = {a = ã : ai j =

d

∑
k=1

νk V k
i ·V k

j , i, j ∈ {1, ...,d},

for νk ≥ 0,V k ∈ [−L,L]d ∩Zd ,k = 1, ...,d, ‖a‖ ≤ M1},
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be the set of symmetric matrices with diagonalized form with coefficients νk ≥ 0
and vectors V k integer valued.

Lemma 5.2. Let a∈Md(ε,M1,M2) and choose L > [9
√

dd2M1/ε] and N > [3M2/(2ε)],
then we can find

b(1) ∈M
(1)
d (N,M2 +ε/3), b(2) ∈M

(2)
d (L,M1 +ε/3), b(3) ∈M

(3)
d (ε/3,M1∨(5ε/3))

such that

(5.33) a = b(1) +b(2) +b(3).

PROOF. Set b = a− εI, and write b = b̃ + b̂ where b̃ is the symmetric part and b̂
the antisymmetric part of b. Set

b(1)
i j =−b(1)

ji = b̂i j, i 6= j, b(1)
ii =

1
2N ∑

j: j 6=i
|b̂i j|.

Noting that

b(1)
ii ≤ M2

2N
≤ ε/3,

we have b(1) ∈M
(1)
d (N,M2 + ε/3). Next, if ã ∈M

(3)
d (ε,M1) then we simply set

b(2) = 0, b(3) = a−b(1) ∈M
(3)
d (ε/3,M1).

Otherwise, let U1, ...,Ud ∈ Rd and ν1, ...,νd ∈ R+ be a normalized diagonalized
form of the symmetric matrix b̃ discussed above that satisfies (5.28), (5.29) and
(5.30):

b̃i j =
d

∑
k=1

νk Uk
i ·Uk

j ,

with

|Uk|= 1, 0 ≤ νk ≤ λmax(b̃)≤ λmax(ã)≤
√

d‖ã‖, k = 1, ...,d.

Let V̄ k
i = [LUk

i ]/L ∈ (L−1Zd)∩ [−1,1]d , we then have

|Uk
j −V̄ k

j | ≤
1
L

, |V̄ k
j | ≤ 1.

Define

b(2)
i j =

d

∑
k=1

νkV̄ k
i ·V̄ k

j =
d

∑
k=1

(L−2
νk)(LV̄ k

i ) · (LV̄ k
j ),

and
b(3) = a−b(1)−b(2) = εI + b̃−b(2) + b̂−b(1).

Note that b(3) is symmetric by construction with

b(3)
i j = b̃i j −b(2)

i j , 1 ≤ i < j ≤ d, b(3)
ii = ε + b̃ii−b(2)

ii −b(1)
ii , i = 1, ...,d.
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By the triangle inequality we have

‖b(2)− b̃‖ ≤
d

∑
k=1

max
i

d

∑
j=1

νk |Uk
i ·Uk

j −V̄ k
i V̄ k

j |,

where

|Uk
i ·Uk

j −V̄ k
i V̄ k

j | ≤ |V̄ k
i ||Uk

j −V̄ k
j |+|V̄ k

j ||Uk
i −V̄ k

i |+|Uk
i −V̄ k

i ||Uk
j −V̄ k

j | ≤
2+ 1

L
L

≤ 3
L

.

Thus

‖b(2)− b̃‖ ≤ 3d
L

d

∑
k=1

νk ≤
3d2λmax(b̃)

L
≤ 3d2

√
dM1

L
≤ ε

3
if

L >
9
√

dd2M1

ε
.

This implies that

b(3)
ii − ∑

j: j 6=i
|b(3)

i j | ≥ ε −b(1)
ii −∑

j
|b(2)

i j − b̃i j| ≥ ε/3.

Noting that ‖b(3)‖ ≤ ε +‖b̃−b(2)‖+‖b̂−b(1)‖ ≤ 5ε/3, the above implies

b(3) ∈M
(3)
d (ε/3,5ε/3), b(2) ∈M

(2)
d (L,M1 + ε/3),

and ends the proof. �

In view of the additive rule, it thus suffices to find a collection of cycles Γk
n such

that Fk,n
i j ( ·) converges locally in L1(Rd) to b(k)

i j , for each k = 1,2,3.
Examples 1 and 2 of the previous section imply the following.

Lemma 5.3. Let M,N and L be fixed and bn : Sn → [0,M] be such that

(5.34) lim
n→∞

‖bn( · + y/n)−bn‖K = 0, ∀y ∈ Zd , ∀K ⊂ Rd compact.

a) Referring to Example 1, for given fixed V ∈ [−L,L]d ∩Zd , take

Γn = {γ
n
x = (x,x+V/n,x),x ∈Sn}, with weights αn(γn

x ) = bn(x),x ∈Sn,

and set an ∈M
(3)
d (L,M) by

an
i j(x) = bn([x]n)Vi ·Vj, 1 ≤ i, j ≤ d, x ∈ Rd .

Then for every K ⊂ Rd compact, limn→0 ‖Fn
i j −an

i j‖K = 0.

b) Referring to Example 2, for fixed N and l 6= m ∈ {1, ...,d}, take

Γn = {γ
n,(l,m)
N,x ,x ∈Sn}, with weights αn(γ

n,(l,m)
N,x ) =

bn(x)
4N2 , x ∈Sn,

and set an ∈M
(1)
d (N,M) by

an
l,l(x)= an

m,m(x)=
bn([x]n)

2N
, an

l,m(x)=−an
m,l(x)= bn([x]n), an

i j(x)= 0, i, j /∈{l,m},



38 JEAN-DOMINIQUE DEUSCHEL AND TAKASHI KUMAGAI

for x ∈ Rd . Then for every K ⊂ Rd compact, limn→0 ‖Fn
i j −an

i j‖K = 0.

PROOF. Since V is constant, we first see that R2,n
i j (z) = R3,n

i j (z) = 0, cf. (5.17). Next
using the fact that |bn(x)| ≤M, |Vi| ≤ L we get in view of (5.11) and (5.21) writing
‖y‖1 = ∑

d
i=1 |yi|,

|R1,n
i j (z)| ≤ L2 max

y:‖y‖1≤L
|bn(z+ y/n)−bn(z)| ≤ L2

∑
y:‖y‖1≤L

|bn(z+ y/n)−bn(z)|,

and

|R4,n
i j (z)| ≤ 4N2 max

y:‖y‖1≤4N
|bn(z+y/n)−bn(z)| ≤ 4N2

∑
y:‖y‖1≤4N

|bn(z+y/n)−bn(z)|.

Using our assumption this yields

lim
n→0

‖Rk,n
i j ‖K = 0, k = 1,4,

and implies the result. �

Next we want to extend our result to piecewise constant vectors V . Recall the
definition of rn = [n1−β ]/n ∈ (1/n)Z+ for some β ∈ (0,1).

Lemma 5.4. a) Let bn : Sn → [−M,M] be rn-piecewise constant. Then for each
compact K ⊂ Rd and fixed y ∈ Zd ,

(5.35) ‖bn( ·)−bn( ·+ y/n)‖K ≤
‖y‖1CKM

[n1−β ]
for some CK < ∞ depending on the diameter of K, where n is taken large enough
so that [n1−β ]≥ 2‖y‖1.
b) Referring to Example 1, let bn : Sn → [0,M] and V n : Sn → [−L,L]d ∩Zd be
rn-piecewise constant and take

Γn = {γ
n
x = (x,x+V n(x)/n,x),x ∈Sn}, with weights αn(γn

x ) = bn(x),x ∈Sn,

and set an ∈M
(2)
d (L,M) by

an
i j(x) = bn([x]n)V n

i ([x]n) ·V n
j ([x]n), 1 ≤ i, j ≤ d, x ∈ Rd .

Then for every K ⊂ Rd compact, limn→0 ‖Fn
i j −an

i j‖K = 0.

PROOF. a) Simply note that

bn(z) = ∑
x∈Jrn

bn(x)1Q(x,rn)(z)

and therefore

‖bn( ·)−bn( ·+ y/n)‖K ≤ M ∑
x∈Jrn

∣∣∣∫
K
(1Q(x,rn)([z]n)−1Q(x,rn)([z]n + y/n))dz

∣∣∣.
Now for the interior points of Q(x,rn) such that

IQ(x,rn,‖y‖1/n) := {z∈Q(x,rn) : ‖y‖1/n≤min
i

(zi−xi)≤max
i

(zi−xi)≤ rn−‖y‖1/n},
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we clearly have

1Q(x,rn)(z)−1Q(x,rn)(z+ y/n) = 0, z ∈ IQ(x,rn,‖y‖1/n).

So all what remains are the boundary terms

BQ(x,rn,‖y‖1/n) := Q(x,rn)\ IQ(x,rn,‖y‖1/n)

with

∑
x∈Jr

∣∣∣∫
K
(1BQ(x,rn,‖y‖1/n)([z]n)dz

∣∣∣≤ ‖y‖1CK

[n1−β ]
.

b) In view of (5.7), (5.11)–(5.12) we have

|R1,n
i j (z)| ≤CLd+1 max

y:‖y‖1≤L
|bn(z+y/n)−bn(z)| ≤CLd+1

∑
y:‖y‖1≤L

|bn(z+y/n)−bn(z)|,

|R2,n
i j (z)| ≤CMLd max

y:‖y‖1≤L
|V n

j (z+y/n)−V n
j (z)| ≤CMLd

∑
y:‖y‖1≤L

|V n
j (z+y/n)−V n

j (z)|,

and a) shows that ‖R1,n
i j ‖K and ‖R2,n

i j ‖K → 0 as n→∞. Next note that (5.17) implies

R3,n
i j (z) = 0 if z ∈ ∪x∈Jrn

IQ(x,rn,L/n) and by (5.7), (5.13), |R3,n
i j (z)| ≤CMLd+1 if

z ∈ ∪x∈Jrn
BQ(x,rn,L/n). As in a) this shows ‖R3,n

i j ‖K → 0 as n → ∞. �

With these preparations we can easily construct our approximation. Consider
the rn-piecewise approximation an of the matrix a, cf. (5.24) and (5.26), set

bn(x) = an(x)− εI, x ∈Sn.

Denote by b̃n(x) and b̂n(x) the symmetric and antisymmetric part of bn(x). Choose
L = [9

√
dd2M1/ε]+1, N = [3M2/(2ε)]+1, and define b(i),n(x) as in Lemma 5.2,

that is
an(x) = b(1),n(x)+b(2),n(x)+b(3),n(x)

where b(1),n(x) ∈M
(1)
d (N,M),b(3),n(x) ∈M

(3)
d (ε/3,M), and

b(2),n
i j (x) =

d

∑
k=1

λ
n
k (x)V k,n

i (x) ·V k,n
j (x) ∈M

(2)
d (L,M).

Here we set M := (M1 + ε/3)∨ (M2 + ε/3)∨5ε/3.
Note that by construction, b(1),n,b(3),n,λ n

k and V k,n are bounded and rn-piecewise
constant, so by Lemma 5.4 a), for all compact K ⊂ Rd and fixed y ∈ Zd ,
(5.36)

‖b(1),n
i j ( ·+y/n)−b(1),n

i j ‖K ≤
‖y‖1CKM

[n1−β ]
, ‖b(3),n

i j ( ·+y/n)−b(3),n
i j ‖K ≤

‖y‖1CKM
[n1−β ]

,

(5.37) ‖V k,n
j ( · + y/n)−V k,n

j ‖K ≤
‖y‖1CKL
[n1−β ]

,

(5.38) ‖λ
n
k ( · + y/n)−λ

n
k ‖K ≤

‖y‖1CKM
[n1−β ]

.
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For b(1),n(x) ∈M
(1)
d (N,M) consider (Γ(1),n,αn) as follows

Γ
(1),n = {γ

n,(i, j)
N,x , γ

n,( j,i)
N,x , 1 ≤ i < j ≤ d,x ∈Sn}

with weights

α
n(γn,(i, j)

N,x ) =
(b(1),n

i j (x))+

4N2 =
(ân

i j(x))
+

4N2 , α
n(γn,( j,i)

N,x ) =
(b(1),n

i j (x))−

4N2 =
(ân

i j(x))
−

4N2 ,

where a+ := max{a,0} and a− = max{(−a),0} for a∈R. Then, in view of (5.36),
the additive rule and Lemma 5.3 b), we see that the corresponding F(1),n

i j satisfies

lim
n→∞

‖F(1),n
i j −b(1),n

i j ‖K = 0.

Next consider (Γ(2),n,αn) of the form

Γ
(2),n = {γ

k,n
x =(x,x+V k,n(x)/n,x), with weights α

n(γk,n
x )= λ

n
k (x), k = 1, ...,d, x∈Sn},

then in view of (5.37) and (5.38), Lemma 5.4 b) and the additive rule, we see that
the corresponding F(2),n

i j satisfies

lim
n→∞

‖F(2),n
i j −b(2),n

i j ‖K = 0.

Finally for

b(3),n(x) = an(x)−b(1),n(x)−b(2),n(x) ∈M
(3)
d (ε/3,M),

take (Γ(3),n,αn) of the form

Γ
(3),n = {γ

n,±
i j (x)= (x,x+ei/n±e j/n,x),1≤ i < j≤ d,γn

i (x)= (x,x+ei/n,x),x∈Sn}

with weights

α
n(γn,+

i j (x)) = (b(3),n
i j (x))+, α

n(γn,−
i j (x)) = (b(3),n

i j (x))−,

α
n(γn

i (x)) = b(3),n
ii (x)− ∑

j: j 6=i
|b(3),n

i j (x)| ≥ ε/3, x ∈Sn.

We call γn
i (x) a nearest neighbor cycle and γ

n,±
i j (x) a diagonal cycle.

Then using (5.36), the additive rule and the Lemma 5.3 a), we see that the cor-
responding F(3),n

i j satisfies

lim
n→∞

‖F(3),n
i j −b(3),n

i j ‖K = 0.

Putting things together we have the following.

Theorem 5.5. For any measurable map a : Rd → Md(ε,M1,M2), we can find a
sequence (Γn,αn) that satisfies (2.2) in Assumption 2.1 and (2.8), (2.9) in Assump-
tion 2.3, such that the corresponding Fn

i j(x) converges to ai j(x) locally in L1(Rd).
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Furthermore, writing Γn = {γn,i, i ∈ I}, each cycle γi,n is either a two cycle or a
rotational cycle that satisfies

αn(γn,i)≤ max(M1,M2), `(γn,i)≤ max(2,8([3M2/(2ε)]+1)),

Range(γn,i)≤ max(2, [9
√

dd2M1/ε]+1)/n, ∀i,n,

and (2.8) is satisfied with N = 1 and δ = ε/3.

Note that αn(γi,n)≥ 0 in the above construction. However, by neglecting cycles
with αn(γi,n) = 0, we may say that weights of cycles in Γn are all positive.

Remark 5.6. (i) Our construction is very explicit. For example, when approxi-
mating a symmetric diffusion matrix in [SZ], they have additional procedure of
smoothing the matrix by convolution, whereas we can avoid this procedure. We
think that our construction is practical in that it is useful when simulating diffu-
sions in divergence form.
(ii) As we have seen, once the lattice approximation of the symmetric part is com-
puted, the antisymmetric part can be easily dealt with rotational cycles which are
just translates of a fixed cycle. In case of a strongly uniformly elliptic bounded
symmetric matrix ã(x), we do not need to bring the matrix in diagonalized form
and we can restrict ourselves to nearest neighbor and diagonal cycles. Otherwise,
in view of the Feshbach map, we can avoid the computation of eigenvalues and
eigenvectors.

(iii) Although we do not investigate the convergence speed of our approxima-
tion it is very natural to take β = 1/2, since for “nice” a(x) we expect

‖an
i j −ai j‖K = O(n−β ),

whereas
‖an

i j −an
i j( · + y/n)‖K = O(n−1+β ).
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574–591.

[Du] Dungey, N. Properties of centered random walks on locally compact groups and Lie groups.
Rev. Mat. Iberoamericana 23 (2007), 587–634.

[FS] Fabes, E.B.; Stroock, D.W. A new proof of Moser’s parabolic Harnack inequality using the old
ideas of Nash. Arch. Mech. Rat. Anal. 96 (1986), 327–338.

[FOT] Fukushima, M.; Oshima, Y.; Takeda, M. Dirichlet Forms and Symmetric Markov Processes.
deGruyter, Berlin, 1994.
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