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Abstract. In this article, we consider products of random walks on finite
groups with moderate growth and discuss their cutoffs in the total variation.

Based on several comparison techniques, we are able to identify the total vari-
ation cutoff of discrete time lazy random walks with the Hellinger distance
cutoff of continuous time random walks. Along with the cutoff criterion for

Laplace transforms, we derive a series of equivalent conditions on the existence
of cutoffs, including the existence of pre-cutoffs, Peres’ product condition and
a formula generated by the graph diameters. For illustration, we consider
products of Heisenberg groups and randomized products of finite cycles.

1. Introduction

Let G be a finite group equipped with a probability Q. A random walk on G
driven by Q is a discrete time Markov chain with state space G and transition
matrix K given by K(x, y) = Q(x−1y). If K is irreducible, then the stationary
distribution U is uniform on G. For simplicity, we write the triple (G,Q,U) for
such a random walk. Here, Q is called symmetric if Q(x) = Q(x−1) for all x ∈ G
and, in this case, (G,Q,U) is named a symmetric random walk. Note that if Q
is symmetric, then K is reversible. To study the convergence of (G,Q,U), we
consider the total variation and its corresponding mixing time, which are defined
respectively by

(1.1) dTV(x,m) := max
E⊂G

{Q(m)(x−1E)− U(E)},

and

(1.2) TTV(x, ϵ) := min{m ≥ 0|dTV(x,m) ≤ ϵ},

where x−1E = {x−1y|y ∈ E} and Q(m) is the m-fold convolution product Q∗· · ·∗Q
with

f ∗ g(x) =
∑
z∈G

f(z)g(z−1x).

As the total variation and, thus, its mixing time are constant in x, we shall write
dTV(m) and TTV(ϵ) for short.

A subset E ⊂ G is called symmetric, if x ∈ E implies x−1 ∈ E, and is called
a generating set of G, if En := {x1x2 · · ·xn|xi ∈ E, ∀1 ≤ i ≤ n} = G for some
n > 0. We write (G,E) for the Cayley graph with vertex set G and edge set
{(x, xy)|x ∈ G, y ∈ E} and define its volume growth function and diameter by

V (m) = |Em|, ρ = min{m ≥ 1|V (m) = |G|}.
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A group G is said to have (A, d)-moderate growth with respect to a generating set
E if

V (m)

V (ρ)
≥ 1

A

(
m

ρ

)d

, ∀1 ≤ m ≤ ρ.

The following are some typical groups with moderate growth.
Example 1: When G = Zn and E = {0,±1}, the graph (G,E) has diameter

ρ = ⌊n/2⌋ and G has (1, 1)-moderate growth w.r.t. E for n ≥ 2.
Example 2: When G = Zn and E = {0,±1,±⌊

√
n⌋}, the diameter ρ is of order√

n and G has (1, 2)-moderate growth w.r.t. E for n ≥ 2.
Example 3: When G is the Heisenberg group mod n+2, which is the set of 3×3

matrices of the form

(1.3)

 1 i k
0 1 j
0 0 1

 , ∀i, j, k ∈ Zn+2,

and E contains the following matrices

(1.4) I,

 1 1 0
0 1 0
0 0 1

 ,

 1 −1 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 1
0 0 1

 ,

 1 0 0
0 1 −1
0 0 1

 ,

it was proved in [7, Lemma 4.1] that (G,E) has diameter n+1 ≤ ρ ≤ n+4 and G
has (48, 3)-moderate growth w.r.t. E for n ≥ 1.

Throughout this article, we will simply write id for the identity of any group.
In [7], Diaconis and Saloff-Coste considered random walks on finite groups with
moderate growth and achieved the following proposition.

Proposition 1.1 (Theorem 3.1 in [7]). Let (G,Q,U) be a symmetric random walk
on a finite group and E be a symmetric generating set of G containing id. Assume
that G has (A, d)-moderate growth with respect to E and η = min{Q(x)|x ∈ E} > 0.
Then, there is C1 = C1(A, d) > 0 such that

(1.5) dTV(m) ≤ C1e
−ηm/ρ2

, ∀m ≥ 0,

where ρ is the diameter of (G,E). If it is assumed further that Q is supported on
E and that ρ ≥ A22d+2, then there is C2 = C2(A, d) > 0 such that

(1.6) dTV(m) ≥ 1

2
e−C2m/ρ2

, ∀m ≥ 0.

In fact, the authors of [7] obtain C1 = A1/22d(d+3)/4 and C2 = A224d+2. This
means that the bounds in (1.5)-(1.6) are far from comparable when A or d is large.

We now consider product chains. Let (Gi, Qi, Ui)
n
i=1 be irreducible random walks

on finite groups and (p1, ..., pn) be a probability vector. Define

(1.7) G = G1 × · · · ×Gn, U = U1 × · · · × Un, Q(x) =
n∑

i=1

piQi(xi),

for x = (x1, .., xn) ∈ G. Here, (G,Q,U) is called the product of (Gi, Qi, Ui)
n
i=1

with respect to the probability vector (p1, ..., pn). Note that if Ei is the support of
Qi and contains id, then Q is supported on E = Ě1 ∪ · · · ∪ Ěn, where Ěi = {x =
(x1, ..., xn) ∈ G|xi ∈ Ei, xj = id, ∀j ̸= i}. Further, if Ei is a symmetric generating
set of Gi and ρi is the diameter of (Gi, Ei), then E is a symmetric generating set
of G and the diameter ρ of (G,E) satisfies ρ = ρ1 + · · ·+ ρn. To see the moderate
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growth of direct products of groups, let Ei, E be as before and assume that Gi has
(Ai, di)-moderate growth w.r.t. Ei. As G is a finite group and E generates G, there
are always positive constants A, d such that G has (A, d)-moderate growth w.r.t.
E. However, the relation between (A, d) and (Ai, di)

n
i=1 could be complicated and,

in general, A or d can be very large when n grows. (For instance, consider Gi = ZN

and Ei = {0,±1} for 1 ≤ i ≤ n. It is mentioned earlier that Gi has (1, 1) moderate
growth w.r.t. Ei. In some combinatoric computations, one may show that, under
the assumption of N ≥ n2, G has (A, d) moderate growth with A = (1−1/N)−2 and
d = n.) Consequently, (1.5) and (1.6) might not be sharp enough to provide efficient
bounds on the total variation even if the prerequisites, η > 0 and ρ ≤ A22d+2, are
fulfilled. To proceed the analysis of product chains, as the total variation mixing
times are comparable between (G,Q,U) and its associated continuous time walk,
see e.g. [5], it is more convenient, as is discussed below, to consider the continuous
time chain rather than the discrete time one.

Given a random walk (G,Q,U), we associate it with a continuous time random
walk (G,Ht, U), where Ht = et(K−I) and K is the transition matrix given by Q.
One realization of (G,Ht, U) is to change the constant waiting times of (G,Q,U)
into an i.i.d. sequence of exponential random variables. Note that, if (G,Q,U) is
the product of (Gi, Qi, Ui)

n
i=1 with respect to the probability vector (p1, ..., pn) and

(Gi,Hi,t, Ui) is the continuous time random walk associated with (Gi, Qi, Ui), then

(1.8) Ht = H1,p1t ⊗ · · · ⊗Hn,pnt,

where A⊗B denotes the tensor product of matrices A and B. In general, Km does
not have the form of (1.8). Through (1.8), one may study Ht via (Hi,t)

n
i=1 but,

unfortunately, there lacks an efficient expression of the total variation of (G,Ht, U)
in terms of the total variations of (Gi,Hi,t, Ui)

n
i=1.

In [2], two inequalities were used to compare the total variation and the Hellinger
distance and this leads to a different way to analyze their mixing times. In detail,
the Hellinger distance of (G,Q,U) is defined by

(1.9) dH(x,m) :=

1

2

∑
y∈G

(√
Km(x, y)−

√
U(y)

)21/2

,

while the Hellinger distance of (G,Ht, U) is defined by replacing Km with Ht in

(1.9) and denoted by d
(c)
H (x, t) in avoidance of confusion. As before, we will write

dH(m) (resp. d
(c)
H (t)) for short since dH(x,m) (resp. d

(c)
H (x, t)) is constant in x. In

the above setting, Equation (1.3) in [2] says that

(1.10) 1−
√

1− d2TV(m) ≤ d2H(m) ≤ dTV(m),

and also hold in the continuous time case. In the Hellinger distance, if (G,Q,U)
is the product of (Gi, Qi, Ui)

n
i=1 with respect to the probability vector (p1, ..., pn),

then the Hellinger distances, d
(c)
H and d

(c)
i,H , of (G,Ht, U) and (Gi,Hi,t, Ui) satisfy

(1.11) d
(c)
H (t)2 = 1−

n∏
i=1

(
1− d

(c)
i,H(pit)

2
)
.

Such an equality is derived from (1.8) but not applicable to the discrete time case.
See p.365 in [12] or Lemma 2.3 in [2] for a proof of (1.10) and see [2] for more
comparisons of mixing times of product chains.
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In this article, we focus on the cutoff phenomenon, or briefly cutoff, for products
of random walks on finite groups with moderate growth. The cutoff of Markov
chains was introduced by Aldous and Diaconis in early 1980s in order to catch up the
phase transition of the mixing time. To see a definition, let F = (Gn, Qn, Un)

∞
n=1

be a family of random walks on finite groups. For n ≥ 1, let dn,TV and Tn,TV be
the total variation and corresponding mixing time of the nth chain in F . Assume
that Tn,TV(ϵ0) → ∞ for some ϵ0 ∈ (0, 1). The family F is said to present a cutoff
in the total variation if

(1.12) lim
n→∞

Tn,TV(ϵ)

Tn,TV(δ)
= 1, ∀ϵ, δ ∈ (0, 1),

or, equivalently (see [3, Proposition 2.4]), there is a sequence of positive reals (tn)
∞
n=1

such that

(1.13) lim
n→∞

dn,TV(⌈atn⌉) = 0 ∀a > 1, lim
n→∞

dn,TV(⌊atn⌋) = 1, ∀a ∈ (0, 1).

When a cutoff exists, the sequence (tn)
∞
n=1, or briefly tn, in (1.13) is called a cutoff

time. By (1.12), it is easy to see that Tn,TV(ϵ) can be selected as cutoff time for
any ϵ ∈ (0, 1). In the continuous time case, we write Fc = (Gn,Hn,t, Un)

∞
n=1 for

the family of continuous time Markov chains associated with F and use d
(c)
n,TV and

T
(c)
n,TV to denote the total variation and its mixing time of the nth chain in Fc.

The total variation cutoff of Fc is defined in the same way through (1.12) or (1.13)

under the replacement of Tn,TV, dn,TV with T
(c)
n,TV, d

(c)
n,TV and the removal of ⌈·⌉, ⌊·⌋

but without the prerequisite of T
(c)
n,TV(ϵ0) → ∞. All above is also applicable to the

Hellinger distance. We refer readers to [6, 11] for more discussions on cutoffs for
random walks on finite groups.

Cutoffs in the total variation and in the Hellinger distance were proved to be
equivalent in [2] via (1.10). Since no similar formula to (1.11) is available for
the total variation or for the discrete time case, it is straightforward to consider
the cutoff in the Hellinger distance for families of continuous time product chains.
For finite groups with moderate growth, we obtain a continuous time variant of
Proposition 1.1 in Proposition 3.3 with a refined assumption on the lower bound
(from ρ ≥ A22d+2 to ρ ≥ 4). Through (1.11), the Hellinger distances of product
chains can be expressed in a form related to sums of exponential functions. By
regarding those sums as Laplace transforms, a criterion in [1] was proposed to
determine the cutoff and to characterize the cutoff time. Table 1 is the conclusive
scheme of all above discussions.

The aim of this paper is to establish necessary and sufficient conditions for cutoff
for products of random walks on finite groups with moderate growth, and apply
them to stimulating examples. In the first main theorem (Theorem 2.3), we give
various equivalent conditions for cutoff in our framework. It should be noted that
in this framework the cutoff is equivalent to a weaker concept, called the pre-cutoff
(note that such an equivalence generally fails; see [8]). Moreover, one equivalent
condition in Theorem 2.3 is consistent with Peres’ conjecture (see Remark 2.4 (3)),
while another is simply determined by the graph diameters and a sequence P given
below. In the second main theorem (Theorem 2.5), we apply Theorem 2.3 to the
specific type of products introduced in [2] and derive more concrete conditions on
their cutoffs. To illustrate our results, let us consider products of random walks on
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Table 1. A scheme to analyze cutoffs

Total variation cutoffs for discrete time Markov chains
⇕ (Proposition 1.1 in [5] holds for lazy random walks)

Total variation cutoffs for continuous time Markov chains
⇕ (Theorem 1.1 in [2] holds for any Markov chain)

Hellinger distance cutoffs for continuous time Markov chains
⇕ (Proposition 3.3 holds for groups with moderate growth)

Cutoffs for Laplace transforms
⇕ (Theorem 2.4 in [1] holds for reversible Markov chains)

Precise condition on cutoffs

Heisenberg groups and randomized products of random walks on finite cycles. Let
G = (Gn, Qn, Un)

∞
n=1 be a family of random walks on finite groups and P = (pn)

∞
n=1

be a sequence of positive reals. For n ≥ 1, let qn =
∑n

i=1 pi and write GP for the
family of which nth random walk is the product of (Gi, Qi, Ui)

n
i=1 according to the

probability vector (p1/qn, ..., pn/qn). Then the following hold.

Proposition 1.2. Let G = (Gn, Qn, Un)
∞
n=1, where Gn is the Heisenberg group

in (1.3), Qn is the probability uniformly supported on the set En in (1.4) and
pn = n2 exp{−nγ} with γ > 0. Then, GP has a total variation cutoff if and only if
0 < γ < 1.

Proposition 1.3. Consider the family G = (Zn+2, Qn, Un)
∞
n=1, where Qn(0) = 1/2

and Qn(1) = Qn(−1) = 1/4. Let (Xn)
∞
n=1 be i.i.d. positive random variables and

P = (pn)
∞
n=1 be a random sequence given by (Xn)

∞
n=1.

(1) Suppose pn = (X1 + · · ·+Xn)
γ with γ > 0 and X1 has a finite expectation.

For γ ∈ (0, 2], GP has a total variation cutoff with probability 1. For γ > 2,
GP has no total variation cutoff with probability 1.

(2) Suppose pn = X1 × · · · × Xn and logX1 has a positive finite expectation.
Then, GP has no total variation cutoff with probability 1.

Proposition 1.2 is an immediate result of Corollary 2.9, which shows a phase
transition of cutoffs at γ = 1. Proposition 1.3 is of its own interest and discussed
in detail in Subsection 2.3.

The remaining of this paper is organized in the following way. In Section 2, we
introduce the core results of the paper. The main theorems are given in Subsections
2.1 and 2.2. As an example, we consider the randomized product and discuss its
cutoff in Subsection 2.3. Section 3 is dedicated to the construction of framework in
Section 2. In Subsection 3.1, we review and develop some theoretical results that
are crucial to the equivalences in Table 1, while in Subsection 3.2, Theorem 2.3 is
proved in detail. To make this paper more readable, we address those minor and
involved results in the appendix.

We end the introduction by quoting the following notations. Let x, y ∈ R and
an, bn be sequences of positive reals. We write x∨y and x∧y for the maximum and
minimum of x, y. When an/bn is bounded, we write an = O(bn); when an/bn → 0,
we write an = o(bn). In the case of an = O(bn) and bn = O(an), we simply say
an ≍ bn. If an/bn → 1, we write an ∼ bn. In computations, O(an) and o(bn) denote
two sequences cn and dn satisfying |cn/an| = O(1) and |dn/bn| = o(1).
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2. Main theorems and applications

In this section, we will introduce our main results in the general setting and
discuss their applications, including Proposition 1.2.

2.1. Framework and main theorem. In this subsection, we introduce the theo-
retical framework and one of the main theorems in this article. First, let us consider
a concept weaker than cutoff.

Definition 2.1. Let F = (Gn, Qn, Un)
∞
n=1 be a family of random walks on finite

groups and dn,TV be the total variation of (Gn, Qn, Un). F is said to present a
pre-cutoff in the total variation if there are B > A > 0 and a sequence tn > 0 such
that

(2.1) lim
n→∞

dn,TV(⌈Btn⌉) = 0, lim inf
n→∞

dn,TV(⌊Atn⌋) > 0.

Remark 2.2. (1) The removal of ⌈·⌉, ⌊·⌋ provides the pre-cutoff for Fc and the
replacement of dn,TV with dn,H yields the pre-cutoff in the Hellinger distance. When
tn → ∞, the pre-cutoff in Definition 2.1 is equivalent to

(2.2) lim
ϵ→0

lim sup
n→∞

Tn,TV(ϵ)

Tn,TV(ϵ0 − ϵ)
< ∞,

for some ϵ0 ∈ (0, 1). Such an equivalence also holds for Fc without the prerequisite
of tn → ∞.
(2) Definition 2.1 was introduced for the purpose of studying the mixing times and
cutoffs for families of Markov chains. Readers are referred to [10, 3] for more
discussions on this subject. It is worthwhile to note that there is indeed another
(stronger) variant of pre-cutoff in [9, Chapter 18], of which definition is similar to
(2.1) except the replacement of the second limit by

lim
n→∞

dn,TV(⌊Atn⌋) = 1.

When tn → ∞, the equivalence of the pre-cutoff and (2.2) also holds for such a
variant with ϵ0 = 1. We would like to emphasize that Theorem 2.3 (discussed later)
remains true when the pre-cutoff refers to the stronger one.

In the following, we consider a rather general setting than Proposition 1.2. Let
(kn)

∞
n=1 be a sequence of positive integers and

(2.3) F = {(Gn,i, Qn,i, Un,i)|1 ≤ i ≤ kn, n ≥ 1}, P = {pn,i|1 ≤ i ≤ kn, n ≥ 1},
where (Gn,i, Qn,i, Un,i) is a random walk on a finite group and pn,i > 0. We
write FP for the family (Gn, Qn, Un)

∞
n=1, where (Gn, Qn, Un) is the product of

(Gn,i, Qn,i, Un,i)
kn
i=1 according to the probability vector (pn,i/qn)

kn
i=1 and qn = pn,1+

· · · + pn,kn . As before, we use d
(c)
n,TV, T

(c)
n,TV to denote the total variation and its

mixing time of the nth chain in FP
c . Along with these notations, we are ready to

state the first main theorem of this article.

Theorem 2.3. Refer to the triangular arrays in (2.3). Let En,i be the support
of Qn,i and ρn,i be the diameter of (Gn,i, En,i). Assume that Qn,i is symmetric,
inf{Qn,i(x)|x ∈ En,i, 1 ≤ i ≤ kn n ≥ 1} > 0 and Gn,i has (A, d)-moderate growth
with respect to En,i for all n, i. Assume further that ρn,1 ≥ 4 for n large enough
and there are C > 1 and ℓn,i > 0 satisfying ℓn,i ≤ ℓn,i+1 such that ℓn,i/C ≤
pn,i/(qnρ

2
n,i) ≤ Cℓn,i for all n, i. By setting tn = max{log(i+ 1)/ℓn,i|1 ≤ i ≤ kn},

one has:



PRODUCTS OF RANDOM WALKS 7

(1) If kn = O(1), then there are A > 0 and σ2 > σ1 > 0 such that

1− exp{−e−aσ2} ≤ d
(c)
n,TV(atn) ≤ 1− exp{−e−aσ1}, ∀a > A, n ≥ 1.

In particular, FP
c has no pre-cutoff in the total variation.

(2) If kn → ∞ and min{ρn,i|i ≥ m,n ≥ 1} ≥ 4 for m large enough, then the
following are equivalent.
(i) FP

c has a total variation cutoff.
(ii) FP

c has a total variation pre-cutoff.
(iii) tnℓn,1 → ∞.

(iv) T
(c)
n,TV(ϵ)ℓn,1 → ∞ for all ϵ ∈ (0, 1).

(v) T
(c)
n,TV(ϵ)ℓn,1 → ∞ for some ϵ ∈ (0, 1).

Moreover, if FP
c has a total variation cutoff, then T

(c)
n,TV(ϵ) ≍ tn and

T
(c)
n,TV(ϵ) = T

(c)
n,TV(δ) +O(1/ℓn,1) for all 0 < ϵ < δ < 1.

When En,i contains id, (2) also holds under the replacement of FP
c and T

(c)
n,TV

with FP and Tn,TV.

Theorem 2.3 is built on a list of theoretical results in Subsection 3.1. As its proof
is a little complicated, we leave it to Subsection 3.2. In the following, we provide
some remarks to comment the importance of Theorem 2.3.

Remark 2.4. (1) Note that Theorem 2.3 also holds in the Hellinger distance due
to (1.10) and Proposition 3.2 and this is exactly what is done in the proof of the
continuous time case. See Subsection 3.2 for details.
(2) In the proof of Theorem 2.3, we obtain the order of the cutoff times, which is the
same as tn, but could not determine its asymptotic value, which relies on a more
precise estimation of the convergence rate in the Helinger distance in Proposition
3.3.
(3) A conjectured condition for the existence of cutoffs was introduced by Peres in
2004, which says that

(2.4) A cutoff exists ⇔ Mixing time× Spectral gap → ∞.

In the setting of Theorem 2.3, the spectral gaps of the nth random walks in FP

and FP
c are of the same order as ℓn,1 due to the assumption of inf{Qn,i(x)|x ∈

En,i, 1 ≤ i ≤ kn n ≥ 1} > 0. Consequently, the equivalence of (i) and (v) in (2)
confirms the conjecture in (2.4) for products of random walks on finite groups with
moderate growth.

2.2. Applications. In this subsection, we apply Theorem 2.3 to the specific type
of products introduced in [2] and derive conditions on their cutoffs. Let G =
(Gn, Qn, Un)

∞
n=1 be a family of random walks on finite groups driven by symmetric

probabilities and P = (pn)
∞
n=1 be a sequence of positive reals. Throughout this

subsection, we write GP for the family, of which nth random walk refers to the
product of (Gi, Qi, Ui)

n
i=1 with respect to the probability vector (p1/qn, ..., pn/qn),

where qn = p1 + · · ·+ pn. We now state the second main theorem of this article.

Theorem 2.5. Consider the family GP introduced above. Let En be the support
of Qn and ρn be the diameter of (Gn, En). Assume that Gn has (A, d)-moderate
growth with respect to En, inf{Qn(x)|x ∈ En, n ≥ 1} > 0, ρn ≥ 4 for n large
enough and pn/ρ

2
n ≍ ℓn for some sequence (ℓn)

∞
n=1.
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(1) If ℓn ≤ ℓn+1 and un = max{log(i + 1)/ℓi|1 ≤ i ≤ n}, then GP
c has a total

variation cutoff if and only if un → ∞.
(2) If ℓn ≥ ℓn+1 and un = max{log(i + 1)/ℓn−i+1|1 ≤ i ≤ n}, then GP

c has a
total variation cutoff if and only if unℓn → ∞.

In either case of (1) and (2), if GP
c has a total variation cutoff, then the cutoff time

is of order unqn. Further, if En contains id for all n ≥ 1, then all above also holds
for GP .

Remark 2.6. The lower bound of the graph diameter (at least 4) in Theorem 2.5 is
due to the requirement in Proposition 3.3. As the product of finitely many random
walks has negligible contribution to the total variation (see e.g. Theorem 2.3(1) for
an illustration), one may suitably relax such a restriction on graph diameters as in
Theorem 2.5.

Proof of Theorem 2.5. By Propositions 3.1 and 3.2 in the next section, it suffices
to prove this theorem for GP

c in the Hellinger distance. In the following, we will
discuss (2), while (1) can be treated in a similar way.

Let n0 > 0 be an integer such that ρn ≥ 4 for n ≥ n0. For n > n0, let
(G,Q,U) and (GR

n , QR
n , UR

n ) be products of (Gi, Qi, Ui)
n0
i=1 and (Gi, Qi, Ui)

n
i=n0+1

with respect to the probability vectors (pi/q)
n0
i=1 and (pi/q

R
n )ni=n0+1, where q =

p1 + · · · + pn0 and qRn = pn0+1 + · · · + pn. Clearly, the nth random walk in GP is
the product of (G,Q,U) and (GR

n , QR
n , UR

n ) with respect to the probability vector

(q/qn, q
R
n /qn). Let dH , dRn,H and d

(c)
n,H be the Hellinger distances of the continuous

time random walks associated with (G,Q,U), (GR
n , QR

n , UR
n ) and the nth random

walk in GP . By (1.11), one has

(2.5) d
(c)
n,H(t)2 = 1−

(
1− dH(qt/qn)

2
) (

1− dRn,H
(
qRn t/qn

)2)
.

For the family H := (GR
n , QR

n , UR
n )∞n=n0+1 and the random walk (G,Q,U), we

set

vn = qRn max
1≤i≤n−n0

log(i+ 1)

ℓn−i+1
, v = q max

1≤i≤n0

log(i+ 1)

ℓn0−i+1
.

By Theorem 2.3(1), there are constants A > 0 and σ2 > σ1 > 0 such that

(2.6) 1− exp
{
−e−aσ2

}
≤ dH(av) ≤ 1− exp

{
−e−aσ1

}
, ∀a > A,

and, by Theorem 2.3(2), Hc has a cutoff in the Hellinger distance if and only if
vnℓn/q

R
n → ∞. Observe that, for n > n0,

vn
qRn

≤ un ≤ vn
qRn

+ max
n−n0<i≤n

log(i+ 1)

ℓn−i+1
≤ vn

qRn

(
1 +

log(n+ 1)

log(n− n0 + 1)

)
.

This implies vn/q
R
n ≍ un.

We are now ready to derive (2). Assume that unℓn → ∞ or equivalently
vnℓn/q

R
n → ∞. By Theorem 2.3(2), Hc has a cutoff in the Hellinger distance

and the cutoff time wn satisfies wn ≍ vn. Immediately, this implies

lim
n→∞

dRn,H(awn) =

{
0 for a > 1,

1 for 0 < a < 1,
lim
n→∞

dH
(
bwn/q

R
n

)
= 0, ∀b > 0,

where the second limit results from the second inequality of (2.6) and the obser-
vation of un ≥ log(n + 1)/ℓ1 → ∞. Applying the above computations to (2.5)
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yields

lim
n→∞

d
(c)
n,H

(
aqnwn/q

R
n

)
=

{
0 for a > 1,

1 for 0 < a < 1.

This proves that GP
c has a cutoff in the Hellinger distance and the cutoff time is of

order unqn. Conversely, assume that GP
c has a cutoff in the Hellinger distance with

cutoff time w′
n. Then, for a > 1,

lim
n→∞

dRn,H
(
aqRn w′

n/qn
)
= 0, lim

n→∞
dH(aqw′

n/qn) = 0.

By the first inequality of (2.6), the latter limit implies w′
n/qn → ∞, which yields

dH(bw′
n/qn) → 0 for all b > 0. In addition with the cutoff for GP

c , we may derive
from (2.5) that, for 0 < a < 1,

1 = lim
n→∞

d
(c)
n,H(aw′

n) = lim
n→∞

dRn,H
(
aqRn w′

n/qn
)
.

As a consequence, Hc has a cutoff in the Hellinger distance or equivalently unℓn ≍
vnℓn/q

R
n → ∞, as desired. �

Remark 2.7. Theorem 2.5(1) can be in fact proved in a more direct way. Con-
sider the exchange of the first random walk in G and the first random walk of which
graph diameter is at least 4, say the N th random walk. For the new family, all
assumptions in Theorem 2.3 are fulfilled except the monotonicity of the sequence
{ℓN , ℓ2, ..., ℓN−1, ℓ1, ℓN+1, ...}. Such a concerning can be eliminated by using the
original sequence (ℓn)

∞
n=1 along with a larger multiplicative constant and its recip-

rocal to bound the sequence {pN/ρ2N , p2/ρ
2
2, ..., pN−1/ρ

2
N−1, p1/ρ

2
1, pN+1/ρ

2
N+1, ...}.

Under the above construction, Theorem 2.5 follows immediately from Theorem
2.3(2).

The following lemma is auxiliary to Theorem 2.5, which provides conditions on
the boundedness of un and unℓn.

Lemma 2.8. Let ℓn, un be constants in Theorem 2.5.

(1) If ℓn ≤ ℓn+1, then

un → ∞ ⇔ sup
n≥1

log n

ℓn
= ∞.

(2) Assume ℓn ≥ ℓn+1. If ℓn/ℓn+1 → 1, then unℓn → ∞. If lim inf
n→∞

ℓn/ℓn+1 >

1, then unℓn = O(1).

Proof. (1) is obvious from the definition of un. For (2), we first consider the case
ℓn/ℓn+1 → 1. Note that, for m ≥ 1,

lim inf
n→∞

unℓn ≥ lim inf
n→∞

log(m+ 1)

ℓn−m+1/ℓn
= log(m+ 1).

Letting m tend to infinity gives the desired limit. Next, we consider the case
lim inf
n→∞

ℓn/ℓn+1 > 1 and choose N > 0 and M > 1 such that ℓn/ℓn+1 ≥ M for

n ≥ N . Immediately, this implies that ℓn−m/ℓn ≥ Mm−N+1 for all 0 ≤ m < n and
n ≥ 1. As a result, one has

unℓn = max
1≤i≤n

log(i+ 1)

ℓn−i+1/ℓn
≤ MN sup

i≥1

log(i+ 1)

M i
< ∞.

�
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The following corollary is a combination of Theorem 2.5 and Lemma 2.8, of
which proof is obvious and skipped.

Corollary 2.9. Let GP , En, ρn be as in Theorem 2.5. Assume that Gn has (A, d)-
moderate growth with respect to En, inf{Qn(x)|x ∈ En, n ≥ 1} > 0, ρn → ∞ and
pn ≍ ρ2nℓn for some monotonic sequence (ℓn)

∞
n=1.

(1) If sup{log n/ℓn|n ≥ 1} < ∞ or lim inf
n→∞

ℓn/ℓn+1 > 1, then GP
c has no total

variation cutoff.
(2) If sup{log n/ℓn|n ≥ 1} = ∞ and lim

n→∞
ℓn/ℓn+1 = 1, then GP

c has a total

variation cutoff.

In particular, if ℓn = exp{−nγ} with γ > 0, then GP
c has a total variation cutoff if

and only if 0 < γ < 1. When En contains id for all n ≥ 1, all above also holds for
GP .

2.3. Examples. In this subsection, we consider the randomized product in Propo-
sition 1.3 for illustration of the results developed in Subsections 2.1-2.2. Recall
that G = (Zn+2, Qn, Un)

∞
n=1, where Qn(0) = 1/2 and Qn(1) = Qn(−1) = 1/4. It

has been stated in the introduction that the diameter ρn of Gn w.r.t. {0,±1} is
⌊n/2+ 1⌋ and Zn+2 has (1, 1)-moderate growth w.r.t. {0,±1}. As the randomness
refers to the case that P = (pn)

∞
n=1 is a sequence of positive random variables, we

treat the specified cases separately in the following.

Example 2.10 (Polynomial random sequences). Let X1, X2, ... be i.i.d. positive
random variables, γ > 0 and set pn = (X1+· · ·+Xn)

γ . Assume that the expectation
µ of X1 is finite. By the strong law of large numbers, one has

X1 + · · ·+Xn

n
∼ µ, almost surely,

which implies
pn
ρ2n

∼ ℓn := µγnγ−2, almost surely.

Clearly, (ℓn)
∞
n=1 is monotonic, ℓn/ℓn+1 → 1 and

sup
n≥1

log n

ℓn

{
< ∞ for γ > 2,

= ∞, for 0 < γ ≤ 2.

As a consequence of Corollary 2.9, if 0 < γ ≤ 2, then GP has a total variation
cutoff almost surely; if γ > 2, then GP has no total variation cutoff with probability
1.

Example 2.11 (Exponential random sequences). Let Y1, Y2, ... be i.i.d. positive
random variables and pn = Y1 × · · · × Yn. For n ≥ 1, let (ℓn,i)

n
i=1 be a non-

decreasing arrangement of (pi/ρ
2
i )

n
i=1 and set

tn = sup
1≤i≤n

log(i+ 1)

ℓn,i
.

Using a similar reasoning as in the proof of Theorem 2.5, one may conclude using
Theorem 2.3 that GP has a total variation cutoff if and only if tnℓn,1 → ∞.

To analyze the product tnℓn,1, we assume that the expectation ν of log Y1 is finite.
By the strong law of large numbers, there is an event E with probability 1 such that

νn :=
log(pn/ρn)

n
→ ν on E.
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In the following, we focus on the case ν > 0. By writing pn/ρ
2
n = eνnn, one may

select, for each ω ∈ E, a constant C(ω) ∈ (0, 1) such that pn(ω)/ρ
2
n ≥ C(ω)eC(ω)νn

for all n ≥ 1. This implies that, on the event E,

ℓn,1 ≍ 1, ℓn,i ≥ CeCνi, ∀1 ≤ i ≤ n, n ≥ 1.

Consequently, we obtain tnℓn,1 = O(1) on E, which is equivalent to say that GP

has no total variation cutoff with probability 1.
The results in the above discussion are summarized in Proposition 1.3.

3. Constructions of theoretical frameworks

This section is dedicated to proving Theorem 2.3. In the first subsection, we
review those required but developed results in the introduction. In the second
subsection, we treat the discrete time and continuous time cases separately and
provide proofs in detail.

3.1. Review of technical supports. In this subsection, we survey those equiva-
lences in Table 1 and state them by following the setting in the introduction. The
first two propositions are supportive to the first two equivalences in Table 1 and,
in fact, hold under more general assumptions.

Proposition 3.1 (Theorems 3.1 and 3.3 in [5]). Let F = (Gn, Qn, Un)
∞
n=1 be a

family of random walks on finite groups and δ = infn Qn(id). Assume that δ > 0

and, for some ϵ0 ∈ (0, 1), Tn,TV(ϵ0) → ∞ or T
(c)
n,TV(ϵ0) → ∞. Then, in the total

variation, F has a cutoff (resp. pre-cutoff) if and only if Fc has a cutoff (resp. pre-
cutoff). Furthermore, if F or Fc presents a total variation cutoff, then Tn,TV(ϵ) ∼
T

(c)
n,TV(ϵ) for all ϵ ∈ (0, 1) and, for sequences of positive reals, (tn)

∞
n=1 and (bn)

∞
n=1,

satisfying bn = o(tn),

|Tn,TV(ϵ)− tn| = O(bn), ∀ϵ ∈ (0, 1) ⇔
∣∣∣T (c)

n,TV(ϵ)− tn

∣∣∣ = O(bn), ∀ϵ ∈ (0, 1).

Proposition 3.2. Let F = (Gn, Qn, Un)
∞
n=1 be a family of random walks on finite

groups and let T
(c)
n,TV and T

(c)
n,H be the total variation and the Hellinger distance of

the nth chain in Fc. Then, Fc has a total variation cutoff (resp. pre-cutoff) if and
only if Fc has a Hellinger distance cutoff (resp. pre-cutoff). Furthermore, if Fc

presents a cutoff in either measurement, then T
(c)
n,TV(ϵ) ∼ T

(c)
n,H(ϵ) for all ϵ ∈ (0, 1).

Proof. The equivalence of cutoffs is already discussed in Proposition 1.1 of [2], while
the equivalence of pre-cutoffs is given by (1.10). �

To analyze products of random walks, we need a variant of Proposition 1.1 in
the Hellinger distance and, particularly, in the continuous time case.

Proposition 3.3. Let (G,Q,U) be a symmetric random walk on a finite group and

d
(c)
TV, d

(c)
H be the total variation and the Hellinger distance of its associated continuous

time random walk. If G has (A, d)-moderate growth with respect to the support E
of Q, then there is C > 0 depending only on A, d such that

1

2
e−Ct/ρ2

≤ d
(c)
TV(t) ≤ Ce−ηt/(2ρ2), ∀t ≥ 0,

and
1

4
e−Ct/ρ2

≤ d
(c)
H (t) ≤ Ce−ηt/(4ρ2), ∀t ≥ 0,
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where ρ is the diameter of (G,E), η = min{Q(x)|x ∈ E} and both lower bounds
require ρ ≥ 4 in addition.

Remark 3.4. (1) Compared with Proposition 1.1, the generating set E in Propo-
sition 3.3 need not contain id and this means that the laziness of (G,Q,U) is not
required at all. In fact, the laziness of a continuous time walk can be seen from
the identity 1

2 (K − I) = 1
2 (K + I) − I, where K refers to the transition matrix

determined by Q.
(2) The prerequisite of the lower bound on the graph diameter (at least 4) is due to
the development of an upper bound on the spectral gap. See the proof of (3.2) in [7]
for details.

Proof of Proposition 3.3. First, we set Q′ = (Q+ 1{id})/2 and E′ = E ∪ {id}. Let
K,K ′ be the transition matrices determined by Q,Q′, set ρ, ρ′ for the diameters
of (G,E), (G,E′) and define η = min{Q(x)|x ∈ E} and η′ = min{Q′(x)|x ∈ E′}.
Obviously, one has K ′ = (K + I)/2 and Ht = H ′

2t, where Ht = e−t(I−K) and

H ′
t = e−t(I−K′). Let d′TV, d

(c)
TV be the total variations of (G,Q′, U), (G,Ht, U). By

applying Proposition 1.1 to (G,Q′, U), since G has (A, d)-moderate growth with
respect to E (and, hence, with respect to E′), there is C2 > 0 depending only on
A, d such that

d′TV(m) ≤ C2e
−η′m/(ρ′)2 , ∀m ≥ 0.

By the triangle inequality, this implies

d
(c)
TV(t) ≤ e−2t

∞∑
m=0

(2t)m

m!
d′TV(m) ≤ C2 exp

{
2t
(
e−η′/(ρ′)2 − 1

)}
≤ C2e

−ηt/(2ρ2),

where the last inequality comes from ρ′ ≤ ρ, η′ ≥ η/2 and the fact that e−u ≤
1 − u/2 for u ∈ [0, 1]. To see a lower bound of the total variation, let λ be the

smallest nonzero eigenvalue of I −K. Note that 2d
(c)
TV(t) = ∥Ht − Π∥∞→∞, where

Πf := π(f)1, ∥L∥∞→∞ := sup{∥Lf∥∞ : ∥f∥∞ ≤ 1} and ∥f∥∞ := maxx |f(x)|. By
the symmetry of Q, this implies

d
(c)
TV(t) ≥

1

2
e−λt, ∀t ≥ 0.

Based on the (A, d)-moderate growth of (G,E), Diaconis and Saloff-Coste showed
in [7, Equation (3.2)] that if ρ ≥ 4, then there is a constant C1 > 0 depending only
on A, d such that λ ≤ C1/ρ

2, where the assumption of id ∈ E is in fact not required.
This proves the desired bounds for the total variation with C = max{C1, C2}, while
the combination of (1.10) with such total variation bounds leads to bounds for the
Hellinger distance. �

Finally, we introduce the fourth equivalence in Table 1. Let A = {an,i|1 ≤ i ≤
kn, n ≥ 1} and Λ = {λn,i|1 ≤ i ≤ kn, n ≥ 1} be triangular arrays of positive reals
and set

(3.1) F(A,Λ) = (fn)
∞
n=1, fn(t) =

kn∑
i=1

an,ie
−λn,it.

As fn is nonnegative and decreasing, we define the mixing time of fn by Tn(ϵ) =
min{t ≥ 0|fn(t) ≤ ϵ} for ϵ > 0 and define the cutoff for F(A,Λ) as follows.
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Definition 3.5. The family F(A,Λ) is said to present a cutoff if there is a sequence
(tn)

∞
n=1 of positive reals such that

lim
n→∞

fn(atn) =

{
0 if a > 1,

∞ if 0 < a < 1.

In the above, (tn)
∞
n=1 or briefly tn is called a cutoff time.

Remark 3.6. It is easy to check from Definition 3.5 that F(A,Λ) has a cutoff if
and only if Tn(ϵ) ∼ Tn(δ) for all ϵ > 0 and δ > 0. In particular, if F(A,Λ) has a
cutoff, then Tn(ϵ) is a cutoff time for all ϵ > 0.

By expressing fn as a Laplace transform of some positive measure, the authors
of [4] provided a criterion (Theorems 3.5 and 3.8 in [4]) to determine the cutoff for
F(A,Λ). Later, such a method was refined in [1, Theorem 2.4]. To see the details,
we set, for c > 0,

(3.2) λn(c) = λn,jn(c), τn(c) = max
i≥jn(c)

log(1 + an,1 + · · ·+ an,i)

λn,i
,

where jn(c) := min{i ≥ 1|an,1 + · · ·+ an,i > c}.

Proposition 3.7 (Theorem 2.4 in [1]). Let F be the family in (3.1), Tn(ϵ) be the
mixing time of fn and λn, τn be the quantities in (3.2). Then, the following are
equivalent.

(1) F(A,Λ) has a cutoff.
(2) There is ϵ > 0 such that Tn(ϵ)λn(c) → ∞ for all c > 0.
(3) τn(c)λn(c) → ∞ for all c > 0.

In particular, τn(c) is a cutoff time for all c > 0.

Remark 3.8. It was shown in [1, Lemma 2.5] that, if τn(c)λn(c) → ∞, then
τn(c

′)λn(c
′) → ∞ for all c′ > c.

3.2. Proof of Theorem 2.3. The proof of Theorem 2.3 is based on some crucial
techniques, of which proofs are either developed or involved and are addressed in
the appendix for reference. See Lemmas A.1, A.2 and A.3 for details.

Proof of Theorem 2.3 (The continuous time case). To prove this proposition, it suf-

fices to consider, by Proposition 3.2 and (1.10), the Hellinger distance. Let d
(c)
n,H

and d
(c)
n,i,H be the Hellinger distances of the nth and (n, i)th random walks in FP

c

and Fc, and set η = inf{Qn,i(x)|x ∈ En,i, 1 ≤ i ≤ kn n ≥ 1}. By Proposition 3.3,
there is C1 > 1 such that, for all 1 ≤ i ≤ kn and n ≥ 1,

(3.3)
1

4
e−C1t/ρ

2
n,i ≤ d

(c)
n,i,H(t) ≤ C1e

−ηt/(4ρ2
n,i), ∀t ≥ 0,

where ρn,i ≥ 4 is required for the first inequality.
For (1), set M = supn kn. By (3.3), one has

d
(c)
n,i,H(apn,itn/qn) ≤ C1e

−aηℓn,itn/(4C) ≤ C1(i+ 1)−aη/(4C) ≤ C12
−aη/(4C),

and, in addition with the fact tn ≤ log(M + 1)/ℓn,1,

d
(c)
n,1,H(apn,1tn/qn) ≥

1

4
e−aC1Cℓn,1tn ≥ 1

4
(M + 1)−aC1C .
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Consequently, the replacement of A, pi with 1/
√
2, pn,i/qn in Lemma A.1 yields

1− exp

{
− 1

16
(M + 1)−2aC1C

}
≤ d

(c)
n,H(atn)

2 ≤ 1− exp
{
−MC2

12
1−aη/(2C)

}
,

for all a > A := (4C/η)(log2 C1 + 1/2) and n ≥ 1. This proves (1).
For (2), note that (i)⇒(ii) is clear from the definition of cutoffs and pre-cutoffs,

and (iv)⇒(v) is trivial. To prove the other equivalences, we first make some analysis

on d
(c)
n,H . Let C1 be the constant in (3.3), A be the constant defined as above and N

be a positive integer such that ρn,i ≥ 4 for i ≥ N and n ≥ 1. In a similar reasoning
as before, one can show that

(3.4) d
(c)
n,H(t)2 ≥ 1− exp

{
−

kn∑
i=1

d
(c)
n,i,H(pn,it/qn)

2

}
, ∀t > 0,

and

(3.5) d
(c)
n,H(t)2 ≤ 1− exp

{
−2

kn∑
i=1

d
(c)
n,i,H(pn,it/qn)

2

}
, ∀t > Atn.

By (3.3), we have

kn∑
i=1

d
(c)
n,i,H(pn,it/qn)

2 ≤ C2
1

kn∑
i=1

e−ηpn,it/(2qnρ
2
n,i) ≤ C2

1

kn∑
i=1

e−ηtℓn,i/(2C)

and ∑
i∈In

d
(c)
n,i,H(pn,it/qn)

2 ≥ 1

16

∑
i∈In

e−2C1pn,it/ρ
2
n,i ≥ 1

16

∑
i∈In

e−2CC1tℓn,i ,

where In = {1 ≤ i ≤ kn|ρn,i ≥ 4}. Putting the last terms in the above computations
back to (3.4) and (3.5) yields

(3.6) 1− exp

{
− 1

16
gn(2CC1t)

}
≤ d

(c)
n,H(t)2 ≤ 1− exp

{
−2C2

1fn(ηt/(2C))
}
,

where fn(t) =
∑kn

i=1 e
−ℓn,it, gn(t) =

∑
i∈In

e−ℓn,it and the second inequality holds
for t > Atn. We are now ready to proceed the proof of (ii)⇒(iii)⇒(iv) and (v)⇒(i).

To see (ii)⇒(iii), assume that FP
c presents a pre-cutoff in the Hellinger distance

and let sn > 0 and B2 > B1 > 0 be such that

(3.7) lim
n→∞

d
(c)
n,H(B2sn) = 0, lim inf

n→∞
d
(c)
n,H(B1sn) = α > 0.

Note that

fn(atn) ≤
kn∑
i=1

(i+ 1)−a ≤
∫ ∞

1

u−adu =
1

a− 1
, ∀a > 1.

By the second inequality of (3.6) and the fact A > 2C/η, we have

(3.8) d
(c)
n,H(atn)

2 ≤ 1− exp

{
− 2C2

1

aη/(2C)− 1

}
, ∀a > A, n ≥ 1.

Next, let’s fix a > (2C2
1/α

2 + 1)A. By the fact of A > 2C/η, one may derive

aη/(2C) − 1 > 2C2
1/α

2 and, by (3.8), this leads to d
(c)
n,H(atn)

2 ≤ 1 − e−α2

< α2.

As a result of the second limit in (3.7), we obtain that atn ≥ B1sn for n large
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enough. In addition with the fact 1 ∈ In for all n ≥ 1, we may conclude from the
first inequality of (3.6) that

0 = lim
n→∞

d
(c)
n,H(B2sn)

2 ≥ lim
n→∞

d
(c)
n,H(aB2tn/B1)

2

≥ 1− exp

{
− 1

16
lim sup
n→∞

e−2aB2CC1tnℓn,1/B1

}
,

which leads to (iii).
For (iii)⇒(iv), assume that tnℓn,1 → ∞. By Proposition 3.7 and Remark 3.8,

the family (fn)
∞
n=1 has a cutoff with cutoff time tn. By (3.6), this implies

lim
n→∞

d
(c)
n,H(atn) = 0, ∀a > A, lim

n→∞
d
(c)
n,H(atn) = 1, ∀0 < a < 1/(2CC1),

where the second limit also uses the fact

gn(t) = fn(t)− (fn(t)− gn(t)) ≥ fn(t)−Ne−ℓn,1t.

As a consequence, when ϵ ∈ (0, 1), one has tn/(4CC1) ≤ T
(c)
n,H(ϵ) ≤ 2tn for n large

enough, which gives (iv) and the order of the mixing time.

To show (v)⇒(i), it suffices to prove T
(c)
n,H(ϵ) − T

(c)
n,H(δ) = O(1/ℓn,1) for all

0 < ϵ < δ < 1, which is exactly the specific conclusion in (2). First, we need
a refinement of (3.5). Let δ ∈ (0, 1). In Lemma A.1, the first inequality implies

T
(c)
n,H(δ) ≥ max{T (c)

n,i,H(δ)qn/pn,i|1 ≤ i ≤ kn}, while the third inequality yields

d
(c)
n,H(t)2 ≤ 1− exp

{
− 1

1− δ2

kn∑
i=1

d
(c)
n,i,H

(
pn,it

qn

)2
}
, ∀t ≥ T

(c)
n,H(δ).

Let t = T
(c)
n,H(δ) + a/ℓn,1 with a > 0. By the quasi-submultiplicativity in Lemma

A.3, one has

d
(c)
n,i,H

(
pn,it

qn

)
≤ 4d

(c)
n,i,H

(
pn,iT

(c)
n,H(δ)

qn

)
d
(c)
n,i,H

(
apn,i
ℓn,1qn

)
.

Putting this back to the upper bound for d
(c)
n,H(t) yields

d
(c)
n,H(t)2 ≤ 1− exp

− 16

1− δ2

kn∑
i=1

d
(c)
n,i,H

(
pn,iT

(c)
n,H(δ)

qn

)2

d
(c)
n,i,H

(
apn,i
ℓn,1qn

)2
 .

Observe that the second inequality in (3.3) and (3.4) give

d
(c)
n,i,H

(
apn,i
ℓn,1qn

)2

≤ C2
1e

−aη/(2C),

kn∑
i=1

d
(c)
n,i,H

(
pn,iT

(c)
n,H(δ)

qn

)2

≤ log
1

1− δ2
.

Combining the last three inequalities leads to

d
(c)
n,H

(
T

(c)
n,H(δ) + a/ℓn,1

)2
≤ 1− exp

{
−C2

1e
−aη/(2C)

1− δ2
log

1

1− δ2

}
, ∀a > 0.

As the right hand side tends to 0 as a tends to infinity, we obtain T
(c)
n,H(ϵ)−T

(c)
n,H(δ) =

O(1/ℓn,1) for ϵ ∈ (0, δ), as desired. This finishes the proof of (2). �
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Proof of Theorem 2.3 (The discrete time case). We shall prove the discrete time
case by identifying the items in (2) with the continuous time case. First, we show

that Tn,TV(ϵ) → ∞ and T
(c)
n,TV(ϵ) → ∞ for some ϵ ∈ (0, 1). Let d

(c)
n,i,TV be the total

variation of the (n, i)th random walk in Fc and let N > 0 be a positive integer such
that ρn,i ≥ 4 for i ≥ N and n ≥ 1. By Proposition 3.3, there is C2 > 0 such that

d
(c)
n,i,TV(t) ≥

1

2
e−C2t/ρ

2
n,i ≥ 1

2
e−C2t/16, ∀t ≥ 0, i ≥ N, n ≥ 1.

Note that the first inequality in Lemma A.1 also holds for the total variation (see
[2, Proposition 3.3]) and this implies that, for kn > N ,

d
(c)
n,TV(t) ≥ max

N≤i≤kn

d
(c)
n,i,TV

(
pn,it

qn

)
≥ 1

2

{
−C2t

16
min

N≤i≤kn

pn,i
qn

}
≥ 1

2
exp

{
− C2t

16(kn −N)

kn∑
i=N

pn,i
qn

}
≥ 1

2
exp

{
− C2t

16(kn −N)

}
,

where the last inequality uses the fact that (pn,i/qn)
kn
i=1 is a probability vector.

As kn → ∞, one has T
(c)
n,TV(1/4) ≥ 8(kn −N)/C2 for n large enough, which yields

T
(c)
n,TV(1/4) → ∞. In the discrete time case, observe that, by the triangle inequality,

d
(c)
n,TV(t) ≤

∞∑
m=0

e−t t
m

m!
dn,TV(m) ≤

ℓ∑
m=0

e−t t
m

m!
+

( ∞∑
m=ℓ+1

e−t t
m

m!

)
dn,TV(ℓ).

When t = T
(c)
n,TV(1/4) and ℓ = ⌈t/2⌉, it’s easy to check (or to see from [3, Lemma

A.1]) that

lim
n→∞

e−t
ℓ∑

m=0

tm

m!
= 0,

which leads to

lim
n→∞

dn,TV

(⌈
1

2
T

(c)
n,TV(1/4)

⌉)
≥ 1

4
.

Consequently, we obtain Tn,TV(1/5) ≥ 1
2T

(c)
n,TV(1/4) for n large enough and, thus,

Tn,TV(1/5) → ∞. Now, we are ready to prove (2) for the discrete time case.
Let (∗)’ with ∗ ∈ {i, ii, iv, v} be respectively the corresponding statements for

FP in Theorem 2.3(2). Immediately, the equivalence of (∗) and (∗)’ with ∗ ∈ {i, ii}
is given by Proposition 3.1. Let µn and µn,1 be the second largest eigenvalues
of the transition matrices determined by Qn and Qn,1. It is easy to check that
1 − µn ≤ (pn,1/qn)(1 − µn,1). A similarly reasoning as in the proof of Proposition
3.3 implies

dn,TV(m) ≥ µm
n , 1− µn,1 ≤ C3/ρ

2
n,1, ∀m ≥ 0, n ≥ 1,

where C3 is a positive constant depending on A, d. As a result, this yields

dn,TV(m) ≥ e−m(1−µn) ≥ e−C3mpn,1/(qnρ
2
n,1) ≥ e−CC3mℓn,1 .

When FP has a total variation cutoff, one has

exp
{
−2CC3 lim inf

n→∞
Tn,TV(ϵ)ℓn,1

}
≤ lim

n→∞
dn,TV (2Tn,TV(ϵ)) = 0, ∀ϵ ∈ (0, 1).

This proves (i)’⇒(iv)’.
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Based on the above discussions, it remains to show (v)’⇒(v). Assume that
Tn,TV(ϵ1)ℓn,1 → ∞ for some ϵ1 ∈ (0, 1). We will prove (v) by contradiction and

thus assume the inverse that T
(c)
ξn,TV

(ϵ2)ℓξn,1 = O(1), where ϵ2 ∈ (0, 1) and (ξn)
∞
n=1

is an increasing sequence of positive integers. Note that we may restrict ourselves

to the case of ϵ2 ≤ 1/4. Set rn =
√
Tξn,TV(ϵ1)/ℓξn,1. Obviously, T

(c)
ξn,TV

(ϵ2) = o(rn)

and rn = o(Tξn,TV(ϵ1)). By the quasi-submultiplicativity of the total variation, one
has

lim sup
n→∞

2d
(c)
ξn,TV

(rn) ≤ lim sup
n→∞

(
2dξn,TV

(
T

(c)
ξn,TV

(ϵ2)
))⌊rn/T (c)

ξn,TV
(ϵ2)

⌋

≤ lim sup
n→∞

2
−
⌊
rn

/
T

(c)

ξn,TV
(ϵ2)

⌋
= 0.

As a consequence of Lemma A.2(3), this implies

lim
n→∞

dξn,TV(⌈arn⌉) = 0, ∀a > 1.

But, however, as arn = o(Tξn,TV(ϵ1)), we have

lim inf
n→∞

dξn,TV(⌈arn⌉) ≥ lim inf
n→∞

dξn,TV (Tξn,TV(ϵ1)− 1) ≥ ϵ1 > 0.

This makes a contradiction and, hence, Tn,TV(ϵ2)ℓn,1 → ∞, as desired. �
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Appendix A. Techniques and auxiliary results

Lemma A.1. [2, Proposition 3.2] Let (Gi, Qi, Ui)
n
i=1 be random walks on finite

groups and (G,Q,U) be their product according to the probability vector (p1, ..., pn).

Let d
(c)
i,H and d

(c)
H be the Hellinger distances of the continuous time random walks

associated with (Gi, Qi, Ui) and (G,Q,U). Then, one has

d
(c)
H (t) ≥ max

{
d
(c)
i,H(pit)

∣∣∣1 ≤ i ≤ n
}
,

and

1− exp

{
−

n∑
i=1

d
(c)
i,H(pit)

2

}
≤ d

(c)
H (t)2 ≤ 1− exp

{
− 1

1−A2

n∑
i=1

d
(c)
i,H(pit)

2

}
,

where the second inequality requires t ≥ max{T (c)
i,H(A)/pi|1 ≤ i ≤ n} with A ∈ (0, 1).

Lemma A.2. [5, Proposition 3.1] Let F = (Gn, Qn, Un)
∞
n=1 be a family of random

walks on finite groups and Fc be the family of continuous time random walks asso-

ciated with F . For n ≥ 1, let dn,TV, d
(c)
n,TV be the total variations of the nth random

walks in F ,Fc. Suppose infn≥1 Qn(id) > 0. Then, for any sequence (tn)
∞
n=1 tending

to infinity,

(1) dn,TV(⌊tn⌋) = 1 if and only if d
(c)
n,TV(tn) = 1.

(2) If dn,TV(⌈tn⌉) = 0, then d
(c)
n,TV(atn) → 0 for all a > 1.

(3) If d
(c)
n,TV(tn) → 0, then dn,TV(⌈atn⌉) → 0 for all a > 1.
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Lemma A.3. Consider an irreducible Markov chain on a finite or countable set X
with transition matrix K and stationary distribution π. Set Ht = e−t(I−K) and let

dH , d
(c)
H be the maximum Hellinger distances defined by

dH(m) = sup
x∈X

1

2

∑
y∈X

(√
Km(x, y)−

√
π(y)

)21/2

,

and

d
(c)
H (t) = sup

x∈X

1

2

∑
y∈X

(√
Ht(x, y)−

√
π(y)

)21/2

.

Then, the mappings

m 7→ 4dH(m), t 7→ 4d
(c)
H (t),

are non-increasing and submultiplicative.

Proof. We deal with the discrete time case, while the continuous time case can be
shown in a similar way. Let n,m be positive integers and x, y ∈ X . Note that

(A.1)

√
Kn+m(x, y)−

√
π(y) =

∑
z∈X [Kn(x, z)− π(z)][Km(z, y)− π(y)]√

Kn+m(x, y) +
√
π(y)

=
∑
z∈X

AzBz,

where

Az =
(√

Kn(x, z)−
√
π(z)

)(√
Km(z, y)−

√
π(y)

)
and

Bz =

(√
Kn(x, z) +

√
π(z)

)(√
Km(z, y) +

√
π(y)

)
√
Kn+m(x, y) +

√
π(y)

.

Consider the following two cases.
Case 1: Kn+m(x, y) ≥ π(y). In this case, one may apply the Cauchy-Schwarz

inequality to obtain∣∣∣√Kn+m(x, y)−
√
π(y)

∣∣∣2 ≤

(∑
z∈X

A2
z

)(∑
z∈X

B2
z

)
.

Note that (
√
a+

√
b)2 ≤ 2(a+ b) for all a, b ≥ 0. As a result, this implies∑

z

B2
z ≤

4
∑

z∈X (Kn(x, z) + π(z))(Km(z, y) + π(y))(√
Kn+m(x, y) +

√
π(y)

)2
=

4[Kn+m(x, y) + 3π(y)]

Kn+m(x, y) + π(y) + 2
√
Kn+m(x, y)π(y)

≤ 4,

and, hence, ∣∣∣√Kn+m(x, y)−
√
π(y)

∣∣∣2 ≤ 4

(∑
z∈X

A2
z

)
.

Case 2: Kn+m(x, y) < π(y). For this case, set

E1 = {z|π(z) > Kn(x, z), Km(z, y) > π(y)}
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and

E2 = {z|π(z) < Kn(x, z), Km(z, y) < π(y)}.

By (A.1), one has

0 <
√
π(y)−

√
Kn+m(x, y) ≤

∑
z∈E1∪E2

[π(z)−Kn(x, z)][Km(z, y)− π(y)]√
Kn+m(x, y) +

√
π(y)

=
∑

z∈E1∪E2

AzBz.

As before, we may apply the Cauchy-Schwarz inequality to get∣∣∣√Kn+m(x, y)−
√
π(y)

∣∣∣2 ≤

( ∑
z∈E1∪E2

A2
z

)( ∑
z∈E1∪E2

B2
z

)
.

Note that, for z ∈ E1,(√
Kn(x, z) +

√
π(z)

)2 (√
Km(z, y) +

√
π(y)

)2
≤4
(√

Kn(x, z) +
√
π(z)

)2
Km(z, y) = 4

(√
Kn(x, z)

π(z)
+ 1

)2

π(z)Km(z, y),

and, for z ∈ E2,(√
Kn(x, z) +

√
π(z)

)2 (√
Km(z, y) +

√
π(y)

)2
≤ 4Kn(x, z)

(√
Km(z, y) +

√
π(y)

)2
.

By the Jensen inequality, this implies

(A.2)

∑
z∈E1

(√
Kn(x, z) +

√
π(z)

)2 (√
Km(z, y) +

√
π(y)

)2

≤ 4

√∑
z∈E1

Kn(x, z)Km(z, y) +
√
c1π(y)

2

,

where c1 =
∑

z∈E1
π(z)Km(z, y)/π(y), and

(A.3)

∑
z∈E2

(√
Kn(x, z) +

√
π(z)

)2 (√
Km(z, y) +

√
π(y)

)2

≤ 4

√∑
z∈E2

Kn(x, z)Km(z, y) +
√
c2π(y)

2

,

where c2 =
∑

z∈E2
Kn(x, z). Summing up (A.2) and (A.3) yields

∑
z∈E1∪E2

B2
z ≤

4
(√∑

z∈E1∪E2
Kn(x, z)Km(z, y) +

√
(c1 + c2)π(y)

)2
(√

Kn+m(x, y) +
√
π(y)

)2 ≤ 8,
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while the last inequality uses the fact of c1 ≤ 1 and c2 ≤ 1. As a consequence, this
leads to ∣∣∣√Kn+m(x, y)−

√
π(y)

∣∣∣2 ≤ 8

( ∑
z∈E1∪E2

A2
z

)
≤ 8

∑
z∈X

A2
z,

which is also applicable for Case 1.
Based on the result in the above discussions, we obtain

4dH(n+m) = sup
x∈X

8
∑
y∈X

(√
Kn+m(x, y)−

√
π(y)

)2
1/2

≤ sup
x∈X

 ∑
y,z∈X

8
(√

Kn(x, z)−
√
π(z)

)2
× 8

(√
Km(z, y)−

√
π(y)

)2
1/2

≤ sup
x∈X

{
8
(√

Kn(x, z)−
√
π(z)

)2}1/2

× 4dH(m) = 4dH(n)× 4dH(m).

�
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