5 Strongly recurrent case

5.1 Framework and the main theorem

(X, d, i, E): MMD space or the weighted graph

It is called a resistance form if F C C'(X) and

Sup{‘u(pg)<; qu)F cu € F,E(u,u) >0} < oo, Vp,q € X. (5.1)

Define R(p, q) = (LHS of (5.1)) if p # ¢ and R(p,p) = 0.

R is a metric, called a resistance metric. By (5.1), the following key inequality holds.

f@) = f)P < Rz, 9)E(f. f),  VfeF. (5.2)
The next lemma shows that R(p, q) is the effective resistance between p and q.

Lemma 5.1

R(p,q) = (inf{E(f, f): f(p)=1,f(q) =0,f € F})~". (5.3)



PROOF. We can take f(z) =1, f(y) = 0 by linear transform if u is not const. So,

R(z,y) = Sup{|u($£<; Zgy)F cu € F,E(u,u) >0}

1
e/ € F S =1 f) =0}

= (inf{E(f, ) fl@)=1,fy)=0,f € FH". 5

= sup {

Examples. The following are resistance forms.
e Weighted graphs
e For the Dirichlet form on R that corresponds to Brownian motion.

e Dirichlet forms on the Sierpinski gasket, nested fractals

(and ‘typical’ finitely ramified fractals).

e Dirichlet forms on the 2-dimensional Sierpinski carpet.



(T) Volume growth condition (VG(¥_)): Ja < BV 3,C > 0 s.t.

r

Vie,r)<C ( >aV(x, s) VexelX, Vr>s>0. (VG(V_))

S

(IT) Resistance upper and lower bound of order ¥ (RU(WV)), (RL(¥)):
3C1,Cy > 0 s.t. Vo,y € X,

W(d(z,y)
V) = OBl de )y o
o — ALY py g, (RL(W)

Theorem 5.2 Let (X, d, i1, &) be a resistance form on a MMD space or a weighted
graph. Assume (VG(V_)). Then,

(HK(V)) < (RU(V)) + (RL(V)) < (RL(Y)) + (PI(V)). (5.4)



When (5.4) holds, it is strongly recurrent in the sense that 9p; > 0 s.t.
Px<0-y < TB(ZL’,QT)) > D1, Vee X,r>0,y¢€ B<CE7T>7 (55)

where o4 =inf{t >0: X; € A} and 74 =inf{t > 0: X; ¢ A}

When X is a tree, we have a simpler equivalence condition as follows.

Corollary 5.3 Let (X, ) be a weighted graph with ¢; < gy < co for all x ~ y.

Assume that X 1s a tree. Then,

(VG(B-) + (HK(B)) & [V(z,d(z,y)) < d(z,y)"" Va,y].



Check (RU(B)) + (RL(3)) for the Sierpinski gasket F

B =logh/log2, F,: set of vertices of triangles of side 27"

E(ff)=clim (5/3)" D" (fla)= fO),  fe AP

r,y, 2,y , 2" € Fyasin the figure, by, hy(2) = 1, hin(y) = hi(2) = hin(y') = hp(2) =0
and harmonic outside. = E(hy,, hy) = ¢(5/3)™.
Then, E(hy) > R(z,y) ' = E(f) > Ea(f) > cEalhy) = c€(hn)/2.
So R(z,y) = (5/3)7m = 2-m(#-log3/log2) 0



5.2 Proof of Theorem 5.2: (RU(V)) + (RL(V)) = (HK(¥))

The flowchart of the proof is similar to that of Proposition 4.1.

W(r)
Vix,s) = CV(CE, T)

By (VG(V_)), de>0 st. Vr > s > 0. (5.6)

Indeed, by (VG(V_)), we have

V(x,r) r A U(r)
Vi(z,s) = ¢ <s) = C(S)ﬁ = C\IJ(S)’

We now give the proof of (RU(V)) + (RL(V)) = (HK(V)) step by step.

Vr > s >0, which implies (5.6).

STEP A: PROOF OF (RU(V)) = (DUHK(WV)). Let fi(y) = pi(z,y) and

p(t) = |fill5 = pu(z, z) = fau(x). (5.7)

Since fB(x n Jrdp < 1for m >0, 3y = y(t,r) € B(x,r) with fi(y) < V(z,r)"

Using (5.2),

1

5ft<5’7>2 < fily)® + | filz) = fily)]? <

1
Viz,re

E(Jfr, [)R(z,y).



Since R(x,y) < a1V (r)/V(x,r), which is due to (RU(W¥)), it follows that

eV (r) 2
Vi) p(t/2)" —

DO | —

g(ftaft) Z V(QZ’,’I“>2.

Hence
o) = 2 (s, ) < BB VD)

Noting that —(#/2)* < —p(t)?, which is due to the fact ¢'(t) = =2E(f, f) <0,

(5.8)

we integrate (5.8) over [t,2t]. Then,

2t to(t)?V(x,r)

—p(t) < p((2t) — p(t) < a¥(r)V(x,r) B ;W (r)

Rearranging this, we have
B0V (1) < 28+ () (2, 1)p(t) < (46) V (261 8(r)V (2, 1)p(t)).

Thus, we obtain ¢(t) < (2/V(z,r))V (219 (r)/(tV (z,r))). Taking r = ¥~1(¢) and using
the doubling properties of ¥ and V', we obtain (DU H K (WV)). .



STEP B: PrROOF OF (VG(V_))+ (RU(V)) 4+ (RL(V)) = (E(V)).

Lemma 5.4 Assume (VG(V_)),(RU(V)) and (RL(V)). Then,
c1W(r) oW ()
V(z,r) Viz,r)
PROOF. First, take y, z € B(x,r) with d(y,z) = Ar, A < 1. By (5.2) and (RU(V)),

o V(Ar)E(S, f)
Ve, Ar)

< R(z,B(x,r)°) < Vr >0, Vo € X. (5.9)

VfeF. (5.10)

f(y) = f(2)]F < Rly, 2)E(f. [) <

Let z € X best. c,r <d(x,z) <rfor Je, < 1.
If h, harm. fu. on X \ {z, 2} with h.(2) = 0, h.(z) = 1 then E(h.,h.) = R(z,z)" L.
Applying (5.6), (5.10) and (RL(W)), we have, if d(y, z) = Ar,

s 5 oW (Ar) csV(Ar)V (z, c,r)
h=()I” = Thely) = hal2))" < V(x, \r)R(x, z) = Ve, A\r)W(c,r)

So A\ s.t. d(y, z) < Ayr implies that h,(y) < %




Now use (VD) to cover B(x,r) \ B(x,c,r) by balls B(z;, \r), 1 < ¢ < M, with
c.r < d(x,z;) <r. (M dep. only on the volume doubling constant.)

Let g :=minh., h:=2(g — )" - 1p(,). Then h(z) =1, h =0 on B(xz, ¢,r)", so that

R(x, B(x,r))™" < E(hh) <4} E(hy, he) < AM (min R(z, z)) ™

caV(x,cor) sV (x,r)
= U(c,r) = U(r)
The 2nd ineq. of (5.9) is clear: (RU(V))+ [R(z, B(z,7)°) < R(x,y),Yy € 0B(x,r)]. ©

= 1st ineq. of (5.9).



PROOF OF (E(V)). B := B(xg,71), (£, Fp): part of the Dirichlet form
FpC{feF: fx)=00onze€ BY}. By (5.2) and (RU(WV)), we have

1V (r)
sup f(x)]? < V(or)

(5.11)4 the Riesz theorem = dgp(-, ) Green kernel s.t. E(gp(x, ), f) = f(x), Vf € Fp.

Ef, f), vV feFs. (5.11)

gp(x,y) = gply,z) and gp(z,z) > 0 Vr,y € B.
p:(y) == gp(x,y)/gp(x,x). Then p, is an equilibrium potential for R(x, B¢), so

R(x, B = E(py, p2) = gpla, x) . (5.12)
Since p,(y) <1 Vy € X, 9p(%,y) < gp(w,x) Vo,y € X. (5.13)

On the other hand, R(x, B¢) < R(z,y) Yy € B¢, so gp(z,x) < c1V(r)/V(x,r).

Since E*[Tp(y,.) = [z 98(z0, y)du(y), we have, using (5.13),
c1W(r)

V(:Eo,r)‘/(xO’T) <cV(r) = 2ndineq. of E(WV).

B0 [TB(CL‘(),T’)] <



Next, by (5.2) and the reproducing property of gp,

lgB(20, 20) — gB(20,y)|* < E(98, 98)R(0,y) = gB(T0, T0)R(T0,Y), Vy € B.

Thus, by (5.12), |1 — pa,(y)]* < éigogz). Now using Lemma 5.4, 3§ > 0 s.t.

gB('IOa y)
gB(-on, xo)

By (5.12) and Lemma 5.4, gg(xg, xg) = R(:Uo, B¢) > cV(r)/V (xg, ).

Puy(y) = > 1/2, Yy € B(xg, or). (5.15)

Combining this with (5.15), gp(z0,y) > 2L Wy € B(xg, 6r). So

— V{(xg,r)
Cg@(?“)
[£*0 — d > V or) > c, U
[TB(SC(),T)] /BgB(xO,y) N<y> - ‘7<ZU(),T’) <£C07 T) = C4 (T>7

where ¢4 > 0 depends on . We thus obtain the 1st ineq. of (E(W)). 0

)

Remark. (5.15) implies immediately (5.5). This implies (EHI) by Lemma 1.6 in [6].
Thus, (RU(V)) + (RL(V)) = (HK(V)) is proved by Prop 4.1 and Prop 4.3 (Step A

above was not needed). But we do not choose this way.



STEP C: PROOF OF (VD) + (DUHK(V))+ (E(V)) = (UHK(V)).

This step is the same as Step 1 and Step 2 in the proof of Prop 4.1.

STEP D: PROOF OF (VD) + (ELD(V)) = (DLHK(U)).

This step is the same as Step 3 in the proof of Prop 4.1.

STEP E: PROOF OF (VG(W_)) + (RU(V)) + (DLHK (W) = (NLHK(W)).
First, (RU(V)) = (DUHK(V)) as in Step A. Since py(z,x) = ||pija(-, z)||5, we have

atpt<x7 ZC) - Q(Apt/Z(v x)vpt/2<°7 ZC)) — _25<pt/2<7 x)apt/2<'7 .fC))
Thus, using (5.2) and Prop 9.9 (time derivative), we have

pe(@,y) — pe(2, y))° < Ry, v )EWi(-, ), el ) <



Using this and (DLH K (W)),

pi(x,y) = piw,v) — |pe(w, ) — pil(, )] /
Co B U(d(x,y)) C1 1/2
= Ve v (1) {v<x,d<x,y>> tv<x,\v—1<t>>}

2 L ( V(d(z,y) )”2
Ve, U172 \ Vi, U172 7 \tV (z, d(z, y)) |

1/2
Taking ¢4 large, we have 2V(:U,\Illl(t))1/2 > 3 (ﬂgl(gl,(dazf,)y)))> if U(d(x,y)) < ¢yt holds.

Here we used (5.6). We thus obtain the result.

STEP F: PROOF OF (NLHK(V)) = (LHK(V)).

This step is the same as Step 5 in the proof of Prop 4.1.
Combining Step A-F, the proof of (RU(V)) 4+ (RL(V)) = (HK(WV)) is completed.



8.2 Equivalence to (UHK(3))

In [36], A. Grigor’yan proved various equivalence conditions for (UH K (3)) under (VD).

e Faber-Krahn ineq (FK(3)): dv > 0s.t. VB, C X and V non-empty open 2 C B,,
(Q) — inf <f f) ( (BT))V,

feF ()\{0} £z = r7" u()
where F(Q2) ={feF:f=0in X\ Q}.

A

min

Theorem 8.2 ([36], Theorem 12.1) Assume (VD). Then.

(UHK(B)) < (DUHK(G)) + (E(B)) < (FK(B)) + (E(5)).

Cf. B = 2 case for Riemannian manifolds (|38] Proposition 5.2)

(UHK(2) & (DUHK(2)) & (FK(2)).



9.4 Time derivative

First, we show the following well-known fact in the semigroup theory.

Lemma 9.7 For any f € L?, let u; := P.f. Then,
1

— S

[Orue]]2 < " [Jus][2, 0<Vs <t

PROOF. Let {E)} >0 be spectral resolution of the operator —A. Then
w=ef = [T eOamg Juli= [ e B
0 0
Thus,
Oy = /OOO(—A)e_MdEAf, 105 ]]5 = /OOO AQe_Q(t_S)Ae_QSAdHEAfHQ.

Since Ae~ =9 < (¢ — )71, we obtain
1

1 <
W/o . 2Ad|\EAf||2:m||ung. 5

19ue)3 <



Corollary 9.8 Fort >0 and z € X, t v+ p(-, z) is Frechet differentiable in L* and

101, )]z < t% 2], 0<Vs<t
PROOF. Let f = p-(-, z) for 3¢ > 0. Then, u; = P,f = psic(+, 2). By Lemma 9.7,
0o Dl < = lase(e 2o = 7= patesn (=2
Replacing t 4+ €, s + € by ¢, s respectively, we obtain the result. O

Proposition 9.9 For any v,y € X, t— px,y) is differentiable in t > 0 and

2
| pt(ﬂf y)| < ;\/pt/z(x,w)pt/z(y,y)-
PROOF. By the Chapman-Kolmogorov eq., pi(z,y) = (pi—s(-, ), ps(-,y)), Vs € (0,1),

so Opy(, y) = (Opi—s(; ), ps(-,y)). Applying Corollary 9.8,
1

\/pzr(fl?, T)p2s(y, ),

|—pt(~fv Y| = (10— 2)lallps( y)l2 = —

0 <Vr <t—s. Taking s =r =t/4, we obtain the result. 0



7 Some open problems

e Simpler stable equivalence conditions for (PHI(W)): It is not easy to check (CS(V)) in

examples. Quite recently, Barlow-Bass proved (PHI(3)) < (VD) + (PI(3)) + (E(G))
for weighted graphs. Conjecture: (PHI(3)) < (VD) + (PI(3)) + (RES(3)).

e Stability of (EHI): Is (EHI) stable under rough isometries?

e Stability of (UHK (W)): Is (UH K (W)) stable under rough isometries?

Related conjecture by Grigor'yan: (UHK(3)) < (FK(3)) + (Anti FK(3)), which

guarantees the optimality of (F K (/3)) for balls.

e RW on IIC on Z% HK estimates for RW on infinite incipient clusters on Z?
d = 2 and d large enough, RW on such IIC is in the framework of resistance forms.

So we have reasonable analytic estimates. Probabilistic estimates??



