
5 Strongly recurrent case

5.1 Framework and the main theorem

(X, d, µ, E): MMD space or the weighted graph

It is called a resistance form if F ⊂ C(X) and

sup {|u(p) − u(q)|2
E(u, u)

: u ∈ F , E(u, u) > 0} < ∞, ∀p, q ∈ X. (5.1)

Define R(p, q) = (LHS of (5.1)) if p ̸= q and R(p, p) = 0.

R is a metric, called a resistance metric. By (5.1), the following key inequality holds.

|f(x) − f(y)|2 ≤ R(x, y)E(f, f ), ∀f ∈ F . (5.2)

The next lemma shows that R(p, q) is the effective resistance between p and q.

Lemma 5.1

R(p, q) = ( inf{E(f, f) : f(p) = 1, f (q) = 0, f ∈ F})−1. (5.3)



Proof. We can take f(x) = 1, f (y) = 0 by linear transform if u is not const. So,

R(x, y) = sup {|u(x) − u(y)|2
E(u, u)

: u ∈ F , E(u, u) > 0}

= sup { 1

E(f, f)
: f ∈ F , f (x) = 1, f (y) = 0}

= ( inf{E(f, f ) : f(x) = 1, f (y) = 0, f ∈ F})−1. ¤

Examples. The following are resistance forms.

• Weighted graphs

• For the Dirichlet form on R1 that corresponds to Brownian motion.

• Dirichlet forms on the Sierpinski gasket, nested fractals

(and ‘typical’ finitely ramified fractals).

• Dirichlet forms on the 2-dimensional Sierpinski carpet.



(I) Volume growth condition (V G(Ψ−)): ∃α < β ∨ β̄, C > 0 s.t.

V (x, r) ≤ C
(r

s

)α

V (x, s) ∀x ∈ X, ∀r ≥ s > 0. (V G(Ψ−))

(II) Resistance upper and lower bound of order Ψ (RU(Ψ)), (RL(Ψ)):

∃C1, C2 > 0 s.t. ∀x, y ∈ X ,

R(x, y) ≤ C1
Ψ(d(x, y))

µ(B(x, d(x, y)))
, (RU(Ψ))

C1
Ψ(d(x, y))

µ(B(x, d(x, y)))
≤ R(x, y). (RL(Ψ))

Theorem 5.2 Let (X, d, µ, E) be a resistance form on a MMD space or a weighted

graph. Assume (V G(Ψ−)). Then,

(HK(Ψ)) ⇔ (RU(Ψ)) + (RL(Ψ)) ⇔ (RL(Ψ)) + (PI(Ψ)). (5.4)



When (5.4) holds, it is strongly recurrent in the sense that ∃p1 > 0 s.t.

P x(σy < τB(x,2r)) ≥ p1, ∀x ∈ X, r > 0, y ∈ B(x, r), (5.5)

where σA = inf{t ≥ 0 : Xt ∈ A} and τA = inf{t ≥ 0 : Xt /∈ A}.

When X is a tree, we have a simpler equivalence condition as follows.

Corollary 5.3 Let (X, µ) be a weighted graph with c1 ≤ µxy ≤ c2 for all x ∼ y.

Assume that X is a tree. Then,

(V G(β−)) + (HK(β)) ⇔ [V (x, d(x, y)) ≃ d(x, y)β−1 ∀x, y].
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Check (RU(β)) + (RL(β)) for the Sierpinski gasket F

β = log 5/ log 2, Fn: set of vertices of triangles of side 2−n

E(f, f ) = c lim
n→∞(5/3)n

∑
a∼b∈Fn

(f(a) − f(b))2, f ∈ Λ
β/2
2,∞(F ).

x, y, z, y′, z′ ∈ Fm as in the figure, hm: hm(x) = 1, hm(y) = hm(z) = hm(y′) = hm(z′) = 0

and harmonic outside. ⇒ E(hm, hm) = c′(5/3)m.

Then, E(hm) ≥ R(x, y)−1 =: E(f) ≥ E∆(f) ≥ cE∆(hm) = cE(hm)/2.

So R(x, y) ≃ (5/3)−m = 2−m(β−log 3/ log 2). ¤



5.2 Proof of Theorem 5.2: (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ))

The flowchart of the proof is similar to that of Proposition 4.1.

By (V G(Ψ−)), ∃c > 0 s.t.
Ψ(s)

V (x, s)
≤ c

Ψ(r)

V (x, r)
∀r > s > 0. (5.6)

Indeed, by (V G(Ψ−)), we have

V (x, r)

V (x, s)
≤ c(

r

s
)α < c(

r

s
)β∧β̄ ≤ c

Ψ(r)

Ψ(s)
, ∀r > s > 0, which implies (5.6).

We now give the proof of (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ)) step by step.

Step A: Proof of (RU(Ψ)) ⇒ (DUHK(Ψ)). Let ft(y) = pt(x, y) and

ϕ(t) := ||ft||22 = p2t(x, x) = f2t(x). (5.7)

Since
∫

B(x,r) ftdµ ≤ 1 for r > 0, ∃y = y(t, r) ∈ B(x, r) with ft(y) ≤ V (x, r)−1.

Using (5.2),

1

2
ft(x)2 ≤ ft(y)2 + |ft(x) − ft(y)|2 ≤ 1

V (x, r)2
+ E(ft, ft)R(x, y).



Since R(x, y) < c1Ψ(r)/V (x, r), which is due to (RU(Ψ)), it follows that

c1Ψ(r)

V (x, r)
E(ft, ft) ≥ 1

2
ϕ(t/2)2 − 1

V (x, r)2
.

Hence

ϕ′(t) = −2E(ft, ft) ≤ 2V (x, r)−1 − ϕ(t/2)2V (x, r)

c1Ψ(r)
. (5.8)

Noting that −ϕ(t/2)2 ≤ −ϕ(t)2, which is due to the fact ϕ′(t) = −2E(ft, ft) ≤ 0,

we integrate (5.8) over [t, 2t]. Then,

−ϕ(t) ≤ ϕ(2t) − ϕ(t) ≤ 2t

c1Ψ(r)V (x, r)
− tϕ(t)2V (x, r)

c1Ψ(r)
.

Rearranging this, we have

tϕ(t)2V (x, r)2 ≤ 2t + c1Ψ(r)V (x, r)ϕ(t) ≤ (4t) ∨ (2c1Ψ(r)V (x, r)ϕ(t)).

Thus, we obtain ϕ(t) ≤ (2/V (x, r))∨ (2c1Ψ(r)/(tV (x, r))). Taking r = Ψ−1(t) and using

the doubling properties of Ψ and V , we obtain (DUHK(Ψ)). ¤



Step B: Proof of (V G(Ψ−)) + (RU(Ψ)) + (RL(Ψ)) ⇒ (E(Ψ)).

Lemma 5.4 Assume (V G(Ψ−)), (RU(Ψ)) and (RL(Ψ)). Then,

c1Ψ(r)

V (x, r)
≤ R(x,B(x, r)c) ≤ c2Ψ(r)

V (x, r)
∀r > 0, ∀x ∈ X. (5.9)

Proof. First, take y, z ∈ B(x, r) with d(y, z) = λr, λ ≤ 1. By (5.2) and (RU(Ψ)),

|f(y) − f(z)|2 ≤ R(y, z)E(f, f ) ≤ c2Ψ(λr)E(f, f )

V (x, λr)
, ∀f ∈ F . (5.10)

Let z ∈ X be s.t. c∗r ≤ d(x, z) ≤ r for ∃c∗ < 1.

If hz harm. fu. on X \ {x, z} with hz(z) = 0, hz(x) = 1 then E(hz, hz) = R(x, z)−1.

Applying (5.6), (5.10) and (RL(Ψ)), we have, if d(y, z) = λr,

|hz(y)|2 = |hz(y) − hz(z)|2 ≤ c2Ψ(λr)

V (x, λr)R(x, z)
≤ c3Ψ(λr)V (x, c∗r)

V (x, λr)Ψ(c∗r)
.

So ∃λ1 s.t. d(y, z) ≤ λ1r implies that hz(y) ≤ 1
2.
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Now use (VD) to cover B(x, r) \ B(x, c∗r) by balls B(zi, λ1r), 1 ≤ i ≤ M , with

c∗r ≤ d(x, zi) ≤ r. (M dep. only on the volume doubling constant.)

Let g := min hzi
, h := 2(g − 1

2)
+ · 1B(x,r). Then h(x) = 1, h = 0 on B(x, c∗r)c, so that

R(x,B(x, r)c)−1 ≤ E(h, h) ≤ 4
∑

i

E(hzi
, hzi

) ≤ 4M(min
i

R(x, zi))
−1

≤ c4V (x, c∗r)

Ψ(c∗r)
≤ c5V (x, r)

Ψ(r)
⇒ 1st ineq. of (5.9).

The 2nd ineq. of (5.9) is clear: (RU(Ψ))+ [R(x,B(x, r)c) ≤ R(x, y),∀y ∈ ∂B(x, r)]. ¤



Proof of (E(Ψ)). B := B(x0, r), (EB,FB): part of the Dirichlet form

FB ⊂ {f ∈ F : f(x) = 0 on x ∈ Bc}. By (5.2) and (RU(Ψ)), we have

sup
x∈B

|f(x)|2 ≤ c1Ψ(r)

V (x, r)
E(f, f), ∀ f ∈ FB. (5.11)

(5.11)+ the Riesz theorem ⇒ ∃gB(·, ·) Green kernel s.t. E(gB(x, ·), f ) = f(x), ∀f ∈ FB.

gB(x, y) = gB(y, x) and gB(x, x) > 0 ∀x, y ∈ B.

px(y) := gB(x, y)/gB(x, x). Then px is an equilibrium potential for R(x,Bc), so

R(x,Bc)−1 = E(px, px) = gB(x, x)−1. (5.12)

Since px(y) ≤ 1 ∀y ∈ X, gB(x, y) ≤ gB(x, x) ∀x, y ∈ X. (5.13)

On the other hand, R(x,Bc) ≤ R(x, y) ∀y ∈ Bc, so gB(x, x) ≤ c1Ψ(r)/V (x, r).

Since Ex0[τB(x0,r)] =
∫

B gB(x0, y)dµ(y), we have, using (5.13),

Ex0[τB(x0,r)] ≤
c1Ψ(r)

V (x0, r)
V (x0, r) ≤ c1Ψ(r) ⇒ 2nd ineq. of E(Ψ).



Next, by (5.2) and the reproducing property of gB,

|gB(x0, x0) − gB(x0, y)|2 ≤ E(gB, gB)R(x0, y) = gB(x0, x0)R(x0, y), ∀y ∈ B.

Thus, by (5.12), |1 − px0(y)|2 ≤ R(x0,y)
R(x0,Bc). Now using Lemma 5.4, ∃δ > 0 s.t.

px0(y) =
gB(x0, y)

gB(x0, x0)
≥ 1/2, ∀y ∈ B(x0, δr). (5.15)

By (5.12) and Lemma 5.4, gB(x0, x0) = R(x0, B
c) ≥ c2Ψ(r)/V (x0, r).

Combining this with (5.15), gB(x0, y) ≥ c3Ψ(r)
V (x0,r)

, ∀y ∈ B(x0, δr). So,

Ex0[τB(x0,r)] =

∫
B

gB(x0, y)dµ(y) ≥ c3Ψ(r)

V (x0, r)
V (x0, δr) ≥ c4Ψ(r),

where c4 > 0 depends on δ. We thus obtain the 1st ineq. of (E(Ψ)). ¤

Remark. (5.15) implies immediately (5.5). This implies (EHI) by Lemma 1.6 in [6].

Thus, (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ)) is proved by Prop 4.1 and Prop 4.3 (Step A

above was not needed). But we do not choose this way.



Step C: Proof of (V D) + (DUHK(Ψ)) + (E(Ψ)) ⇒ (UHK(Ψ)).

This step is the same as Step 1 and Step 2 in the proof of Prop 4.1.

Step D: Proof of (V D) + (ELD(Ψ)) ⇒ (DLHK(Ψ)).

This step is the same as Step 3 in the proof of Prop 4.1.

Step E: Proof of (V G(Ψ−)) + (RU(Ψ)) + (DLHK(Ψ)) ⇒ (NLHK(Ψ)).

First, (RU(Ψ)) ⇒ (DUHK(Ψ)) as in Step A. Since pt(x, x) = ∥pt/2(·, x)∥2
2, we have

∂tpt(x, x) = 2(∆pt/2(·, x), pt/2(·, x)) = −2E(pt/2(·, x), pt/2(·, x)).

Thus, using (5.2) and Prop 9.9 (time derivative), we have

|pt(x, y) − pt(x, y′)|2 ≤ R(y, y′)E(pt(·, x), pt(·, x)) ≤ Ψ(d(y, y′))
V (y, d(y, y′))

· c1

tV (x, Ψ−1(t))
.



Using this and (DLHK(Ψ)),

pt(x, y) ≥ pt(x, x) − |pt(x, x) − pt(x, y)|
≥ c2

V (x, Ψ−1(t))
−

{
Ψ(d(x, y))

V (x, d(x, y))
· c1

tV (x, Ψ−1(t))

}1/2

=
c2

V (x, Ψ−1(t))1/2

(
1

V (x, Ψ−1(t))1/2
− c3

(
Ψ(d(x, y))

tV (x, d(x, y))

)1/2
)

.

Taking c4 large, we have 1
2V (x,Ψ−1(t))1/2

≥ c3

(
Ψ(d(x,y))

tV (x,d(x,y))

)1/2

if Ψ(d(x, y)) ≤ c4t holds.

Here we used (5.6). We thus obtain the result. ¤

Step F: Proof of (NLHK(Ψ)) ⇒ (LHK(Ψ)).

This step is the same as Step 5 in the proof of Prop 4.1.

Combining Step A–F, the proof of (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ)) is completed.



8.2 Equivalence to (UHK(β))

In [36], A. Grigor’yan proved various equivalence conditions for (UHK(β)) under (VD).

• Faber-Krahn ineq (FK(β)): ∃ν > 0 s.t. ∀Br ⊂ X and ∀ non-empty open Ω ⊂ Br,

λmin(Ω) := inf
f∈F (Ω)\{0}

E(f, f)

∥f∥2
2

≥ c

rβ
(
µ(Br)

µ(Ω)
)ν,

where F(Ω) := {f ∈ F : f = 0 in X \ Ω}.

Theorem 8.2 ([36], Theorem 12.1) Assume (VD). Then.

(UHK(β)) ⇔ (DUHK(β)) + (E(β)) ⇔ (FK(β)) + (E(β)).

Cf. β = 2 case for Riemannian manifolds ([38] Proposition 5.2)

(UHK(2) ⇔ (DUHK(2)) ⇔ (FK(2)).



9.4 Time derivative

First, we show the following well-known fact in the semigroup theory.

Lemma 9.7 For any f ∈ L2, let ut := Ptf . Then,

∥∂tut∥2 ≤ 1

t − s
∥us∥2, 0 < ∀s < t.

Proof. Let {Eλ}λ≥0 be spectral resolution of the operator −∆. Then

ut = et∆f =

∫ ∞

0

e−tλdEλf, ∥ut∥2
2 =

∫ ∞

0

e−2tλd∥Eλf∥2.

Thus,

∂tut =

∫ ∞

0

(−λ)e−tλdEλf, ∥∂tut∥2
2 =

∫ ∞

0

λ2e−2(t−s)λe−2sλd∥Eλf∥2.

Since λe−(t−s)λ ≤ (t − s)−1, we obtain

∥∂tut∥2
2 ≤

1

(t − s)2

∫ ∞

0

e−2sλd∥Eλf∥2 =
1

(t − s)2
∥us∥2

2. ¤



Corollary 9.8 For t > 0 and z ∈ X, t 7→ pt(·, z) is Frechet differentiable in L2 and

∥∂tpt(·, z)∥2 ≤ 1

t − s

√
p2s(z, z), 0 < ∀s < t.

Proof. Let f = pε(·, z) for ∃ε > 0. Then, ut = Ptf = pt+ε(·, z). By Lemma 9.7,

∥∂tpt+ε(·, z)∥2 ≤ 1

t − s
∥ps+ε(·, z)∥2 =

1

t − s

√
p2(s+ε)(z, z).

Replacing t + ε, s + ε by t, s respectively, we obtain the result. ¤

Proposition 9.9 For any x, y ∈ X, t 7→ pt(x, y) is differentiable in t > 0 and

|∂t

∂t
pt(x, y)| ≤ 2

t

√
pt/2(x, x)pt/2(y, y).

Proof. By the Chapman-Kolmogorov eq., pt(x, y) = (pt−s(·, x), ps(·, y)), ∀s ∈ (0, t),

so ∂tpt(x, y) = (∂tpt−s(·, x), ps(·, y)). Applying Corollary 9.8,

|∂t

∂t
pt(x, y)| ≤ ∥∂tpt−s(·, x)∥2∥ps(·, y)∥2 ≤ 1

t − s − r

√
p2r(x, x)p2s(y, y),

0 < ∀r < t − s. Taking s = r = t/4, we obtain the result. ¤



7 Some open problems

• Simpler stable equivalence conditions for (PHI(Ψ)): It is not easy to check (CS(Ψ)) in

examples. Quite recently, Barlow-Bass proved (PHI(β)) ⇔ (VD) + (PI(β)) + (E(β))

for weighted graphs. Conjecture: (PHI(β)) ⇔ (VD) + (PI(β)) + (RES(β)).

• Stability of (EHI): Is (EHI) stable under rough isometries?

• Stability of (UHK(Ψ)): Is (UHK(Ψ)) stable under rough isometries?

Related conjecture by Grigor’yan: (UHK(β)) ⇔ (FK(β)) + (Anti FK(β)), which

guarantees the optimality of (FK(β)) for balls.

• RW on IIC on Zd: HK estimates for RW on infinite incipient clusters on Zd?

d = 2 and d large enough, RW on such IIC is in the framework of resistance forms.

So we have reasonable analytic estimates. Probabilistic estimates??


