6 Application: RW on critical branching processes

RW on the percolation cluster on Z* (d > 2)

Supercritical

De Masi, Ferrari, Goldstein and Wick (1989 [33]): Inv. principle for the annealed case
Sidoravicius and A.-S. Sznitman (2004 [74]): Inv. principle for the quenched case
Mathieu and Remy (2004): Isoperimetric ineq. and heat kernel decay

Barlow (2004 [5]): Detailed Gaussian heat kernel estimates

Critical Unknown!!

Kesten (1986 [55]): d = 2 ‘subdiffusive behaviour’

cf. d = 2: Smirnov, Lawler, Schramn and Werner

= Shape of the cont. limit etc. (Very Active)



6.2 The model and main results

G: random tree. We could regard this in two ways.
e (Critical percolation on the ng-ary tree B, condi. the cluster containing 0 being infinite
e Critical branching process with Bin(ng, 1/ng) offspring distrib., condi. on non-extinction.
B: ng-ary tree,  0: the root, E(B): edge set.
B,,: the set of nj points in the nth generation, B, = U B;.

Ne, € € E(B), be i.i.d. Bernoulli 1/ng r.v. (5. =1 < e is open.)
C(0) := {x € B : there exists an n—open path from 0 to =}

Clearly, Z, = |C(0) N B,,| is a critical GW process with Bin(ng, 1/ng) offspring distri.

As Z has extinction probability 1, the cluster C(0) is P—a.s. finite.



Incipient infinite cluster (IIC) on B. Two constructions.

Lemma 6.1 (|55], Lemma 1.14) Let A C B<y. Then

lim P(C(0) N By, = A|Z, # 0) = |[ANB|P(C(0) N By, = A) = Py(A).

n—aoo

J1P: extenston of Py to a prob. on the set of co-con. subsets of B containing 0.

G’ rooted labeled tree with the distri. P = IIC on B. 31 H backbone of G'.

(Another construction) {&; };>1: i.1.d., unif. distri. on {1,2,---,ng}, indep. of (n.).
Forn > 01let =, = (0,&,...,&,), and let
{ 1 ife={=,,=,.1} for somen >0,

Ne == .
n. otherwise,

G ={x € B : there exists a n—open path from 0 to z},

g has law IP. H ={=,,n > 0}: backbone of G



Let  Pu() =P(|z € G), Puy() =P(|z,y € 9),
Pryo() = P(|z,y € G, H =b).
For each fixed G = G(w), {Y;}: cont. time S.R.W. on G,
P*: law of {Y;} starting at = € G(w)

T. J
E7: 1ts average

¢ (x,y) =P (Y = y)/ 1y

Kesten (1986 [55]): P-distri. of n=1/3d(0,Y,) converges.



Theorem 6.2 (a) Jcy, c1, c2, S(x) s.t. P.(S(x) > m) < co(logm)™t, Vz and

et 3 (loglogt) V7 < ¢(z, ) < et~ 3 (loglogt)? Vit > S(z),x € G(w).

(b) dy(G) = —21imy_ o LI — 4/3 Pg 5.

logt
(c) cit™2® < E,[q(z,2)] < cat ™23,

q:(x, x) does have oscillations of order (loglogt)® as t — oo.

Proposition 6.3 lim inf, . (loglog t)'/t*/3¢5,(0,0) < 2, PY— a.s.

w

Theorem 6.4 (a) c;t'? < E,E%d(z,Y;) < E,E%supg,; d(z,Ys) < cott/3.
(b) 3T (x) with P,(T(z) < 00) =1 s.t.

cstt3(loglogt) 2 < E*[d(x,Y;)] < catt3logt ¥t > T(x).



Quenched off-diagonal bounds for ¢ (z, y).

Theorem 6.5 (1) Let z,y € G, t > 0 be s.t. N :=[\/d(z,y)3/t] > 8.
Then, 3F, = F.(x,y,t) with Py, s(Fu(x,y,t)) > 1 — ciexp(—caN), s.t

¢’ (z,y) < cstPexp(—eyN),  Vw € F,.

(2) Let x,y € G, m>1,k>1andlet T =d(x,y)’x/m>.
Then, 3G, = Gu(x,y,m, k) with Py, ,( Gu(x,y,m, k) holds ) > 1 — 1k~ !, s.t.

Gor(x,y) > T 2Beasleredm Yw € G,.
Annealed off-diagonal bounds for ¢¥’(x, y).

Theorem 6.6 Let x,y € B. Then

—2/3 d(z, y)3
t

W2 <R, ¢ (v, y) < et exp (— e

cat ™" exp(—cs(

where the lower bound is for csd(x,y) < t.



Rescaled height process: Z(n) = n Y3d(0,Y,), t>0.

{ZY are tight w.r.t. the annealed law P* =P x PY. (Theorem 6.4 (a) or Kesten [55])

However, the large scale fluctuations in G mean that we do not have quenched tightness.

~

Theorem 6.7 P-a.s., the processes (Z(”), n > 1) are not tight with respect to PY.

6.3 Ideas of the proof
Proof: analytic and probabilistic parts. Note: We cannot expect (VD)!!

Definition 6.8 Let x € G, r > 1. Let M(z,r) be the smallest number m s.t. A =
{z1,...,zm} with d(zx,z;) € [r/4,3r/4], for each i, so that any path v from x to

B(x,7)¢ must pass through the set A.



Analytic estimates B := B(xg,r), M := M(xq,7), V := V(xg,7).

Proposition 6.9 (a) (G, u): weighted graph. Suppose that piy,, > 1 Vx ~y. Then

2
rV (z,r)\L < y EG, > ().
@20V (z, )(az T) V) T r

(b) G: tree. Let Vi = Vi(xg, 1) = V(xg,7/(32M (x0,7))). Then if x € B(xg,r/(32M)),

|74 t
<t < (U=gnm) T o
and
c1Vi(xo, T>2 rVi(zo, 7)
> t < ‘
th(ZU, le) — V(l’o’ 7")3M<[L'07 T’)Q fO[r o 64M($0, T)

PROOF. (a): similarly to Step A in subsection 5.2.
(b): similar argument as in Step B in subsection 5.2 (using the tree property and M (x, )
instead of (VD)) gives the estimate of Ef[7p(,,)]. Then the argument in Step 3 in the

proof of Proposition 4.1 gives the desired result.



Probabilistic estimates On-diagonal estimates: Need information of V' (z, r) and M (z, r)!

The probability that V(x,r) and M (z,r) behave badly is ‘small’.
Proposition 6.10 (a) Let A\ >0, r > 1, x,y € B, and b be a backbone. Then
P, 5(V(x,r) > Ar?) < coexp(—ci),

P,.,5(V(z,r) < Ar?) < cyexp(—cs/VA).

(b) For any € > 0

1- q v<07 n)
m
e n?(loglogn)t=¢

(c) Letr > 1, z,y € B, and b be a backbone. Then

=00, P—a.s.

Prys(M(z,7) >m) < cie” ™.

These can be obtained, basically through large deviation estimates of the total popula-

tion size of the critical branching process.



Idea of the proot of Proposition 6.10:

For simplicity, let z € H, d(0,x) > r.

|B(xz,r)| < V(x,r) <2|B(x,r)|, so consider |B(x,r)|.
(X} Xo=1, X, 9 Bin(ng — 1,1/ng), from the 2nd generation, Bin(ng, 1/nyg).
Y, :=>7_ Xi. Then,

) (d) Q) )
Yoplr/2] < [B(z,r)| < Yi[r]+Y][r].

~~
~—

(Here, for r.v. &, &[n] 9 S &, where {&} 1i.d. with & 9 £.)

Now let Y, := >/, X total population size up to generation n. Then,

P(Y,[n] > An?) < cexp(—cA), P(Yy[n] < An?) < cexp(—c'/V).

~

Similar estimates hold for Y,[n]. = (a) holds.



We now define a ‘good’ random set.
Definition 6.11 Let x € B, r > 1, A > 64. B(x,r) is A—good if

r€G, A< V(e,r) <P\, M(z,r) < =\

1
64

V(z,r/A) > X", and V(x,r/X*) > r*X70
By Proposition 6.10, we have the following.

Corollary 6.12 For x € B and any possible backbone b

P, (B(z,r) is not A-good) < cie” .

By Prop 6.9, if B(x,r) is A-good, then

7”3 7“3

72BN < gopla, ) < 72PN, G <Vt <

=l



Idea of the proof of Theorem 6.2. (a) Take A, = e+ (2/cy)logn, 1, : 13 /X0 = ¢,

and let F,, .= {B(x,r,) is A,-good}. By Cor 6.12, P(F¢) < ¢/n*.

N :=min{m : F¢ occurs In > m}. Then P(N >m) <> * P(F) < ¢/m.

Let S(x) :=eV. By (++),

TN AT <oy, ) < BTN, Wn > log S(z) +1, €' <t < \pe™.

Take n = n(t) s.t. logt € [n(t) — 1,n(t)).
Then () holds for t > S(x) with A, ~ (2/¢2)loglogt. = Thm 6.2 (a).
(b)) Ny =mn, 1, 113/ =t F), as above. N(w) :=min{n:w € F,}.

By Cor 6.12, P(N > n) = P(F¢) < e~ Thus, using (++),

E.[q(z, )] < et 2PE,N? < 1723,

Lower bound is easy by (++) and Cor 6.12.

To get off-diagonal estimates, we need to take more refined ‘good’ random sets.



7 Some open problems

e Simpler stable equivalence conditions for (PHI(W)): It is not easy to check (CS(W)) in

examples. Quite recently, Barlow-Bass proved (PHI(3)) < (VD) + (PI(3)) + (E(G))
for weighted graphs. Conjecture: (PHI(3)) < (VD) + (PI(3)) + (RES(3)).

e Stability of (EHI): Is (EHI) stable under rough isometries?

e Stability of (UHK (V)): Is (UHK(W)) stable under rough isometries?

Related conjecture by Grigor'yan: (UHK(3)) < (FK(3)) + (Anti FK(3)), which

guarantees the optimality of (F'K((3)) for balls.

e RW on IIC on Z% HK estimates for RW on infinite incipient clusters on Z%?
d = 2 and d large enough, RW on such IIC is in the framework of resistance forms.

So we have reasonable analytic estimates. Probabilistic estimates??



