6 Application: RW on critical branching processes

RW on the percolation cluster on \mathbb{Z}^d $(d \ge 2)$

Supercritical

De Masi, Ferrari, Goldstein and Wick (1989 [33]): Inv. principle for the annealed case Sidoravicius and A.-S. Sznitman (2004 [74]): Inv. principle for the quenched case Mathieu and Remy (2004): Isoperimetric ineq. and heat kernel decay Barlow (2004 [5]): Detailed Gaussian heat kernel estimates <u>Critical</u> Unknown!!

Kesten (1986 [55]): d = 2 'subdiffusive behaviour'

cf. d = 2: Smirnov, Lawler, Schramn and Werner

 \Rightarrow Shape of the cont. limit etc. (Very Active)

6.2 The model and main results

 \mathcal{G} : random tree. We could regard this in two ways.

- Critical percolation on the n_0 -ary tree \mathbb{B} , condi. the cluster containing 0 being infinite
- Critical branching process with $Bin(n_0, 1/n_0)$ offspring distrib., condi. on non-extinction.

 \mathbb{B} : n_0 -ary tree, 0: the root, $E(\mathbb{B})$: edge set.

 \mathbb{B}_n : the set of n_0^n points in the *n*th generation, $\mathbb{B}_{\leq n} = \bigcup_{i=0}^n \mathbb{B}_i$.

 $\eta_e, e \in E(\mathbb{B})$, be i.i.d. Bernoulli $1/n_0$ r.v. $(\eta_e = 1 \Leftrightarrow e \text{ is open.})$

 $\mathcal{C}(0) := \{ x \in \mathbb{B} : \text{ there exists an } \eta \text{-open path from 0 to } x \}$

Clearly, $Z_n = |\mathcal{C}(0) \cap \mathbb{B}_n|$ is a critical GW process with $Bin(n_0, 1/n_0)$ offspring distri. As Z has extinction probability 1, the cluster $\mathcal{C}(0)$ is P-a.s. finite. Incipient infinite cluster (IIC) on \mathbb{B} . Two constructions.

Lemma 6.1 ([55], Lemma 1.14) Let $A \subset \mathbb{B}_{\leq k}$. Then

 $\lim_{n \to \infty} P(\mathcal{C}(0) \cap \mathbb{B}_{\leq k} = A | Z_n \neq 0) = |A \cap \mathbb{B}_k| P(\mathcal{C}(0) \cap \mathbb{B}_{\leq k} = A) =: \mathbb{P}_0(A).$

 $\exists 1 \mathbb{P}$: extension of \mathbb{P}_0 to a prob. on the set of ∞ -con. subsets of \mathbb{B} containing 0.

 \mathcal{G}' : rooted labeled tree with the distri. $\mathbb{P} \Rightarrow \text{IIC on } \mathbb{B}$. $\exists 1H$ backbone of \mathcal{G}' .

(Another construction) $\{\xi_i\}_{i\geq 1}$: i.i.d., unif. distri. on $\{1, 2, \dots, n_0\}$, indep. of (η_e) .

For
$$n \ge 0$$
 let $\Xi_n = (0, \xi_1, \dots, \xi_n)$, and let
 $\widetilde{\eta}_e := \begin{cases} 1 & \text{if } e = \{\Xi_n, \Xi_{n+1}\} \text{ for some } n \ge 0, \\ \eta_e & \text{otherwise,} \end{cases}$
 $\mathcal{G} := \{x \in \mathbb{B} : \text{ there exists a } \widetilde{\eta}\text{-open path from 0 to } x\},$

 \mathcal{G} has law \mathbb{P} . $H = \{\Xi_n, n \ge 0\}$: backbone of \mathcal{G}

Let
$$\mathbb{P}_x(\cdot) = \mathbb{P}(\cdot | x \in \mathcal{G}), \quad \mathbb{P}_{xy}(\cdot) = \mathbb{P}(\cdot | x, y \in \mathcal{G}),$$

 $\mathbb{P}_{x,y,b}(\cdot) = \mathbb{P}(\cdot | x, y \in \mathcal{G}, H = b).$

For each fixed $\mathcal{G} = \mathcal{G}(\omega)$, $\{Y_t\}$: cont. time S.R.W. on \mathcal{G} ,

$$P^x_{\omega}$$
: law of $\{Y_t\}$ starting at $x \in \mathcal{G}(\omega)$
 E^x_{ω} : its average
 $q^{\omega}_t(x,y) := \mathbb{P}^x(Y_t = y)/\mu_y.$

Kesten (1986 [55]): \mathbb{P} -distri. of $n^{-1/3}d(0, Y_n)$ converges.

Theorem 6.2 (a) $\exists c_0, c_1, c_2, S(x) \ s.t. \ \mathbb{P}_x(S(x) \ge m) \le c_0(\log m)^{-1}, \ \forall x \ and$

 $c_1 t^{-2/3} (\log \log t)^{-17} \le q_t^{\omega}(x, x) \le c_2 t^{-2/3} (\log \log t)^3 \qquad \forall t \ge S(x), x \in \mathcal{G}(\omega).$

(b) $d_s(\mathcal{G}) := -2 \lim_{t \to \infty} \frac{\log q_t^{\omega}(x,x)}{\log t} = 4/3 \ \mathbb{P} - a.s.$ (c) $c_1 t^{-2/3} \le \mathbb{E}_x[q_t^{\cdot}(x,x)] \le c_2 t^{-2/3}.$

 $q_t(x, x)$ does have oscillations of order $(\log \log t)^a$ as $t \to \infty$.

Proposition 6.3 $\liminf_{t\to\infty} (\log \log t)^{1/6} t^{2/3} q_{2t}^{\omega}(0,0) \le 2, \qquad P_{\omega}^0 - a.s.$

Theorem 6.4 (a) $c_1 t^{1/3} \leq \mathbb{E}_x E_\omega^x d(x, Y_t) \leq \mathbb{E}_x E_\omega^x \sup_{0 \leq s \leq t} d(x, Y_s) \leq c_2 t^{1/3}.$ (b) $\exists T(x)$ with $\mathbb{P}_x(T(x) < \infty) = 1$ s.t.

 $c_3 t^{1/3} (\log \log t)^{-12} \le E_{\omega}^x [d(x, Y_t)] \le c_4 t^{1/3} \log t \quad \forall t \ge T(x).$

Quenched off-diagonal bounds for $q_t^{\omega}(x, y)$.

 $\begin{aligned} \text{Theorem 6.5 (1) Let } x, y \in \mathcal{G}, \ t > 0 \ be \ s.t. \ N &:= \left[\sqrt{d(x,y)^3/t}\right] \ge 8. \\ Then, \ \exists F_* = F_*(x,y,t) \ with \ \mathbb{P}_{x_0,y_0,b}(F_*(x,y,t)) \ge 1 - c_1 \exp(-c_2 N), \ s.t. \\ q_t^{\omega}(x,y) \le c_3 t^{-2/3} \exp(-c_4 N), \qquad \forall \omega \in F_*. \end{aligned}$ $(2) \ Let \ x,y \in \mathcal{G}, \ m \ge 1, \ \kappa \ge 1 \ and \ let \ T = d(x,y)^3 \kappa/m^2. \\ Then, \ \exists G_* = G_*(x,y,m,\kappa) \ with \ \mathbb{P}_{x,y,b}(\ G_*(x,y,m,\kappa) \ holds \) \ge 1 - c_1 \kappa^{-1}, \ s.t. \\ q_{2T}(x,y) \ge c_2 T^{-2/3} e^{-c_3(\kappa+c_4)m}, \qquad \forall \omega \in G_*. \end{aligned}$

Annealed off-diagonal bounds for $q_t^{\omega}(x, y)$.

Theorem 6.6 Let $x, y \in \mathbb{B}$. Then $c_4 t^{-2/3} \exp(-c_5(\frac{d(x,y)^3}{t})^{1/2}) \le \mathbb{E}_{x,y} q_t^{\omega}(x,y) \le c_1 t^{-2/3} \exp(-c_2(\frac{d(x,y)^3}{t})^{1/2}),$

where the lower bound is for $c_3d(x, y) \leq t$.

Rescaled height process: $\widetilde{Z}_t^{(n)} = n^{-1/3} d(0, Y_{nt}), \quad t \ge 0.$

 $\{Z^{(n)}\}\$ are tight w.r.t. the annealed law $\mathbb{P}^* = \mathbb{P} \times P^0_{\omega}$. (Theorem 6.4 (a) or Kesten [55]) However, the large scale fluctuations in \mathcal{G} mean that we do not have quenched tightness. **Theorem 6.7** \mathbb{P} -a.s., the processes $(\widetilde{Z}^{(n)}, n \ge 1)$ are not tight with respect to P^0_{ω} .

6.3 Ideas of the proof

Proof: analytic and probabilistic parts. Note: We cannot expect (VD)!!

Definition 6.8 Let $x \in \mathcal{G}$, $r \geq 1$. Let M(x,r) be the smallest number m s.t. $\exists A = \{z_1, \ldots, z_m\}$ with $d(x, z_i) \in [r/4, 3r/4]$, for each i, so that any path γ from x to $B(x, r)^c$ must pass through the set A.

Analytic estimates $B := B(x_0, r), M := M(x_0, r), V := V(x_0, r).$

Proposition 6.9 (a) (G, μ) : weighted graph. Suppose that $\mu_{xy} \ge 1 \ \forall x \sim y$. Then

$$q_{2rV(x,r)}(x,x) \le \frac{2}{V(x,r)}, \quad x \in G, \ r > 0.$$

(b) G: tree. Let $V_1 = V_1(x_0, r) = V(x_0, r/(32M(x_0, r)))$. Then if $x \in B(x_0, r/(32M))$,

$$P^{x}(\tau_{B} \le t) \le (1 - \frac{V_{1}}{64MV}) + \frac{t}{2rV}$$

and

$$q_{2t}(x,x) \ge \frac{c_1 V_1(x_0,r)^2}{V(x_0,r)^3 M(x_0,r)^2} \quad \text{for } t \le \frac{r V_1(x_0,r)}{64M(x_0,r)}.$$

PROOF. (a): similarly to Step A in subsection 5.2.

(b): similar argument as in Step B in subsection 5.2 (using the tree property and M(x, r) instead of (VD)) gives the estimate of $E^x_{\omega}[\tau_{B(x,r)}]$. Then the argument in Step 3 in the proof of Proposition 4.1 gives the desired result.

<u>Probabilistic estimates</u> On-diagonal estimates: Need information of V(x, r) and M(x, r)! The probability that V(x, r) and M(x, r) behave badly is 'small'.

Proposition 6.10 (a) Let $\lambda > 0$, $r \ge 1$, $x, y \in \mathbb{B}$, and b be a backbone. Then

$$\mathbb{P}_{x,y,b}(V(x,r) > \lambda r^2) \le c_0 \exp(-c_1 \lambda),$$
$$\mathbb{P}_{x,y,b}(V(x,r) < \lambda r^2) \le c_2 \exp(-c_3/\sqrt{\lambda}).$$

(b) For any $\varepsilon > 0$ $\limsup_{n \to \infty} \frac{V(0, n)}{n^2 (\log \log n)^{1-\varepsilon}} = \infty, \quad \mathbb{P} - a.s.$ (c) Let $r \ge 1, x, y \in \mathbb{B}$, and b be a backbone. Then

$$\mathbb{P}_{x,y,b}(M(x,r) \ge m) \le c_4 e^{-c_5 m}.$$

These can be obtained, basically through large deviation estimates of the total population size of the critical branching process. Idea of the proof of Proposition 6.10:

For simplicity, let $x \in H$, d(0, x) > r.

 $\begin{aligned} |B(x,r)| &\leq V(x,r) \leq 2|B(x,r)|, \text{ so consider } |B(x,r)|.\\ \{\tilde{X}_n\}: \tilde{X}_0 &= 1, \tilde{X}_1 \stackrel{(d)}{=} Bin(n_0 - 1, 1/n_0), \text{ from the 2nd generation}, Bin(n_0, 1/n_0).\\ \tilde{Y}_n &:= \sum_{k=0}^n \tilde{X}_k. \text{ Then}, \end{aligned}$

$$\tilde{Y}_{r/2}[r/2] \stackrel{(d)}{\leq} |B(x,r)| \stackrel{(d)}{\leq} \tilde{Y}_r[r] + \tilde{Y}_r'[r].$$

(Here, for r.v. ξ , $\xi[n] := \sum_{i=1}^{n} \xi_i$, where $\{\xi_i\}$ i.i.d. with $\xi_i \stackrel{(d)}{=} \xi_i$)

Now let $Y_n := \sum_{k=0}^n X_k$: total population size up to generation n. Then,

 $P(Y_n[n] \ge \lambda n^2) \le c \exp(-c'\lambda), \quad P(Y_n[n] \le \lambda n^2) \le c \exp(-c'/\sqrt{\lambda}).$

Similar estimates hold for $\tilde{Y}_n[n]$. \Rightarrow (a) holds.

We now define a 'good' random set.

Definition 6.11 Let $x \in \mathbb{B}$, $r \ge 1$, $\lambda \ge 64$. B(x,r) is λ -good if $x \in \mathcal{G}$, $r^2 \lambda^{-2} \le V(x,r) \le r^2 \lambda$, $M(x,r) \le \frac{1}{64} \lambda$, $V(x,r/\lambda) \ge r^2 \lambda^{-4}$, and $V(x,r/\lambda^2) \ge r^2 \lambda^{-6}$.

By Proposition 6.10, we have the following.

Corollary 6.12 For $x \in \mathbb{B}$ and any possible backbone b

$$\mathbb{P}_{x,b}(B(x,r) \text{ is not } \lambda - good) \leq c_1 e^{-c_2 \lambda}.$$

By Prop 6.9, if B(x, r) is λ -good, then

$$c_1't^{-2/3}\lambda^{-17} \le q_{2t}(x,x) \le c_2't^{-2/3}\lambda^3, \quad \frac{r^3}{\lambda^6} \le \forall t \le \frac{r^3}{\lambda^5}.$$

(++`

Idea of the proof of Theorem 6.2. (a) Take $\lambda_n = e + (2/c_2) \log n$, $r_n : r_n^3 / \lambda_n^6 = e^n$, and let $F_n := \{B(x, r_n) \text{ is } \lambda_n \text{-good}\}.$ By Cor 6.12, $\mathbb{P}(F_n^c) < c/n^2$. $N := \min\{m : F_n^c \text{ occurs } \exists n \ge m\}$. Then $\mathbb{P}(N \ge m) \le \sum_{n=m}^{\infty} \mathbb{P}(F_n^c) \le c/m$. Let $S(x) := e^N$. By (++), $c'_{1}t^{-2/3}\lambda_{n}^{-17} < q_{2t}(x,x) \le c'_{2}t^{-2/3}\lambda_{n}^{3}, \quad \forall n \ge \log S(x) + 1, \ e^{n} \le t \le \lambda_{n}e^{n}.$ (*)Take n = n(t) s.t. $\log t \in [n(t) - 1, n(t)]$. Then (*) holds for $t \ge S(x)$ with $\lambda_{n(t)} \sim (2/c_2) \log \log t$. \Rightarrow Thm 6.2 (a). (b) $\lambda_n = n, r_n : r_n^3 / \lambda_n^6 = t$. F_n as above. $N(\omega) := \min\{n : \omega \in F_n\}.$ By Cor 6.12, $\mathbb{P}(N > n) = \mathbb{P}(F_n^c) \leq e^{-cn}$. Thus, using (++), $\mathbb{E}_{x}[q_{t}(x,x)] \leq ct^{-2/3}\mathbb{E}_{x}N^{3} \leq c't^{-2/3}.$

Lower bound is easy by (++) and Cor 6.12.

To get off-diagonal estimates, we need to take more refined 'good' random sets.

7 Some open problems

- Simpler stable equivalence conditions for $(PHI(\Psi))$: It is not easy to check $(CS(\Psi))$ in examples. Quite recently, Barlow-Bass proved $(PHI(\beta)) \Leftrightarrow (VD) + (PI(\beta)) + (E(\beta))$ for weighted graphs. Conjecture: $(PHI(\beta)) \Leftrightarrow (VD) + (PI(\beta)) + (RES(\beta))$.
- Stability of (EHI): Is (EHI) stable under rough isometries?
- <u>Stability of $(UHK(\Psi))$ </u>: Is $(UHK(\Psi))$ stable under rough isometries? Related conjecture by Grigor'yan: $(UHK(\beta)) \Leftrightarrow (FK(\beta)) + (Anti FK(\beta))$, which guarantees the optimality of $(FK(\beta))$ for balls.
- <u>RW on IIC on Z^d</u>: HK estimates for RW on infinite incipient clusters on Z^d?
 d = 2 and d large enough, RW on such IIC is in the framework of resistance forms.
 So we have reasonable analytic estimates. Probabilistic estimates??