
6 Application: RW on critical branching processes

RW on the percolation cluster on Zd (d ≥ 2)

Supercritical

De Masi, Ferrari, Goldstein and Wick (1989 [33]): Inv. principle for the annealed case

Sidoravicius and A.-S. Sznitman (2004 [74]): Inv. principle for the quenched case

Mathieu and Remy (2004): Isoperimetric ineq. and heat kernel decay

Barlow (2004 [5]): Detailed Gaussian heat kernel estimates

Critical Unknown!!

Kesten (1986 [55]): d = 2 ‘subdiffusive behaviour’

cf. d = 2: Smirnov, Lawler, Schramn and Werner

⇒ Shape of the cont. limit etc. (Very Active)



6.2 The model and main results

G: random tree. We could regard this in two ways.

• Critical percolation on the n0-ary tree B, condi. the cluster containing 0 being infinite

• Critical branching process with Bin(n0, 1/n0) offspring distrib., condi. on non-extinction.

B: n0-ary tree, 0: the root, E(B): edge set.

Bn: the set of nn
0 points in the nth generation, B≤n = ∪n

i=0Bi.

ηe, e ∈ E(B), be i.i.d. Bernoulli 1/n0 r.v. (ηe = 1 ⇔ e is open.)

C(0) := {x ∈ B : there exists an η–open path from 0 to x}

Clearly, Zn = |C(0) ∩ Bn| is a critical GW process with Bin(n0, 1/n0) offspring distri.

As Z has extinction probability 1, the cluster C(0) is P–a.s. finite.



Incipient infinite cluster (IIC) on B. Two constructions.

Lemma 6.1 ([55], Lemma 1.14) Let A ⊂ B≤k. Then

lim
n→1

P (C(0) ∩ B≤k = A|Zn 6= 0) = |A ∩ Bk|P (C(0) ∩ B≤k = A) =: P0(A).

∃1P: extension of P0 to a prob. on the set of 1-con. subsets of B containing 0.

G0: rooted labeled tree with the distri. P ⇒ IIC on B. ∃1H backbone of G0.

(Another construction) {ξi}i≥1: i.i.d., unif. distri. on {1, 2, · · · , n0}, indep. of (ηe).

For n ≥ 0 let •n = (0, ξ1, . . . , ξn), and let

eηe :=

(
1 if e = {•n, •n+1} for some n ≥ 0,

ηe otherwise,

G := {x ∈ B : there exists a eη–open path from 0 to x},

G has law P. H = {•n, n ≥ 0}: backbone of G



Let Px(·) = P(·|x ∈ G), Pxy(·) = P(·|x, y ∈ G),

Px,y,b(·) = P(·|x, y ∈ G, H = b).

For each fixed G = G(ω), {Yt}: cont. time S.R.W. on G,

Px
ω : law of {Yt} starting at x ∈ G(ω)

Ex
ω: its average

qω
t (x, y) := Px(Yt = y)/µy.

Kesten (1986 [55]): P-distri. of n−1/3d(0, Yn) converges.



Theorem 6.2 (a) ∃c0, c1, c2, S(x) s.t. Px(S(x) ≥ m) ≤ c0(log m)−1, ∀x and

c1t
−2/3(log log t)−17 ≤ qω

t (x, x) ≤ c2t
−2/3(log log t)3 ∀t ≥ S(x), x ∈ G(ω).

(b) ds(G) := −2 limt→1
log qω

t (x,x)
log t = 4/3 P–a.s.

(c) c1t−2/3 ≤ Ex[q·t(x, x)] ≤ c2t−2/3.

qt(x, x) does have oscillations of order (log log t)a as t →1.

Proposition 6.3 lim inft→1(log log t)1/6t2/3qω
2t(0, 0) ≤ 2, P 0

ω − a.s.

Theorem 6.4 (a) c1t1/3 ≤ ExEx
ωd(x, Yt) ≤ ExEx

ω sup0≤s≤t d(x, Ys) ≤ c2t1/3.

(b) ∃T (x) with Px(T (x) < 1) = 1 s.t.

c3t
1/3(log log t)−12 ≤ Ex

ω[d(x, Yt)] ≤ c4t
1/3 log t ∀t ≥ T (x).



Quenched off-diagonal bounds for qω
t (x, y).

Theorem 6.5 (1) Let x, y ∈ G, t > 0 be s.t. N := [
p

d(x, y)3/t] ≥ 8.

Then, ∃F∗ = F∗(x, y, t) with Px0,y0,b(F∗(x, y, t)) ≥ 1− c1 exp(−c2N), s.t.

qω
t (x, y) ≤ c3t

−2/3 exp(−c4N), ∀ω ∈ F∗.

(2) Let x, y ∈ G, m ≥ 1, ∑ ≥ 1 and let T = d(x, y)3∑/m2.

Then, ∃G∗ = G∗(x, y, m, ∑) with Px,y,b( G∗(x, y, m, ∑) holds ) ≥ 1− c1∑−1, s.t.

q2T (x, y) ≥ c2T
−2/3e−c3(∑+c4)m, ∀ω ∈ G∗.

Annealed off-diagonal bounds for qω
t (x, y).

Theorem 6.6 Let x, y ∈ B. Then

c4t
−2/3 exp(−c5(

d(x, y)3

t
)1/2) ≤ Ex,yq

ω
t (x, y) ≤ c1t

−2/3 exp (− c2(
d(x, y)3

t
)1/2),

where the lower bound is for c3d(x, y) ≤ t.



Rescaled height process: eZ(n)
t = n−1/3d(0, Ynt), t ≥ 0.

{Z(n)} are tight w.r.t. the annealed law P∗ = P× P 0
ω . (Theorem 6.4 (a) or Kesten [55])

However, the large scale fluctuations in G mean that we do not have quenched tightness.

Theorem 6.7 P-a.s., the processes ( eZ(n), n ≥ 1) are not tight with respect to P 0
ω.

6.3 Ideas of the proof

Proof: analytic and probabilistic parts. Note: We cannot expect (VD)!!

Definition 6.8 Let x ∈ G, r ≥ 1. Let M(x, r) be the smallest number m s.t. ∃A =

{z1, . . . , zm} with d(x, zi) ∈ [r/4, 3r/4], for each i, so that any path ∞ from x to

B(x, r)c must pass through the set A.



Analytic estimates B := B(x0, r), M := M(x0, r), V := V (x0, r).

Proposition 6.9 (a) (G, µ): weighted graph. Suppose that µxy ≥ 1 ∀x ∼ y. Then

q2rV (x,r)(x, x) ≤ 2

V (x, r)
, x ∈ G, r > 0.

(b) G: tree. Let V1 = V1(x0, r) = V (x0, r/(32M(x0, r))). Then if x ∈ B(x0, r/(32M)),

Px(τB ≤ t) ≤ (1− V1

64MV
) +

t

2rV
,

and

q2t(x, x) ≥ c1V1(x0, r)2

V (x0, r)3M(x0, r)2
for t ≤ rV1(x0, r)

64M(x0, r)
.

Proof. (a): similarly to Step A in subsection 5.2.

(b): similar argument as in Step B in subsection 5.2 (using the tree property and M(x, r)

instead of (VD)) gives the estimate of Ex
ω[τB(x,r)]. Then the argument in Step 3 in the

proof of Proposition 4.1 gives the desired result.



Probabilistic estimates On-diagonal estimates: Need information of V (x, r) and M(x, r)!

The probability that V (x, r) and M(x, r) behave badly is ‘small’.

Proposition 6.10 (a) Let ∏ > 0, r ≥ 1, x, y ∈ B, and b be a backbone. Then

Px,y,b(V (x, r) > ∏r2) ≤ c0 exp(−c1∏),

Px,y,b(V (x, r) < ∏r2) ≤ c2 exp(−c3/
√

∏).

(b) For any ε > 0

lim sup
n→1

V (0, n)

n2(log log n)1−ε
= 1, P− a.s.

(c) Let r ≥ 1, x, y ∈ B, and b be a backbone. Then

Px,y,b(M(x, r) ≥ m) ≤ c4e
−c5m.

These can be obtained, basically through large deviation estimates of the total popula-

tion size of the critical branching process.



Idea of the proof of Proposition 6.10:

For simplicity, let x ∈ H , d(0, x) > r.

|B(x, r)| ≤ V (x, r) ≤ 2|B(x, r)|, so consider |B(x, r)|.

{X̃n}: X̃0 = 1, X̃1
(d)
= Bin(n0 − 1, 1/n0), from the 2nd generation, Bin(n0, 1/n0).

Ỹn :=
Pn

k=0 X̃k. Then,

Ỹr/2[r/2]
(d)
≤ |B(x, r)|

(d)
≤ Ỹr[r] + Ỹ 0

r [r].

(Here, for r.v. ξ, ξ[n] :
(d)
=

Pn
i=1 ξi, where {ξi} i.i.d. with ξi

(d)
= ξ.)

Now let Yn :=
Pn

k=0 Xk: total population size up to generation n. Then,

P (Yn[n] ≥ ∏n2) ≤ c exp(−c0∏), P (Yn[n] ≤ ∏n2) ≤ c exp(−c0/
√

∏).

Similar estimates hold for Ỹn[n]. ⇒ (a) holds.



We now define a ‘good’ random set.

Definition 6.11 Let x ∈ B, r ≥ 1, ∏ ≥ 64. B(x, r) is ∏–good if

x ∈ G, r2∏−2 ≤ V (x, r) ≤ r2∏, M(x, r) ≤ 1

64
∏,

V (x, r/∏) ≥ r2∏−4, and V (x, r/∏2) ≥ r2∏−6.

By Proposition 6.10, we have the following.

Corollary 6.12 For x ∈ B and any possible backbone b

Px,b(B(x, r) is not ∏–good) ≤ c1e
−c2∏.

By Prop 6.9, if B(x, r) is ∏-good, then

c01t
−2/3∏−17 ≤ q2t(x, x) ≤ c02t

−2/3∏3,
r3

∏6
≤ ∀t ≤ r3

∏5
. (++)



Idea of the proof of Theorem 6.2. (a) Take ∏n = e + (2/c2) log n, rn : r3
n/∏

6
n = en,

and let Fn := {B(x, rn) is ∏n-good}. By Cor 6.12, P(Fc
n) ≤ c/n2.

N := min{m : Fc
n occurs ∃n ≥ m}. Then P(N ≥ m) ≤

P1
n=m P(Fc

n) ≤ c/m.

Let S(x) := eN . By (++),

c01t
−2/3∏−17

n ≤ q2t(x, x) ≤ c02t
−2/3∏3

n, ∀n ≥ log S(x) + 1, en ≤ t ≤ ∏ne
n. (∗)

Take n = n(t) s.t. log t ∈ [n(t)− 1, n(t)].

Then (∗) holds for t ≥ S(x) with ∏n(t) ∼ (2/c2) log log t. ⇒ Thm 6.2 (a).

(b) ∏n = n, rn : r3
n/∏

6
n = t. Fn as above. N(ω) := min{n : ω ∈ Fn}.

By Cor 6.12, P(N > n) = P(Fc
n) ≤ e−cn. Thus, using (++),

Ex[q
·
t(x, x)] ≤ ct−2/3ExN

3 ≤ c0t−2/3.

Lower bound is easy by (++) and Cor 6.12. §

To get off-diagonal estimates, we need to take more refined ‘good’ random sets.



7 Some open problems

• Simpler stable equivalence conditions for (PHI(™)): It is not easy to check (CS(™)) in

examples. Quite recently, Barlow-Bass proved (PHI(β)) ⇔ (VD) + (PI(β)) + (E(β))

for weighted graphs. Conjecture: (PHI(β)) ⇔ (VD) + (PI(β)) + (RES(β)).

• Stability of (EHI): Is (EHI) stable under rough isometries?

• Stability of (UHK(™)): Is (UHK(™)) stable under rough isometries?

Related conjecture by Grigor’yan: (UHK(β)) ⇔ (FK(β)) + (Anti FK(β)), which

guarantees the optimality of (FK(β)) for balls.

• RW on IIC on Zd: HK estimates for RW on infinite incipient clusters on Zd?

d = 2 and d large enough, RW on such IIC is in the framework of resistance forms.

So we have reasonable analytic estimates. Probabilistic estimates??


