

KYOTO UNIVERSITY GLOBAL COE PROGRAM 数学のトップリーダーの育成

GCOE連続講演会のお知らせ

Prof. Gordon Slade (University of British Columbia) A renormalisation group analysis of the 4-dimensional self-avoiding walk

下記の予定で連続講演を行います。皆様奮ってご参加下さい。 なお、G. Slade教授は2月から1ヶ月半ほど京都大学理学研究科に滞在されます。

タイトル:		A renormalisation group analysis of the 4-dimensional		
		self-avoiding w	valk	
講	師:	Gordon Slade 氏 (University of British Columbia)		
場	所:	京都大学理学部3号館(日にちによって部屋が異なりますので、ご注意ください。)		
日	時:	2月6日(金):	1:30-3:00	(3号館552号室)
		2月12日(木):	1:30-3:00	(3号館108号室)
		2月13日(金):	1:30-3:00	(3号館552号室)

Global COE Program Department of Mathematics Kyoto University

A renormalisation group analysis of the 4-dimensional self-avoiding walk

Gordon Slade, University of British Columbia

Self-avoiding walks on \mathbb{Z}^d are simple-random walk paths without self-interstections. Selfavoiding walks of the same length are declared to be equally likely. Basic questions are: (1) how many self-avoiding walks are there of length n (started from the origin), and (2) how far on average is their endpoint from the origin? The lace expansion has answered these questions in dimensions 5 and higher. For d = 2, SLE appears to hold the key to the answer, but so far no one has understood how to unlock the door. For d = 3, there are only numerical results.

In this mini-course, I will describe work in progress with David Brydges for the case d = 4. Our immediate goal is to prove that the critical two-point function (Green function) for a spread-out model of self-avoiding walks on \mathbb{Z}^d decays like $|x|^{-2}$ at large distances, as it does for simple random walk.

We begin with an exact representation (due to John Imbrie) of the two-point function for self-avoiding walks as the two-point function of a certain field theory involving both bosons and fermions. In the first part of the course, I will explain this representation. Given the representation, we forget about the walks, and perform a renormalisation group analysis of the field theory. In the second part of the course, I will describe some of the ingredients in the renormalisation group analysis.

I will not assume that the audience has prior knowledge of field theory or the renormalisation group, and these concepts will be developed as the course proceeds.