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Abstract

The main theme of these lectures is to analyze heat conduction on disordered media such as
fractals and percolation clusters using both probabilistic and analytic methods, and to study the
scaling limits of Markov chains on the media.

The problem of random walk on a percolation cluster ‘the ant in the labyrinth’ has received
much attention both in the physics and the mathematics literature. In 1986, H. Kesten showed an
anomalous behavior of a random walk on a percolation cluster at critical probability for trees and
for Z2. (To be precise, the critical percolation cluster is finite, so the random walk is considered on
an incipient infinite cluster (IIC), namely a critical percolation cluster conditioned to be infinite.)
Partly motivated by this work, analysis and di↵usion processes on fractals have been developed
since the late eighties. As a result, various new methods have been produced to estimate heat
kernels on disordered media, and these turn out to be useful to establish quenched estimates on
random media. Recently, it has been proved that random walks on IICs are sub-di↵usive on Zd

when d is high enough, on trees, and on the spread-out oriented percolation for d > 6.

Throughout the lectures, I will survey the above mentioned developments in a compact way.
In the first part of the lectures, I will summarize some classical and non-classical estimates for
heat kernels, and discuss stability of the estimates under perturbations of operators and spaces.
Here Nash inequalities and equivalent inequalities will play a central role. In the latter part of
the lectures, I will give various examples of disordered media and obtain heat kernel estimates for
Markov chains on them. In some models, I will also discuss scaling limits of the Markov chains.
Examples of disordered media include fractals, percolation clusters, random conductance models
and random graphs.

⇤Research partially supported by the Grant-in-Aid for Scientific Research (B) 22340017.
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0 Plan of the lectures and remark

A rough plan of lectures at St. Flour is as follows.

Lecture 1–3: In the first lecture, I will discuss general potential theory for symmetric Markov chains
on weighted graphs (Section 1). Then I will show various equivalent conditions for the heat kernel
upper bounds (the Nash inequality (Section 2)). In the third lecture, I will use e↵ective resistance
to estimate Green functions, exit times from balls etc.. On-diagonal heat kernel bounds are also
obtained using the e↵ective resistance (Section 3).

Lecture 4–61
2 : I will discuss random walk on an incipient infinite cluster (IIC) for a critical perco-

lation. I will give some su�cient condition for the sharp on-diagonal heat kernel bounds for random
walk on random graphs (Section 4). I then prove the Alexander-Orbach conjecture for IICs when
two-point functions behave nicely, especially for IICs of high dimensional critical bond percolations
on Zd (Section 5). I also discuss heat kernel bounds and scaling limits on related random models
(Section 6).

Lecture 61
2–8: The last 2 (and half) lectures will be devoted to the quenched invariance principle

for the random conductance model on Zd (Section 7). Put i.i.d. conductance µe on each bond in Zd

and consider the Markov chain associated with the (random) weighted graph. I consider two cases,
namely 0  µe  c P-a.e. and c  µe < 1 P-a.e.. Although the behavior of heat kernels are quite
di↵erent, for both cases the scaling limit is Brownian motion in general. I will discuss some technical
details about correctors of the Markov chains, which play a key role to prove the invariance principle.

This is the version for St. Flour Lectures. There are several ingredients (which I was planning
to include) missing in this version. Especially, I could not explain enough about techniques on heat
kernel estimates; for example o↵-diagonal heat kernel estimates, isoperimetric profiles, relations to
Harnack inequalities etc. are either missing or mentioned only briefly. (Because of that, I could not
give proof to most of the heat kernel estimates in Section 7.) This was because I was much busier
than I had expected while preparing for the lectures. However, even if I could have included them,
most likely there was not enough time to discuss them during the 8 lectures. Anyway, my plan is to
revise these notes and include the missing ingredients in the version for publication from Springer.

I referred many papers and books during the preparation of the lecture notes. Especially, I owe
a lot to the lecture notes by Barlow [10] and by Coulhon [40] for Section 1–2. Section 3–4 (and part
of Section 6) are mainly from [18, 87]. Section 5 is mainly from the beautiful paper by Kozma and
Nachmias [86] (with some simplification in [101]). In Section 7, I follow the arguments of the papers
by Barlow, Biskup, Deuschel, Mathieu and their co-authors [16, 30, 31, 32, 90, 91].
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1 Weighted graphs and the associated Markov chains

In this section, we discuss general potential theory for symmetric (reversible) Markov chains on
weighted graphs. Note that there are many nice books and lecture notes that treat potential theory
and/or Markov chains on graphs, for example [6, 10, 51, 59, 88, 107, 109]. While writing this section,
we are largely influenced by the lecture notes by Barlow [10].

1.1 Weighted graphs

Let X be a finite or countably infinite set, and E is a subset of {{x, y} : x, y 2 X,x 6= y}. A graph
is a pair (X,E). For x, y 2 X, we write x ⇠ y if {x, y} 2 E. A sequence x0, x2, · · · , xn is called a
path with length n if xi 2 X for i = 0, 1, 2, · · · , n and xj ⇠ xj+1 for j = 0, 1, 2, · · · , n� 1. For x 6= y,
define d(x, y) to be the length of the shortest path from x to y. If there is no such path, we set
d(x, y) = 1 and we set d(x, x) = 0. d(·, ·) is a metric on X and it is called a graph distance. (X,E)
is connected if d(x, y) < 1 for all x, y 2 X, and it is locally finite if ]{y : {x, y} 2 E} < 1 for all
x 2 X. Throughout the lectures, we will consider connected locally finite graphs (except when we
consider the trace of them in Subsection 1.3).

Assume that the graph (X,E) is endowed with a weight (conductance) µxy, which is a symmetric
nonnegative function on X ⇥ X such that µxy > 0 if and only if x ⇠ y. We call the pair (X,µ) a
weighted graph.

Let µx = µ(x) =
P

y2X µxy and define a measure µ on X by setting µ(A) =
P

x2A µx for A ⇢ X.
Also, we define B(x, r) = {y 2 X : d(x, y) < r} for each x 2 X and r � 1.

Definition 1.1 We say that (X,µ) has controlled weights (or (X,µ) satisfies p0-condition) if there
exists p0 > 0 such that

µxy

µx
� p0 8x ⇠ y.

If (X,µ) has controlled weights, then clearly ]{y 2 X : x ⇠ y}  p�1
0 .

Once the weighted graph (X,µ) is given, we can define the corresponding quadratic form, Markov
chain and the discrete Laplace operator.
Quadratic form We define a quadratic form on (X,µ) as follows.

H2(X,µ) = H2 = {f : X ! R : E(f, f) =
1
2

X
x,y2X
x⇠y

(f(x)� f(y))2µxy < 1},

E(f, g) =
1
2

X
x,y2X
x⇠y

(f(x)� f(y))(g(x)� g(y))µxy 8f, g 2 H2.

Physically, E(f, f) is the energy of the electrical network for an (electric) potential f .
Since the graph is connected, one can easily see that E(f, f) = 0 if and only if f is a constant

function. We fix a base point 0 2 X and define

kfk2H2 = E(f, f) + f(0)2 8f 2 H2.
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Note that

E(f, f) =
1
2

X
x⇠y

(f(x)� f(y))2µxy 
X

x

X
y

(f(x)2 + f(y)2)µxy = 2kfk22 8f 2 L2, (1.1)

where kfk2 is the L2-norm of f . So L2 ⇢ H2. We give basic facts in the next lemma.

Lemma 1.2 (i) Convergence in H2 implies the pointwise convergence.
(ii) H2 is a Hilbert space.

Proof. (i) Suppose fn ! f in H2 and let gn = fn � f . Then E(gn, gn) + gn(0)2 ! 0 so gn(0) ! 0.
For any x 2 X, there is a sequence {xi}l

i=0 ⇢ X such that x0 = 0, xl = x and xi ⇠ xi+1 for
i = 0, 1, · · · , l � 1. Then

|gn(x)� gn(0)|2  l
l�1X
i=0

|gn(xi)� gn(xi+1)|2  2l(
l�1
min
i=0

µxixi+1)
�1E(gn, gn) ! 0 (1.2)

as n !1 so we have gn(x) ! 0.
(ii) Assume that {fn}n ⇢ H2 is a Cauchy sequence in H2. Then fn(0) is a Cauchy sequence in R so
converges. Thus, similarly to (1.2) fn converges pointwise to f , say. Now using Fatou’s lemma, we
have kfn � fk2H2  lim infm kfn � fmk2H2 , so that kfn � fk2H2 ! 0.

Markov chain Let Y = {Yn} be a Markov chain on X whose transition probabilities are given by

P(Yn+1 = y|Yn = x) =
µxy

µx
=: P (x, y) 8x, y 2 X.

We write Px when the initial distribution of Y is concentrated on x (i.e. Y0 = x, P-a.s.). (P (x, y))x,y2X

is the transition matrix for Y . Y is called a simple random walk when µxy = 1 whenever x ⇠ y. Y

is µ-symmetric since for each x, y 2 X,

µxP (x, y) = µxy = µyx = µyP (y, x).

We define the heat kernel of Y by

pn(x, y) = Px(Yn = y)/µy 8x, y 2 X.

Using the Markov property, we can easily show the Chapman-Kolmogorov equation:

pn+m(x, y) =
X

z

pn(x, z)pm(z, y)µz, 8x, y 2 X. (1.3)

Using this and the fact p1(x, y) = µxy/(µxµy) = p1(y, x), one can verify the following inductively

pn(x, y) = pn(y, x), 8x, y 2 X.
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For n � 1, let

Pnf(x) =
X

y

pn(x, y)f(y)µy =
X

y

Px(Yn = y)f(y) = Ex[f(Yn)], 8f : X ! R.

We sometimes consider a continuous time Markov chain {Yt}t�0 w.r.t. µ which is defined as
follows: each particle stays at a point, say x for (independent) exponential time with parameter 1,
and then jumps to another point, say y with probability P (x, y). The heat kernel for the continuous
time Markov chain can be expressed as follows.

pt(x, y) = Px(Yt = y)/µy =
1X

n=0

e�t t
n

n!
pn(x, y), 8x, y 2 X.

Discrete Laplace operator For f : X ! R, the discrete Laplace operator is defined by

Lf(x) =
X

y

P (x, y)f(y)� f(x) =
1
µx

X
y

(f(y)� f(x))µxy = Ex[f(Y1)]� f(x) = (P1� I)f(x). (1.4)

Note that according to the Ohm’s law ‘I = V/R’,
P

y(f(y)� f(x))µxy is the total flux flowing into
x, given the potential f .

Definition 1.3 Let A ⇢ X. A function f : X ! R is harmonic on A if

Lf(x) = 0, 8x 2 A.

h is sub-harmonic (resp. super-harmonic) on A if Lf(x) � 0 (resp. Lf(x)  0) for x 2 A.

Lf(x) = 0 means that the total flux flowing into x is 0 for the given a potential f . This is the
behavior of the currents in a network called Kircho↵’s (first) law.

For A ⇢ X, we define the (exterior) boundary of A by

@A = {x 2 Ac : 9z 2 A such that z ⇠ x}.

Proposition 1.4 (Maximum principle) Let A be a connected subset of X and h : A [ @A ! R be
sub-harmonic on A. If the maximum of h over A[@A is attained in A, then h is constant on A[@A.

Proof. Let x0 2 A be the point where h attains the maximum and let H = {z 2 A [ @A : h(z) =
h(x0)}. If y 2 H \A, then since h(y) � h(x) for all x 2 A [ @A, we have

0  µyLh(y) =
X

y

(h(x)� h(y))µxy  0.

Thus, h(x) = h(y) (i.e. x 2 H) for all x ⇠ y. Since A is connected, this implies H = A [ @A.

We can prove the minimum principle for a super-harmonic function h by applying the maximum
principle to �h.

For f, g 2 L2, denote their L2-inner product as (f, g), namely (f, g) =
P

x f(x)g(x)µx.
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Lemma 1.5 (i) L : H2 ! L2 and kLfk22  2kfk2H2.
(ii) For f 2 H2 and g 2 L2, we have (�Lf, g) = E(f, g).
(iii) L is a self-adjoint operator on L2(X,µ) and the following holds:

(�Lf, g) = (f,�Lg) = E(f, g), 8f, g 2 L2. (1.5)

Proof. (i) Using Schwarz’s inequality, we have

kLfk22 =
X

x

1
µx

(
X

y

(f(y)� f(x))µxy)2


X

x

1
µx

(
X

y

(f(y)� f(x))2µxy)(
X

y

µxy) = 2E(f, f)  2kfk2H2 .

(ii) Using (i), both sides of the equality are well-defined. Further, using Schwarz’s inequality,
X
x,y

|µxy(f(y)� f(x))g(x)|  (
X
x,y

µxy(f(y)� f(x))2)1/2(
X
x,y

µxyg(y)2)1/2 = E(f, f)1/2kgk2 < 1.

So we can use Fubini’s theorem, and we have

(�Lf, g) = �
X

x

(
X

y

µxy(f(y)� f(x)))g(x) =
1
2

X
x

X
y

µxy(f(y)� f(x))(g(y)� g(x)) = E(f, g).

(iii) We can prove (f,�Lg) = E(f, g) similarly and obtain (1.5).

(1.5) is the discrete Gauss-Green formula.

Lemma 1.6 Set px
n(·) = pn(x, ·). Then, the following hold for all x, y 2 X.

pn+m(x, y) = (px
n, py

m), P1p
x
n(y) = pn+1(x, y), (1.6)

Lpx
n(y) = pn+1(x, y)� pn(x, y), E(px

n, py
m) = pn+m(x, y)� pn+m+1(x, y), (1.7)

p2n(x, y) 
p

p2n(x, x)p2n(y, y). (1.8)

Proof. The two equations in (1.6) are due to the Chapman-Kolmogorov equation (1.3). The first
equation in (1.7) is then clear since L = P1�I. The last equation can be obtained by these equations
and (1.5). Using (1.6) and the Schwarz inequality, we have

p2n(x, y)2 = (px
n, py

n)2  (px
n, px

n)(py
n, py

n) = p2n(x, x)p2n(y, y),

which gives (1.8).

It can be easily shown that (E , L2) is a regular Dirichlet form on L2(X,µ) (c.f. [55]). Then
the corresponding Hunt process is the continuous time Markov chain {Yt}t�0 w.r.t. µ and the
corresponding self-adjoint operator on L2 is L in (1.4).
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Remark 1.7 Note that {Yt}t�0 has the transition probability P (x, y) = µxy/µx and it waits at x

for an exponential time with mean 1 for each x 2 X. Since the ‘speed’ of {Yt}t�0 is independent
of the location, it is sometimes called constant speed random walk (CSRW for short). We can also
consider a continuous time Markov chain with the same transition probability P (x, y) and wait at x

for an exponential time with mean µ�1
x for each x 2 X. This Markov chain is called variable speed

random walk (VSRW for short). We will discuss VSRW in Section 7. The corresponding discrete
Laplace operator is

LV f(x) =
X

y

(f(y)� f(x))µxy. (1.9)

For each f, g that have finite support, we have

E(f, g) = �(LV f, g)⌫ = �(LCf, g)µ,

where ⌫ is a measure on X such that ⌫(A) = |A| for all A ⇢ X. So VSRW is the Markov process
associated with the Dirichlet form (E ,F) on L2(X,⌫ ) and CSRW is the Markov process associated
with the Dirichlet form (E ,F) on L2(X,µ). VSRW is a time changed process of CSRW and vice
versa.

We now introduce the notion of rough isometry.

Definition 1.8 Let (X1, µ1), (X2, µ2) be weighted graphs that have controlled weights.
(i) A map T : X1 ! X2 is called a rough isometry if the following holds.
There exist constants c1, c2, c3 > 0 such that

c�1
1 d1(x, y)� c2  d2(T (x), T (y))  c1d1(x, y) + c2 8x, y 2 X1, (1.10)

d2(T (X1), y0)  c2 8y0 2 X2, (1.11)

c�1
3 µ1(x)  µ2(T (x))  cµ1(x) 8x 2 X1, (1.12)

where di(·, ·) is the the graph distance of (Xi, µi), for i = 1, 2.
(ii) (X1, µ1), (X2, µ2) are said to be rough isometric if there is a rough isometry between them.

It is easy to see that rough isometry is an equivalence relation. One can easily prove that Z2 and
the triangular lattice, the hexagon lattice are all roughly isometric. It can be proved that Z1 and Z2

are not roughly isometric.

The notion of rough isometry was first introduced by M. Kanai ([73, 74]). As this work was mainly
concerned with Riemannian manifolds, definition of rough isometry included only (1.10), (1.11).
The definition equivalent to Definition 1.8 is given in [42] (see also [65]). Note that rough isometry
corresponds to quasi-isometry in the field of geometric group theory.

While discussing various properties of Markov chains/Laplace operators, it is important to think
about their ‘stability’. In the following, we introduce two types of stability.

Definition 1.9 (i) We say a property is stable under bounded perturbation if whenever (X,µ) sat-
isfies the property and (X,µ0) satisfies c�1µxy  µ0xy  cµxy for all x, y 2 X, then (X,µ0) satisfies
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the property.
(ii) We say a property is stable under rough isometry if whenever (X,µ) satisfies the property and
(X 0, µ0) is rough isometric to (X,µ), then (X 0, µ0) satisfies the property.

If a property P is stable under rough isometry, then it is clearly stable under bounded perturbation.
It is known that the following properties of weighted graphs are stable under rough isometry.

(i) Transience and recurrence

(ii) The Nash inequality, i.e. pn(x, y)  c1n�↵ for all n � 1, x 2 X (for some ↵ > 0)

(iii) Parabolic Harnack inequality

We will see (i) later in this section and (ii) in Section 2. One of the important open problem is to
show if the elliptic Harnack inequality is stable under these perturbations or not.

Definition 1.10 (X,µ) has the Liouville property if there is no bounded non-constant harmonic
functions. (X,µ) has the strong Liouville property if there is no positive non-constant harmonic
functions.

It is known that both Liouville and strong Liouville properties are not stable under bounded pertur-
bation (see [89]).

1.2 Harmonic functions and e↵ective resistances

For A ⇢ X, define

�A = inf{n � 0 : Yn 2 A}, �+
A = inf{n > 0 : Yn 2 A}, ⌧A = inf{n � 0 : Yn /2 A}.

For A ⇢ X and f : A ! R, consider the following Dirichlet problem.
(

Lv(x) = 0 8x 2 Ac,

v|A = f.
(1.13)

Proposition 1.11 Assume that f : A ! R is bounded and set

'(x) = Ex[f(Y�A) : �A < 1].

(i) ' is a solution of (1.13).
(ii) If Px(�A < 1) = 1 for all x 2 X, then ' is the unique solution of (1.13).

Proof. (i) '|A = f is clear. For x 2 Ac, using the Markov property of Y , we have

'(x) =
X

y

P (x, y)'(y),
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so L'(x) = 0.
(ii) Let '0 be another solution and let Hn = '(Yn) � '0(Yn). Then Hn is a bounded martingale up
to �A, so using the optional stopping theorem, we have

'(x)� '0(x) = ExH0 = ExH�A = Ex['(Y�A)� '0(Y�A)] = 0

since �A < 1 a.s. and '(x) = '0(x) for x 2 A.

Remark 1.12 (i) In particular, we see that ' is the unique solution of (1.13) when Ac is finite. In
this case, here is another proof of the uniqueness of the solution of (1.13): let u(x) = '(x)� '0(x),
then u|A = 0 and Lu(x) = 0 for x 2 Ac. So, noting u 2 L2 and using Lemma 1.5, E(u, u) =
(�Lu, u) = 0 which implies that u is constant on X (so it is 0 since u|A = 0).
(ii) If hA(x) := Px(�A = 1) > 0 for some x 2 X, then the function ' + �hA is also a solution of
(1.13) for all � 2 R, so the uniqueness of the Dirichlet problem fails.

For A,B ⇢ X such that A \B = ;, define

Re↵(A,B)�1 = inf{E(f, f) : f 2 H2, f |A = 1, f |B = 0}. (1.14)

(We define Re↵(A,B) = 1 when the right hand side is 0.) We call Re↵(A,B) the e↵ective resistance
between A and B. It is easy to see that Re↵(A,B) = Re↵(B, A). If A ⇢ A0, B ⇢ B0 with A0\B0 = ;,
then Re↵(A0, B0)  Re↵(A,B).

Take a bond e = {x, y}, x ⇠ y in a weighted graph (X,µ). We say cutting the bond e when we
take the conductance µxy to be 0, and we say shorting the bond e when we identify x = y and take
the conductance µxy to be 1. Clearly, shorting decreases the e↵ective resistance (shorting law), and
cutting increases the e↵ective resistance (cutting law).

The following proposition shows that among feasible potentials whose voltage is 1 on A and 0 on
B, it is a harmonic function on (A [B)c that minimizes the energy.

Proposition 1.13 (i) The right hand side of (1.14) is attained by a unique minimizer '.
(ii) ' in (1) is a solution of the following Dirichlet problem

(
L'(x) = 0 8x 2 X \ (A [B),
'|A = 1, '|B = 0.

(1.15)

Proof. (i) We fix a based point x0 2 B and recall that H2 is a Hilbert space with kfkH2 =
E(f, f) + f(x0)2 (Lemma 1.2 (ii)). Since V := {f 2 H2 : f |A = 1, f |B = 0} is a closed convex subset
of H2, a general theorem shows that V has a unique minimizer for k · kH2 (which is equal to E(·, ·)
on V).
(ii) Let g be a function on X whose support is finite and is contained in X \ (A[B). Then, for any
� 2 R, '+ �g 2 V, so E('+ �g,' + �g) � E(',' ). Thus E(', g) = 0. Applying Lemma 1.5(ii), we
have (L', g) = 0. For each x 2 X \ (A [B), by choosing g(z) = �x(z), we obtain L'(x)µx = 0.
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As we mentioned in Remark 1.12 (ii), we do not have uniqueness of the Dirichlet problem in
general. So in the following of this section, we will assume that Ac is finite in order to guarantee
uniqueness of the Dirichlet problem.

The next theorem gives a probabilistic interpretation of the e↵ective resistance.

Theorem 1.14 If Ac is finite, then for each x0 2 Ac,

Re↵(x0, A)�1 = µx0Px0(�A < �+
x0

). (1.16)

Proof. Let v(x) = Px(�A < �x0). Then, by Proposition 1.11, v is the unique solution of Dirichlet
problem with v(x0) = 0, v|A = 1. By Proposition 1.13 and Lemma 1.5 (noting that 1� v 2 L2),

Re↵(x0, A)�1 = E(v, v) = E(�v, 1� v) = (Lv, 1� v) = Lv(x0)µx0 = Ex0 [v(Y1)]µx0 .

By definition of v, one can see Ex0 [v(Y1)] = Px0(�A < �+
x0

) so the result follows.

Similarly, if Ac is finite one can prove

Re↵(B, A)�1 =
X
x2B

µxPx(�A < �+
B).

Note that by Ohm’s law, the right hand side of (1.16) is the current flowing from x0 to Ac.
The following lemma is useful and will be used later in Proposition 3.18.

Lemma 1.15 Let A,B ⇢ X and assume that both Ac, Bc are finite. Then the following holds.

Re↵(x, A [B)
Re↵(x, A)�1 �Re↵(x, B)�1

 Px(�A < �B)  Re↵(x,A [B)
Re↵(x,A)

, 8x /2 A [B.

Proof. Using the strong Markov property, we have

Px(�A < �B) = Px(�A < �B, �A[B < �+
x ) + Px(�A < �B, �A[B > �+

x )

= Px(�A < �B, �A[B < �+
x ) + Px(�A[B > �+

x )Px(�A < �B).

So
Px(�A < �B) =

Px(�A < �B, �A[B < �+
x )

Px(�A[B < �+
x )

 Px(�A < �+
x )

Px(�A[B < �+
x )

.

Using (1.16), the upper bound is obtained. For the lower bound,

Px(�A < �B, �A[B < �+
x ) � Px(�A < �+

x < �B) � Px(�A < �+
x )� Px(�B < �+

x ),

so using (1.16) again, the proof is complete.

As we see in the proof, we only need to assume that Ac is finite for the upper bound.
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Now let (X,µ) be an infinite weighted graph. Let {An}1n=1 be a family of finite sets such that An ⇢
An+1 for n 2 N and [n�1An = X. Let x0 2 A1. By the short law, Re↵(x0, Ac

n)  Re↵(x0, Ac
n+1), so

the following limit exists.
Re↵(x0) := lim

n!1
Re↵(x0, A

c
n). (1.17)

Further, the limit Re↵(x0) is independent of the choice of the sequence {An} mentioned above.
(Indeed, if {Bn} is another such family, then for each n there exists Nn such that An ⇢ BNn ,
so limn!1Re↵(x0, Ac

n)  limn!1Re↵(x0, Bc
n). By changing the role of An and Bn, we have the

opposite inequality.)

Theorem 1.16 Let (X,µ) be an infinite weighted graph. For each x 2 X, the following holds

Px(�+
x = 1) = (µxRe↵(x))�1.

Proof. By Theorem 1.14, we have

Px(�Ac
n

< �+
x ) = (µxRe↵(x,Ac

n)�1)�1.

Taking n !1 and using (1.17), we have the desired equality.

Definition 1.17 We say a Markov chain is recurrent at x 2 X if Px(�+
x = 1) = 0. We say a

Markov chain is transient at x 2 X if Px(�+
x = 1) > 0.

The following is well-known for irreducible Markov chains (so in particular it holds for Markov
chains corresponding to weighted graphs). See, for example [97].

Proposition 1.18 (1) {Yn}n is recurrent at x 2 X if and only if m :=
P1

n=0 Px(Yn = x) = 1.
Further, m�1 = Px(�+

x = 1).
(2) If {Yn}n is recurrent (resp. transient) at some x 2 X, then it is recurrent (resp. transient) for
all x 2 X.
(3) {Yn}n is recurrent if and only if Px({Y hits y infinitely often}) = 1 for all x, y 2 X. {Yn}n is
transient if and only if Px({Y hits y finitely often}) = 1 for all x, y 2 X.

From Theorem 1.16 and Proposition 1.18, we have the following.

{Yn} is transient (resp. recurrent) , Re↵(x) < 1 (resp. Re↵(x) = 1), 9x 2 X (1.18)

, Re↵(x) < 1 (resp. Re↵(x) = 1), 8x 2 X.

Example 1.19 Consider Z2 with weight 1 on each nearest neighbor bond. Let @Bn = {(x, y) 2 Z2 :
either |x| or |y| is n}. By shorting @Bn for all n 2 N, one can obtain

Re↵(0) �
1X

n=0

1
4(2n + 1)

= 1.

So the simple random walk on Z2 is recurrent.
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Let us recall the following fact.

Theorem 1.20 (Pólya 1921) Simple random walk on Zd is recurrent if d = 1, 2 and transient if
d � 3.

The combinatorial proof of this theorem is well-known. For example, for d = 1, by counting the total
number of paths of length 2n that moves both right and left n times,

P0(Y2n = 0) = 2�2n

 
2n

n

!
=

(2n)!
22nn!n!

⇠ (⇡n)�1/2,

where Stirling’s formula is used in the end. Thus

m =
1X

n=0

P0(Yn = 0) ⇠
1X

n=1

(⇡n)�1/2 + 1 = 1,

so {Yn} is recurrent.
This argument is not robust. For example, if one changes the weight on Zd so that c1  µxy 

c2 for x ⇠ y, one cannot apply the argument at all. The advantage of the characterization of
transience/recurrence using the e↵ective resistance is that one can make a robust argument. Indeed,
by (1.18) we can see that transience/recurrence is stable under bounded perturbation. This is
because, if c1µ0xy  µxy  c2µ0xy for all x, y 2 X, then c1Re↵(x)  R0e↵(x)  c2Re↵(x). We can
further prove that transience/recurrence is stable under rough isometry.

Finally in this subsection, we will give more equivalence condition for the transience and discuss
some decomposition of H2. Let H2

0 be the closure of C0(X) in H2, where C0(X) is the space of
compactly supported function on X. For a finite set B ⇢ X, define the capacity of B by

Cap (B) = inf{E(f, f) : f 2 H2
0 , f |B = 1}.

We first give a lemma.

Lemma 1.21 If a sequence of non-negative functions vn 2 H2, n 2 N satisfies limn!1 vn(x) = 1
for all x 2 X and limn!1 E(vn, vn) = 0, then

lim
n!1

ku� (u ^ vn)kH2 = 0, 8u 2 H2, u � 0.

Proof. Let un = u ^ vn and define Un = {x 2 X : u(x) > vn(x)}. By the assumption, for each
N 2 N, there exists N0 = N0(N) such that Un ⇢ B(0, N)c for all n � N0. For A ⇢ X, denote
EA(u) = 1

2

P
x,y2A(u(x)� u(y))2µxy. Since EUc

n
(u� un) = 0, we have

E(u� un, u� un)  2 · 1
2

X
x2Un

X
y: y⇠x

⇣
u(x)� un(x)� (u(y)� un(y))

⌘2
µxy

 2EB(0,N�1)c(u� un)  2
⇣
EB(0,N�1)c(u) + EB(0,N�1)c(un)

⌘
(1.19)
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for all n � N0. As un = (u + vn � |u� vn|)/2, we have

EB(0,N�1)c(un)  c1

⇣
EB(0,N�1)c(u) + EB(0,N�1)c(vn) + EB(0,N�1)c(|u� vn|)

⌘

 c2

⇣
EB(0,N�1)c(u) + EB(0,N�1)c(vn)

⌘
.

Thus, together with (1.19), we have

E(u� un, u� un)  c3

⇣
EB(0,N�1)c(u) + EB(0,N�1)c(vn)

⌘
 c3

⇣
EB(0,N�1)c(u) + E(vn, vn)

⌘
.

Since u 2 H2, EB(0,N�1)c(u) ! 0 as N !1 and by the assumption, E(vn, vn) ! 0 as n !1. So we
obtain E(u� un, u� un) ! 0 as n !1. By the assumption, it is clear that u� un ! 0 pointwise,
so we obtain ku� unkH2 ! 0.

We say that a quadratic form (E ,F) is Markovian if u 2 F and v = (0 _ u) ^ 1, then v 2 F
and E(v, v)  E(u, u). It is easy to see that quadratic forms determined by weighted graphs are
Markovian.

Proposition 1.22 The following are equivalent.
(i) The Markov chain corresponding to (X,µ) is transient.
(ii) 1 /2 H2

0

(iii) Cap ({x}) > 0 for some x 2 X.
(iii) 0 Cap ({x}) > 0 for all x 2 X.
(iv) H2

0 6= H2

(v) There exists a non-negative super-harmonic function which is not a constant function.
(vi) For each x 2 X, there exists c1(x) > 0 such that

|f(x)|2  c1(x)E(f, f) 8f 2 C0(X). (1.20)

Proof. For fixed x 2 X, define '(z) = Pz(�x < 1). We first show the following: ' 2 H2
0 and

E(',' ) = (�L', 1{x}) = Re↵(x)�1 = Cap ({x}). (1.21)

Indeed, let {An}1n=1 be a family of finite sets such that An ⇢ An+1 for n 2 N, x 2 A1, and
[n�1An = X. Then Re↵(x, Ac

n)�1 # Re↵(x)�1. Let 'n(z) = Pz(�x < ⌧An). Using Lemma 1.5 (ii),
and noting 'n 2 C0(X), we have, for m  n,

E('m, 'n) = ('m,�L'n) = (1{x},�L'n) = E('n, 'n) = Re↵(x,Ac
n)�1. (1.22)

This implies
E('m � 'n, 'm � 'n) = Re↵(x,Ac

m)�1 �Re↵(x,Ac
n)�1.

Hence {'m} is a E-Cauchy sequence. Noting that 'n ! ' pointwise, we see that 'n ! ' in H2 as
well and ' 2 H2

0 . Taking n = m and n ! 1 in (1.22), we obtain (1.21) except the last equality.
To prove the last equality of (1.21), take any f 2 H2

0 with f(x) = 1. Then g := f � ' 2 H2
0 and
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g(x) = 0. Let gn 2 C0(X) with gn ! g in H2
0 . Then, by Lemma 1.5 (ii), E(', gn) = (�L', gn).

Noting that ' is harmonic except at x, we see that L' 2 C0(X). so, letting n !1, we have

E(', g) = (�L', g) = �L'(x)g(x)µx = 0.

Thus,
E(f, f) = E('+ g,' + g) = E(',' ) + E(g, g) � E(',' ),

which means that ' is the unique minimizer in the definition of Cap ({x}). So the last equality of
(1.21) is obtained.

Given (1.21), we now prove the equivalence.
(i) =) (iii)0: This is a direct consequence of (1.18) and (1.21).
(iii) () (ii) () (iii)0: This is easy. Indeed, Cap ({x}) = 0 if and only if there is f 2 H2

0 with
f(x) = 1 and E(f, f) = 0, that is f is identically 1.
(iii)0 =) (vi): Let f 2 C0(X) ⇢ H2

0 with f(x) 6= 0, and define g = f/f(x). Then

Cap ({x})  E(g, g) = E(f, f)/f(x)2.

So, letting c1(x) = 1/Cap ({x}) > 0, we obtain (vi).
(vi) =) (i): As before, let 'n(z) = Pz(�x < ⌧An). Then by (1.20), E('n, 'n) � c1(x)�1. So, using
the fact 'n ! ' in H2 and (1.21), Re↵(x)�1 = E(',' ) = limn E('n, 'n) � c1(x)�1. This means the
transience by (1.18).
(ii) () (iv): (ii) =) (iv) is clear since 1 2 H2, so we will prove the opposite direction. Suppose
1 2 H2

0 . Then there exists {fn}n ⇢ C0(X) such that k1 � fnkH2 < n�2. Since E is Markovian, we
have k1 � fn|H2 � k1 � (fn _ 0) ^ 1kH2 , so without loss of generality we may assume fn � 0. Let
vn = nfn � 0. Then limn vn(x) = 1 for all x 2 X and E(vn, vn) = n2E(fn, fn)  n�2 ! 0 so by
Lemma 1.21, ku � (u ^ vn)kH2 ! 0 for all u 2 H2 with u � 0. Since u ^ vn 2 C0(X), this implies
u 2 H2

0 . For general u 2 H2, we can decompose it into u+ � u� where u+, u� � 0 are in H2. So
applying the above, we have u+, u� 2 H2

0 and conclude u 2 H2
0 .

(i) =) (v): If the corresponding Markov chain is transient, then  (z) = Pz(�+
x < 1) is the non-

constant super-harmonic function.
(i) (= (v): Suppose the corresponding Markov chain {Yn}n is recurrent. For a super-harmonic
function  � 0, Mn =  (Yn) � 0 is a supermartingale, so it converges Px-a.s. Let M1 be the
limiting random variable. Since the set {n 2 N : Yn = y} is unbounded Px-a.s. for all y 2 X (due to
the recurrence), we have Px( (y) = M1) = 1 for all y 2 X, so  is constant.

Remark 1.23 (v) =) (i) implies that if the Markov chain corresponding to (X,µ) is recurrent,
then it has the strong Liouville property.

For A,B which are subspaces of H2, we write A� B = {f + g : f 2 A, g 2 B} if E(f, g) = 0 for
all f 2 A and g 2 B.

As we see above, the Markov chain corresponding to (X,µ) is recurrent if and only if H2 = H2
0 .

When the Markov chain is transient, we have the following decomposition of H2, which is called the
Royden decomposition (see [107, Theorem 3.69]).
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Proposition 1.24 Suppose that the Markov chain corresponding to (X,µ) is transient. Then

H2 = H�H2
0 ,

where H := {h 2 H2 : h is a harmonic functions on X.}. Further the decomposition is unique.

Proof. For each f 2 H2, let af = infh2H2
0
E(f�h, f�h). Then, similarly to the proof of Proposition

1.13, we can show that there is a unique minimizer vf 2 H2
0 such that af = E(f � vf , f � vf ),

E(f � vf , g) = 0 for all g 2 H2
0 , and in particular f � vf is harmonic on X. For the uniqueness of the

decomposition, suppose f = u + v = u0 + v0 where u, u0 2 H and v, v0 2 H2
0 . Then, w := u � u0 =

v0 � v 2 H \H2
0 , so E(w, w) = 0, which implies w is constant. Since w 2 H2

0 and the Markov chain
is transient, by Proposition 1.22 we have w ⌘ 0.

1.3 Trace of weighted graphs

Finally in this section, we briefly mention the trace of weighted graphs, which will be used in Section
3 and Section 7. Note that there is a general theory on traces for Dirichlet forms (see [55]). Also note
that a trace to infinite subset of X may not satisfy locally finiteness, but one can consider quadratic
forms on them similarly.

Proposition 1.25 (Trace of the weighted graph) Let V ⇢ X be a non-void set such that P(�V <

1) = 1 and let f be a function on V . Then there exists a unique u 2 H2 which attains the following
infimum:

inf{E(v, v) : v 2 H2, v|V = f}. (1.23)

Moreover, the map f 7! u =: HV f is a linear map and there exist weights {µ̂xy}x,y2V such that the
corresponding quadratic form ÊV (·, ·) satisfies the following:

ÊV (f, f) = E(HV f, HV f) 8f : V ! R.

Proof. The first part can be proved similarly to Proposition 1.11 and Proposition 1.13. It is clear
that HV (cf) = cHV f , so we will show HV (f1 + f2) = HV (f1) + HV (f2). Let ' = HV (f1 + f2),
'i = HV (fi) for i = 1, 2, and for f : V ! R, define Ef : X ! R by (Ef)|V = f and Ef(x) = 0
when x 2 V c. As in the proof of Proposition 1.13 (ii), we see that E(HV f, g) = 0 whenever Supp
g ⇢ V c. So

E('1 + '2, '1 + '2) = E('1 + '2, Ef1 + Ef2) = E('1 + '2, ') = E(E(f1 + f2), ') = E(',' ).

Using the uniqueness of (1.23), we obtain '1 + '2 = '. This establishes the linearity of HV .
Set Ê(f, f) = E(HV f, HV f). Clearly, Ê is a non-negative definite symmetric bilinear form and
Ê(f, f) = 0 if any only if f is a constant function. So, there exists {axy}x,y2V with axy = ayx such
that Ê(f, f) = 1

2

P
x,y2V axy(f(x)� f(y))2.
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Next, we show that Ê is Markovian. Indeed, writing ū = (0 _ u) ^ 1 for a function u, since
HV u|V = ū, we have

Ê(ū, ū) = E(HV ū,HV ū)  E(HV u,HV u)  E(HV u,HV u) = Ê(u, u), 8u : V ! R,

where the fact that E is Markovian is used in the second inequality. Now take p, q 2 V with p 6= q

arbitrary, and consider a function h such that h(p) = 1, h(q) = �↵ < 0 and h(z) = 0 for z 2 V \{p, q}.
Then, there exist c1, c2 such that

Ê(h, h) = apq(h(p)� h(q))2 + c1h(p)2 + c2h(q)2 = apq(1 + ↵)2 + c1 + c2↵
2

� Ê(h̄, h̄) = apq(h̄(p)� h̄(q))2 + c1h̄(p)2 + c2h̄(q)2 = apq + c1.

So (apq + c2)↵2 + 2apq↵ � 0. Since this holds for all ↵ > 0, we have apq � 0. Putting µ̂pq = apq for
each p, q 2 V with p 6= q, we have ÊV = Ê , that is Ê is associated with the weighted graph (V, µ̂).

We call the induced weights {µ̂xy}x,y2V as the trace of {µxy}x,y2X to V . From this proposition,
we see that for x, y 2 V , Re↵(x, y) = RV

e↵(x, y) where RV
e↵(·, ·) is the e↵ective resistance for (V, µ̂).

2 Heat kernel upper bounds (The Nash inequality)

In this section, we will consider various equivalent inequalities to the Nash-type heat kernel upper
bound, i.e. pt(x, y)  c1t�✓/2 for some ✓ > 0. We would prefer to discuss them under a general
framework including weighted graphs. However, some arguments here are rather sketchy to apply
for the general framework. (The whole arguments are fine for weighted graphs, so readers may only
consider them.) This section is strongly motivated by Coulhon’s paper [40].

Let X be a locally compact separable metric space and µ be a Radon measure on X such that
µ(B) > 0 for any non-void ball. (E ,F) is called a Dirichlet form on L2(X,µ) if it is a symmetric
Markovian closed bilinear form on L2. It is well-known that given a Dirichlet form, there is a
corresponding symmetric strongly continuous Markovian semigroup {Pt}t�0 on L2(X,µ) (see [55,
Section 1.3, 1.4]). Here Markovian means if u 2 L2 satisfies 0  u  1 µ-a.s., then 0  Ptu  1 µ-a.s.
for all t � 0. We denote the corresponding non-negative definite L2-generator by �L.

We denote the inner product of L2 by (·, ·) and for p � 1 denote kfkp for the Lp-norm of
f 2 L2(X,µ). For each ↵ > 0, define

E↵(·, ·) = E(·, ·) + ↵(·, ·).

(E1,F) is then a Hilbert space.

2.1 The Nash inequality

We first give a preliminary lemma.

Lemma 2.1 (i) kPtfk1  kfk1 for all f 2 L1 \ L2.
(ii) For f 2 L2, define u(t) = (Ptf, Ptf). Then u0(t) = �2E(Ptf, Ptf).
(iii) For f 2 F and t � 0, exp(�E(f, f)t/kfk22)  kPtfk2/kfk2.
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Proof. (i) We first show that if 0  f 2 L2, then 0  Ptf . Indeed, if we let fn = f · 1f�1([0,n]), then
fn ! f in L2. Since 0  fn  n, the Markovian property of {Pt} implies that 0  Ptfn  n. Taking
n ! 1, we obtain 0  Ptf . So we have Pt|f | � |Ptf |, since �|f |  f  |f |. Using this and the
Markovian property, we have for all f 2 L2 \ L1 and all Borel set A ⇢ X,

(|Ptf |, 1A)  (Pt|f |, 1A) = (|f |, Pt1A)  kfk1.

Hence we have Ptf 2 L1 and kPtfk1  kfk1.
(ii) Since Ptf 2 Dom(L), we have

u(t + h)� u(t)
h

=
1
h

(Pt+hf + Ptf, Pt+hf � Ptf) = (Pt+hf + Ptf,
(Ph � I)Ptf

h
)

h#0�! 2(Ptf,LPtf) = �2E(Ptf, Ptf).

Hence u0(t) = �2E(Ptf, Ptf).
(iii) We will prove the inequality for f 2 Dom(L); then one can obtain the result for f 2 F by
approximation. Let �L =

R1
0 �dE� be the spectral decomposition of �L. Then Pt = eLt =R1

0 e��tdE� and kfk22 =
R1
0 (dE�f, f). Since � 7! e�2�t is convex, by Jensen’s inequality,

exp
⇣
� 2

Z 1

0
�t

(dE�f, f)
kfk22

⌘

Z 1

0
e�2�t (dE�f, f)

kfk22
=

(P2tf, f)
kfk22

=
kPtfk22
kfk22

.

Taking the square root in each term, we obtain the desired inequality.

Remark 2.2 An alternative proof of (iii) is to use the logarithmic convexity of kPtfk22. Indeed,

kP(t+s)/2fk22 = (Pt+sf, f) = (Ptf, Psf)  kPtfk2kPsfk2, 8s, t > 0

so kPtfk22 is logarithmic convex. Thus,

t 7! d

dt
log kPtfk22 =

d
dt(kPtfk22)
kPtfk22

= �2E(Ptf, Ptf)
kPtfk22

(2.1)

is non-decreasing. (The last equality is due to Lemma 2.1(ii).) The right hand side of (2.1) is
�2E(f,f)

kfk22
when t = 0, so integrating (2.1) over [0, t], we have

log
kPtfk22
kfk22

=
Z t

0

d

ds
log kPsfk22ds � �2tE(f, f)

kfk22
.

The following is easy to see. (Note that we only need the first assertion.)

Lemma 2.3 Let (E ,F) be a symmetric closed bilinear form on L2(X,µ), and let {Pt}t�0, �L be the
corresponding semigroup and the self-adjoint operator respectively. Then, for each � > 0, (E�,F) is
also a symmetric closed bilinear form and the corresponding semigroup and the self-adjoint operator
are {e��tPt}t�0, �I � L, respectively. Further, if (E ,F) is the regular Dirichlet form on L2(X,µ)
and the corresponding Hunt process is {Yt}t�0, then (E�,F) is also the regular Dirichlet form and
the corresponding hunt process is {Yt^⇣}t�0 where ⇣ is the independent exponential random variable
with parameter �. (⇣ is the killing time; i.e. the process goes to the cemetery point at ⇣.)
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The next theorem was proved by Carlen-Kusuoka-Stroock ([38]), where the original idea of the
proof of (i) ) (ii) was due to Nash [96].

Theorem 2.4 (The Nash inequality, [38])
The following are equivalent for any � � 0.
(i) There exist c1, ✓> 0 such that for all f 2 F \ L1,

kfk2+4/✓
2  c1(E(f, f) + �kfk22)kfk

4/✓
1 . (2.2)

(ii) For all t > 0, Pt(L1) ⇢ L1 and it is a bounded operator. Moreover, there exist c2, ✓> 0 such
that

kPtk1!1  c2e
�tt�✓/2, 8t > 0. (2.3)

Here kPtk1!1 is an operator norm of Pt : L1 ! L1.

When � = 0, we cite (2.2) as (N✓) and (2.3) as (UC✓).

Proof. First, note that using Lemma 2.1, it is enough to prove the theorem when � = 0.
(i) ) (ii) : Let f 2 L2 \ L1 with kfk1 = 1 and u(t) := (Ptf, Ptf)2. Then, by Lemma 2.1 (ii),
u0(t) = �2E(Ptf, Ptf). Now by (i) and Lemma 2.1 (i),

2u(t)1+2/✓  c1(�u0(t))kPtfk4/✓
1  �c1u

0(t),

so u0(t)  �c2u(t)1+2/✓. Set v(t) = u(t)�2/✓, then we obtain v0(t) � 2c2/✓. Since limt#0 v(t) =
u(0)�2/✓ = kfk�4/✓

2 > 0, it follows that v(t) � 2c2t/✓. This means u(t)  c3t�✓/2, whence kPtfk2 
c3t�✓/4kfk1 for all f 2 L2 \ L1, which implies kPtk1!2  c3t�✓/4. Since Pt = Pt/2 � Pt/2 and
kPt/2k1!2 = kPt/2k2!1, we obtain (ii).
(ii) ) (i) : Let f 2 L2 \ L1 with kfk1 = 1. Using (ii) and Lemma 2.1 (iii), we have

exp(�2
E(f, f)t
kfk22

)  c4t�✓/2

kfk22
.

Rewriting, we have E(f, f)/kfk22 � (2t)�1 log(t✓/2kfk22) � (2t)�1A, where A = log c4 and we may
take A > 0. Set  (x) = supt>0{ x

2t log(xt✓/2) � Ax/(2t)}. By elementary computations, we have
 (x) � c5x1+2/✓. So

E(f, f) �  (kfk22) � c5kfk2(1+2/✓)
2 = c5kfk2+4/✓.

Since this holds for all f 2 L2 \ L1 with kfk1 = 1, we obtain (i).

Remark 2.5 (1) When one is only concerned about t � 1 (for example on graphs), we have the
following equivalence under the assumption of kPtk1!1  C for all t � 0 (C is independent of t).

(i) (N✓) with � = 0 holds for E(f, f)  kfk21.

(ii) (UC✓) with � = 0 holds for t � 1.
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(2) We have the following generalization of the theorem due to [41]. Let m : R+ ! R+ be a
decreasing C1 bijection which satisfies the following: M(t) := � log m(t) satisfies M 0(u) � c0M 0(t)
for all t � 0 and all u 2 [t, 2t]. (Roughly, this condition means that the logarithmic derivative of
m(t) is polynomial growth. So exponential growth functions may satisfy the condition, but double
exponential growth functions do not.) Let  (x) = �m0(m�1(x)). Then the following are equivalent.

(i) c1 (kfk22)  E(f, f) for all f 2 F , kfk1  1.

(ii) kPtk1!1  c2m(t) for all t > 0.

The above theorem corresponds to the case  (y) = c4y1+2/✓ and m(t) = t�✓/2.

Corollary 2.6 Suppose the Nash inequality (Theorem 2.4) holds. Let ' be an eigenfunction of �L
with eigenvalue � � 1. Then

k'k1  c1�
✓/4k'k2,

where c1 > 0 is a constant independent of ' and �.

Proof. Since �L' = �', Pt' = etL' = e��t'. By Theorem 2.4, kPtk2!1 = kPtk1/2
1!1  ct�✓/4 for

t  1. Thus
e��tk'k1 = kPt'k1  ct�✓/4k'k2.

Taking t = ��1 and c1 = ce, we obtain the result.

Example 2.7 Consider Zd, d � 2 and put weight 1 for each edge {x, y}, x, y 2 Zd with kx�yk = 1.
Then it is known that the corresponding simple random walk enjoys the following heat kernel estimate:
pn(x, y)  c1n�d/2 for all x, y 2 Zd and all n � 1. Now, let

H = {{(2n1, 2n2, · · · , 2nd), (2n1 + 1, 2n2, · · · , 2nd)} : n1, · · · , nd 2 Z}

and consider a random subgraph C(!) by removing each e 2 H with probability p 2 [0, 1] indepen-
dently. (So the set of vertices of C(!) is Zd. Here ! is the randomness of the environments.) If we
define the quadratic forms for the original graph and C(!) by E(·, ·) and E!(·, ·) respectively, then
it is easy to see that E!(f, f)  E(f, f)  4E!(f, f) for all f 2 L2. Thus, by Remark 2.5(1), the
heat kernel of the simple random walk on C(!) still enjoys the estimate p!n(x, y)  c1n�d/2 for all
x, y 2 C(!) and all n � 1, for almost every !.

2.2 The Faber-Krahn, Sobolev and isoperimetric inequalities

In this subsection, we denote⌦ ⇢⇢ X when ⌦ is an open relative compact subset of X. (For
weighted graphs, it simply means that ⌦ is a finite subset of X.) Let C0(X) be the space of
continuous, compactly supported functions on X. Define

�1(⌦) = inf
f2F\C0(X),
Supp f⇢Cl(⌦)

E(f, f)
kfk22

, 8⌦ ⇢⇢ X.
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By the min-max principle, this is the first eigenvalue for the corresponding Laplace operator which
is zero outside ⌦.

Definition 2.8 (The Faber-Krahn inequality)
Let ✓ > 0. We say (E ,F) satisfies the Faber-Krahn inequality of order ✓ if the following holds:

�1(⌦) � cµ(⌦)�2/✓, 8⌦ ⇢⇢ X. (FK(✓))

Theorem 2.9 (N✓) , (FK(✓))

Proof. (N✓) ) (FK(✓)): This is an easy direction. From (N✓), we have

kfk22 
⇣kfk21
kfk22

⌘2/✓
E(f, f), 8f 2 F \ L1. (2.4)

On the other hand, if Supp f ⇢ Cl(⌦), then by Schwarz’s inequality, kfk21  µ(⌦)kfk22, so (kfk21/kfk22)2/✓

 µ(⌦)2/✓. Putting this into (2.4), we obtain (FK(✓)).
(FK(✓)) ) (N✓): We adopt the argument originated in [60]. Let u 2 F \ C0(X) be a non-negative
function. For each � > 0, since u < 2(u� �) on {u > 2�}, we have

Z
u2dµ =

Z
{u>2�}

u2dµ +
Z
{u2�}

u2dµ

 4
Z
{u>2�}

(u� �)2dµ + 2�
Z
{u2�}

udµ  4
Z

(u� �)2+dµ + 2�kuk1. (2.5)

Note that (u � �)+ 2 F since (E ,F) is Markovian (cf. [55, Theorem 1.4.1]). Set ⌦= {u > �};
then ⌦ is an open relative compact set since u is compactly supported, and Supp (u� �)+ ⇢ ⌦. So,
applying (FK(✓)) to (u� �)+ gives

Z
(u� �)2+dµ  µ(⌦)2/✓E((u� �)+, (u� �)+) 

⇣kuk1
�

⌘2/✓
E(u, u),

where we used the Chebyshev inequality in the second inequality. Putting this into (2.5),

kuk22  4
⇣kuk1

�

⌘2/✓
E(u, u) + 2�kuk1.

Optimizing the right hand side by taking � = c1E(u, u)✓/(✓+2)kuk(2�✓)/(2+✓)
1 , we obtain

kuk22  c2E(u, u)
✓

✓+2 kuk
4

2+✓
1 ,

and thus obtain (N✓). For general compactly supported u 2 F , we can obtain (N✓) for u+ and u�,
so for u as well. For general u 2 F \ L1, approximation by compactly supported functions gives the
desired result.
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Remark 2.10 We can generalize Theorem 2.9 as follows. Let

�1(⌦) � c

'(µ(⌦))2
, 8⌦ ⇢⇢ X, (2.6)

where ' : (0,1) ! (0,1) is a non-decreasing function. Then, it is equivalent to Remark 2.5(2)(i),
where  (x) = x/'(1/x)2, or '(x) = (x (1/x))�1/2. Theorem 2.9 is the case '(x) = x1/✓.

In the following, we define krfk1 for the two cases. Case 1: When one can define the gradient
on the space and E(f, f) = 1

2

R
X |rf(x)|2dµ(x), then krfk1 :=

R
X |rf(x)|dµ(x). Case 2: When

(X,µ) is a weighted graph, then krfk1 := 1
2

P
x,y2X |f(y)�f(x)|µxy. Whenever krfk1 appears, we

consider that we are either of the two cases.

Definition 2.11 (Sobolev inequalities)
(i) Let ✓ > 2. We say (E ,F) satisfies (S2

✓ ) if

kfk22✓/(✓�2)  c1E(f, f), 8f 2 F \ C0(X). (S2
✓ )

(ii) Let ✓ > 1. We say (E ,F) satisfies (S1
✓ ) if

kfk✓/(✓�1)  c2krfk1, 8f 2 F \ C0(X). (S1
✓ )

In the following, we define |@⌦| for the two cases. Case 1: When X is a d-dimensional Riemannian
manifold and ⌦ is a smooth domain, then |@⌦| is the surface measure of ⌦. Case 2: When (X,µ) is
a weighted graph, then |@⌦| =

P
x2⌦

P
y2⌦c µxy. Whenever |@⌦| appears, we consider that we are

either of the two cases.

Definition 2.12 (The isoperimetric inequality)
Let ✓ > 1. We say (E ,F) satisfies the isoperimetric inequality of order ✓ if

µ(⌦)(✓�1)/✓  c1|@⌦|, 8⌦ ⇢⇢ X. (I✓)

We write (I1) when ✓ = 1, namely when

µ(⌦)  c1|@⌦|, 8⌦ ⇢⇢ X. (I1)

Remark 2.13 (i) For the weighted graph (X,µ) with µx � 1 for all x 2 X, if (I�) holds, then (I↵)
holds for any ↵  �. So (I1) is the strongest inequality among all the isoperimetric inequalities.
(ii) Zd satisfies (Id). The binary tree satisfies (I1).

Theorem 2.14 The following holds for ✓ > 0.

(I✓)
✓>1() (S1

✓ )
✓>2=) (S2

✓ )
✓>2() (N✓) () (UC✓) () (FK(✓))
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Proof. Note that the last two equivalence relations are already proved in Theorem 2.4 and 2.9.
(I✓)

✓>1(= (S1
✓ ): When (X,µ) is the weighted graph, simply apply (S1

✓ ) to f = 1⌦ and we can obtain
(I✓). When X is the Riemannian manifold, by using a Lipschitz function which approximates f = 1⌦

nicely, we can obtain (I✓).
(I✓)

✓>1=) (S1
✓ ): We will use the co-area formula given in Lemma 2.16 below. Let f be a support

compact non-negative function on X (when X is the Riemannian manifold, f 2 C1
0 (X) and f � 0).

Let Ht(f) = {x 2 X : f(x) > t} and set p = ✓/(✓ � 1). Applying (I✓) to f and using Lemma 2.16
below, we have

krfk1 =
Z 1

0
|@Ht(f)|dt � c1

Z 1

0
µ(Ht(f))1/pdt = c1

Z 1

0
k1Ht(f)kpdt. (2.7)

Next take any g 2 Lq such that g � 0 and kgkq = 1 where q is the value that satisfies p�1 + q�1 = 1.
Then, by the Hölder inequality,Z 1

0
k1Ht(f)kpdt �

Z 1

0
kg · 1Ht(f)k1dt =

Z
X

g(x)
Z 1

0
1Ht(f)(x)dtdµ(x) = kfgk1,

since
R1
0 1Ht(f)(x)dt = f(x). Putting this into (2.7), we obtain

kfkp = sup
g2Lq :kgkq=1

kfgk1  c�1
1 krfk1,

so we have (S1
✓ ). We can obtain (S1

✓ ) for general f 2 F \ C0(X) by approximations.
(S1
✓ )

✓>2=) (S2
✓ ): Set ✓̂ = 2(✓ � 1)/(✓ � 2) and let f 2 F \ C0(X). Applying (S1

✓ ) to f ✓̂ and using
Schwarz’s inequality,

⇣Z
f

2✓
✓�2 dµ

⌘ ✓�1
✓ = kf ✓̂k ✓

✓�1
 c1krf ✓̂k1

 c2kf ✓̂�1rfk1  c2krfk2kf ✓̂�1k2 = c2krfk2
⇣Z

f
2✓

✓�2 dµ
⌘1/2

.

rearranging, we obtain (S2
✓ ).

(S2
✓ )

✓>2=) (N✓): For f 2 F \ C0(X), applying the Hölder inequality (with p�1 = 4/(✓ + 2), q�1 =
(✓ � 2)/(✓ + 2)) and using (S2

✓ ), we have

kfk2+ 4
✓

2  kfk
4
✓
1 kfk22✓

✓�2
 c1kfk

4
✓
1 E(f, f),

so we have (N✓) in this case. Usual approximation arguments give the desired fact for f 2 F \ L1.
(S2
✓ )

✓>2(= (N✓): For f 2 F \ C0(X) such that f � 0, define

fk = (f � 2k)+ ^ 2k = 2k1Ak + (f � 2k)1Bk , k 2 Z,

where Ak = {f � 2k+1}, Bk = {2k  f < 2k+1}. Then f =
P

k2Z fk and fk 2 F \ C0(X). So

E(f, f) =
X
k2Z

E(fk, fk) +
X

k2Z,k 6=k0

X
k02Z

E(fk, fk0) �
X
k2Z

E(fk, fk), (2.8)
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where the last inequality is due to
P

k 6=k0 E(fk, fk0) � 0. (This can be verified in a elementary way
for the case of weighted graphs. When E is strongly local,

P
k 6=k0 E(fk, fk0) = 0.)

Next, we have
⇣
22kµ(Ak)

⌘1+2/✓
=

⇣Z
Ak

f2
kdµ

⌘1+2/✓

 kfkk2+4/✓
2  c1kfkk4/✓

1 E(fk, fk)  c1

⇣
2kµ(Ak�1)

⌘4/✓
E(fk, fk), (2.9)

where we used (N✓) for fk in the second inequality. Let ↵ = 2✓/(✓�2), � = ✓/(✓+2) 2 (1/2, 1), and
define ak = 2↵kµ(Ak), bk = E(fk, fk). Then (2.9) can be rewritten as ak  c2a

2(1��)
k�1 b�k . Summing

over k 2 Z and using the Hölder inequality (with p�1 = 1� �, q�1 = �), we have
X

k

ak  c2

X
k

a2(1��)
k�1 b�k  c2(

X
k

a2
k�1)

1��(
X

k

bk)�  c2(
X

k

ak)2(1��)(
X

k

bk)�.

Putting (2.8) into this, we have X
k

ak  c2E(f, f)�/(2��1). (2.10)

On the other hand, we have

kfk↵↵ =
X

k

Z
Bk

f↵dµ 
X

k

2↵(k+1)µ(Ak�1) = 22↵
X

k

ak.

Plugging (2.10) into this, we obtain (S2
✓ ).

０

Figure 1: 2-dimensional pre-Sierpinski gasket

Remark 2.15 (i) Generalizations of (Sp
✓ ) and (I✓) are the following:

kfkp  c1'(µ(⌦))krfkp, 8⌦ ⇢⇢ X, 8f 2 F \ C0(X) such that Supp f ⇢ Cl(⌦),
1

'(µ(⌦))
 c2

|@⌦|
µ(⌦)

, 8⌦ ⇢⇢ X,

where ' : (0,1) ! (0,1) is a non-decreasing function as in Remark 2.10. Note that we defined
(Sp
✓ ) for p = 1, 2, but the above generalization makes sense for all p 2 [1,1] (at least for Riemannian
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manifolds). Theorem 2.14 is the case '(x) = x1/✓ – see [40] for details.
(ii) As we see in the proof, in addition to the equivalence (I✓) () (S1

✓ ), one can see that the best
constant for c1 in (I✓) is equal to the best constant for c2 in (S1

✓ ). This is sometimes referred as the
Federer-Fleming theorem.
(iii) It is easy to see that the pre-Sierpinski gasket (Figure 1) does not satisfy (I✓) for any ✓ > 1.
On the other hand, we will prove in (3.28) that the heat kernel of the simple random walk enjoys the
following estimate p2n(0, 0) ⇣ n� log 3/ log 5, 8n � 1. This gives an example that (N✓) cannot imply
(I✓) in general. In other word, the best exponent for isoperimetric inequalities is not necessarily the
best exponent for Nash inequalities.
(iv) In [93], there is an interesting approach to prove (I✓) ) (N✓) directly using the evolution of
random sets.

The following lemma was used in the proof of Theorem 2.14.

Lemma 2.16 (Co-area formula) Let f be a non-negative function on X (when X is the Riemannian
manifold, f 2 C1

0 (X) and f � 0), and define Ht(f) = {x 2 X : f(x) > t}. Then

krfk1 =
Z 1

0
|@Ht(f)|dt.

Proof. For simplicity we will prove it only when (X,µ) is a weighted graph. Then,

krfk1 =
1
2

X
x,y2X

|f(y)� f(x)|µxy =
X
x2X

X
y2X:f(y)>f(x)

(f(y)� f(x))µxy

=
X
x2X

X
y2X:f(y)>f(x)

(
Z 1

0
1{f(y)>t�f(x)}dt)µxy =

Z 1

0
dt

X
x,y2X

1{f(y)>t�f(x)}µxy

=
Z 1

0
dt

X
x,2Ht(f)

X
y2Ht(f)c

µxy =
Z 1

0
|@Ht(f)|dt.

The next fact is an immediate corollary to Theorem 2.14.

Corollary 2.17 Let ✓ > 2. If (E ,F) satisfies (I✓), then the following holds.

pt(x, y)  ct�✓/2 8t > 0, µ� a.e. x, y.

3 Heat kernel estimates using e↵ective resistance

In this section, we will consider the weighted graph (X,µ). We say that (X,µ) is loop-free if for any
l � 3, there is no set of distinct points {xi}l

i=1 ⇢ X such that xi ⇠ xi+1 for 1  i  l where we set
xl+1 := x1.

Set Re↵(x, x) = 0 for all x 2 X. We now give an important lemma on the e↵ective resistance.
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Lemma 3.1 (i) If c1 := infx,y2X:x⇠y µxy > 0 then Re↵(x, y)  c�1
1 d(x, y) for all x, y 2 X.

(ii) If (X,µ) is loop-free and c2 := supx,y2X:x⇠y µxy < 1, then Re↵(x, y) � c�1
2 d(x, y) for all

x, y 2 X.
(iii) |f(x)� f(y)|2  Re↵(x, y)E(f, f) for all x, y 2 X and f 2 H2.
(iv) Re↵(·, ·) and Re↵(·, ·)1/2 are both metrics on X.

Proof. (i) Take a shortest path between x and y and cut all the bonds that are not along the path.
Then we have the inequality by the cutting law.
(ii) Suppose d(x, y) = n. Take a shortest path (x0, x1, · · · , xn) between x and y so that x0 = x, xn =
y. Now take f : X ! R so that f(xi) = (n � i)/n for 0  i  n, and f(y) = f(xi) if y is in the
branch from xi, i.e. if y can be connected to xi without crossing {xk}n

k=0\{xi}. This f is well-defined
because (X,µ) is loop-free, and f(x) = 1, f(y) = 0. So Re↵(x, y)�1 

Pn�1
i=0 (1/n)2µxixi+1  c2/n =

c2/d(x, y), and the result follows.
(iii) For any non-constant function u 2 H2 and any x 6= y 2 X, we can construct f 2 H2 such that
f(x) = 1, f(y) = 0 by a linear transform f(z) = au(z) + b (where a, b are chosen suitably). So

sup
n |u(x)� u(y)|2

E(u, u)
: u 2 H2, E(u, u) > 0

o
= sup

n 1
E(f, f)

: f 2 H2, f(x) = 1, f(y) = 0
o

= Re↵(x, y),

(3.1)
and we have the desired inequality.
(iv) It is easy to see Re↵(x, y) = Re↵(y, x) and Re↵(x, y) = 0 if and only if x = y. So we only need
to check the triangle inequality.

Let H̃2 = {u 2 H2 : E(u, u) > 0}. Then, for x, y, z 2 X that are distinct, we have by (3.1)

Re↵(x, y)1/2 = sup
n |u(x)� u(y)|

E(u, u)1/2
: u 2 H̃2

o

 sup
n |u(x)� u(z)|

E(u, u)1/2
: u 2 H̃2

o
+ sup

n |u(z)� u(y)|
E(u, u)1/2

: u 2 H̃2
o

= Re↵(x, z)1/2 + Re↵(z, y)1/2.

So Re↵(·, ·)1/2 is a metric on X.
Next, let V = {x, y, z} ⇢ X and let {µ̂xy, µ̂yz, µ̂zx} be the trace of {µxy}x,y2X to V . Define

R�1
xy = µ̂xy, R�1

yz = µ̂yz, R�1
zx = µ̂zx. Then, using Proposition 1.25 and the resistance formula of

series and parallel circuits, we have

Re↵(z, x) =
1

R�1
zx + (Rxy + Ryz)�1

=
Rzx(Rxy + Ryz)
Rxy + Ryz + Rzx

, (3.2)

and similarly Re↵(x, y) = Rxy(Ryz+Rzx)
Rxy+Ryz+Rzx

and Re↵(y, z) = Ryz(Rzx+Rxy)
Rxy+Ryz+Rzx

. Hence

1
2
{Re↵(x, z) + Re↵(z, y)�Re↵(x, y)} =

RyzRzx

Rxy + Ryz + Rzx
� 0, (3.3)

which shows that Re↵(·, ·) is a metric on X.
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Remark 3.2 (i) Di↵erent proofs of the triangle inequality of Re↵(·, ·) in Lemma 3.1(iv) can be found
in [10] and [75, Theorem 1.12].
(ii) Weighted graphs are resistance forms. (See [79] for definition and properties of the resistance
form.) In fact, most of the results in this section (including this lemma) hold for resistance forms.

3.1 Green density killed on a finite set

For y 2 X and n 2 N, let

L(y, n) =
n�1X
k=0

1{Yk=y}

be the local time at y up to time n � 1. For a finite set B ⇢ X and x, y 2 X, define the Green
density by

gB(x, y) =
1
µy

Ex[L(y,⌧B)] =
1
µy

X
k

Px(Yk = y, k <⌧ B). (3.4)

Clearly gB(x, y) = 0 when either x or y is outside B. Since µ�1
y Px(Yk = y, k <⌧ B) = µ�1

x Py(Yk =
x, k <⌧ B), we have

gB(x, y) = gB(y, x) 8x, y 2 X. (3.5)

Using the strong Markov property of Y ,

gB(x, y) = Px(�y < ⌧B)gB(y, y)  gB(y, y). (3.6)

Below are further properties of the Green density.

Lemma 3.3 Let B ⇢ X be a finite set. Then the following hold.
(i) For x 2 B, gB(x, ·) is harmonic on B \ {x} and = 0 outside B.
(ii) (Reproducing property of the Green density) For all f 2 H2 with Supp f ⇢ B, it holds that
E(gB(x, ·), f) = f(x) for each x 2 X.
(iii) Ex[⌧B] =

P
y2B gB(x, y)µy for each x 2 X.

(iv) Re↵(x,Bc) = gB(x, x) for each x 2 X.
(v) Ex[⌧B]  Re↵(x, Bc)µ(B) for each x 2 X.

Proof. (i) Let ⌫(z) = gB(x, z). Then, for each y 2 B \ {x}, noting that Y0, Y⌧B /2 B, we have

⌫(y)µy = Ex[
⌧B�1X
i=0

1y(Yi+1)] = Ex[
⌧B�1X
i=0

X
z

1z(Yi)P (z, y)] =
X

z

⌫(z)µz
µzy

µz
=
X

z

⌫(z)µyz

Dividing both sides by µy, we have ⌫(y) =
P

z P (y, z)⌫(z), so ⌫ is harmonic on B \ {x}.
(ii) Let u(y) = ⌫(y)µy. Since ⌫ is harmonic on B \ {x} and Supp f ⇢ B, noting that we can apply
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Lemma 1.5 (ii) because f 2 L2 when B is finite, we have

E(⌫, f) = ��⌫(x)f(x)µx = {⌫(x)�
X

y

P (x, y)⌫(y)}f(x)µx

= {⌫(x)µx �
X

y

µxy

µx
µx⌫(y)}f(x) = {⌫(x)µx �

X
y

µxy

µy
µy⌫(y)}f(x)

= {u(x)�
X

y

P (y, x)u(y)}f(x). (3.7)

Since u(y) = Ex[
P⌧B�1

k=0 1{Yk=y}] and
P

y 1{Yk=y}P (y, x) = 1{Yk+1=x}, we have

u(x)�
X

y

P (y, x)u(y) = Ex
h ⌧B�1X

k=0

1{Yk=x}
i
� Ex

h ⌧B�1X
k=0

X
y

1{Yk=y}P (y, x)
i

= 1 + Ex
h ⌧B�1X

k=1

1{Yk=x}
i
� Ex

h ⌧B�1X
k=0

1{Yk+1=x}
i

= 1 + Ex
h ⌧B�1X

k=1

1{Yk=x}
i
� Ex

h ⌧BX
k=1

1{Yk=x}
i

= 1.

Putting this into (3.7), we obtain E(⌫, f) = f(x).
(iii) Multiplying both sides of (3.4) by µy and summing over y 2 B, we obtain the result.
(iv) If x /2 B, both sides are 0, so let x 2 B. Let px

B(z) = gB(x, z)/gB(x, x). Then, by Proposition
1.13 and (i) above, we see that px

B attains the minimum in the definition of the e↵ective resistance.
(Note that the assumption that B is finite is used to guarantee the uniqueness of the minimum.)
Thus, using (ii) above,

Re↵(x, Bc)�1 = E(px
B, px

B) =
E(gB(x, ·), gB(x, ·))

gB(x, x)2
=

1
gB(x, x)

. (3.8)

(v) If x /2 B, both sides are 0, so let x 2 B. Using (iii), (iv) and (3.6), we have

Ex[⌧B] =
X
y2B

gB(x, y)µy 
X
y2B

gB(x, x)µy = Re↵(x,Bc)µ(B).

We thus obtain the desired inequality.

Remark 3.4 As mentioned before Definition 1.3, �(u(x)�
P

y P (y, x)u(y)) in (3.7) is the total flux
flowing into x, given the potential ⌫. So, we see that the total flux flowing out from x is 1 when the
potential gB(x, ·) is given at x.

The next example shows that Re↵(x,Bc) = gB(x, x) does not hold in general when B is not finite.

Example 3.5 Consider Z3 with weight 1 on each nearest neighbor bond. Let p be an additional
point and put a bond with weight 1 between the origin of Z3 and p; X = Z3 [ {p} with the above
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mentioned weights is the weighted graph in this example. Let B = Z3 and let Bn = B \B(0, n). By
Lemma 3.3(iv), Re↵(0, Bc

n) = gBn(0, 0). If we set c�1
n := RZ3

e↵ (0, B(0, n)), then it is easy to compute
Re↵(0, Bc

n) = (1 + cn)�1. Since the simple random walk on Z3 is transient, limn!1 cn =: c0 > 0.
As will be proved in the proof of Lemma 3.9, gB(0, 0) = limn!1 gBn(0, 0), so gB(0, 0) = (1 + c0)�1.
On the other hand, it is easy to see Re↵(0, Bc) = 1 > (1 + c0)�1, so Re↵(0, Bc) > gB(0, 0). This
also shows that in general the resistance between two sets cannot be approximated by the resistance
of finite approximation graphs.

For any A ⇢ X, and A1, A2 ⇢ X with A1 \A2 = ;, A \Ai = ; (for either i = 1 or 2) define

RA
e↵(A1, A2)�1 = inf{E(f, f) : f 2 H2, f |A1 = 1, f |A2 = 0, f is a constant on A}.

In other word, RA
e↵(·, ·) is the e↵ective resistance for the network where the set A is shorted and

reduced to one point. Clearly RA
e↵(x, A) = Re↵(x,A) for x 2 X \A. We then have the following.

Proposition 3.6 Let B ⇢ X be a finite set. Then

gB(x, y) =
1
2
(Re↵(x, Bc) + Re↵(y,Bc)�RBc

e↵ (x, y)), 8x, y 2 B.

Proof. Since the set Bc is reduced to one point, it is enough to prove this when Bc is a point, say
z. Noting that R{z}

e↵ (x, y) = Re↵(x, y), we will prove the following.

gX\{z}(x, y) =
1
2
(Re↵(x, z) + Re↵(y, z)�Re↵(x, y)), 8x, y 2 B. (3.9)

By Lemma 3.3 (iv) and (3.6), we have

gX\{z}(x, y) = Py(�x < ⌧X\{z})gX\{z}(x, x) = Py(�x < �z)Re↵(x, z). (3.10)

Now V = {x, y, z} ⇢ X and consider the trace of the network to V , and consider the function u on
V such that u(x) = 1, u(z) = 0 and u is harmonic on y. Using the same notation as in the proof of
Lemma 3.1 (iv), we have

Py(�x < �z) = u(y) =
R�1

xy

R�1
xy + R�1

yz
⇥ 1 +

R�1
yz

R�1
xy + R�1

yz
⇥ 0 =

Ryz

Rxy + Ryz
.

Putting this into (3.10) and using (3.2), we have

gB(x, y) =
Ryz

Rxy + Ryz
· Rzx(Rxy + Ryz)
Rxy + Ryz + Rzx

=
RzxRyz

Rxy + Ryz + Rzx
. (3.11)

By (3.3), we obtain (3.9).

Remark 3.7 Take an additional point p0 and consider the �-Y transform between V = {x, y, z}
and W = {p0, x, y, z}. Namely, W = {p0, x, y, z} is the network such that µ̃p0x, µ̃p0y, µ̃p0z > 0 and
other weights are 0, and the trace of (W, µ̃) to V is (V, µ̂). (See, for example, [79, Lemma 2.1.15].)
Then RzxRyz

Rxy+Ryz+Rzx
in (3.11) is equal to µ̃�1

p0z, so gB(x, y) = µ̃�1
p0z.
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Corollary 3.8 Let B ⇢ X be a finite set. Then

|gB(x, y)� gB(x, z)|  Re↵(y, z), 8x, y, z 2 X.

Proof. By Proposition 3.6, we have

|gB(x, y)� gB(x, z)|  |Re↵(y,Bc)�Re↵(z,Bc)|+ |RBc

e↵ (x, y)�RBc

e↵ (x, z)|
2

 Re↵(y, z) + RBc

e↵ (y, z)
2

 Re↵(y, z),

which gives the desired result.

3.2 Green density on a general set

In this subsection, will discuss the Green density when B can be infinite. Since we do not use results
in this subsection later, readers may skip this subsection.

Let B ⇢ X. We define the Green density by (3.4). By Proposition 1.18, gB(x, y) < 1 for all
x, y 2 X when {Yn} is transient, whereas gX(x, y) = 1 for all x, y 2 X when {Yn} is recurrent. Since
there is nothing interesting when gX(x, y) = 1, throughout this subsection we will only consider the
case

B 6= X when {Yn} is recurrent.

Then we can easily see that the process {Y B
n } killed on exiting B is transient, so gB(x, y) < 1 for

all x, y 2 X. It is easy to see that (3.5), (3.6), and Lemma 3.3 (i), (iii) hold without any change of
the proof.

Recall that H2
0 is the closure of C0(X) in H2. We can generalize Lemma 3.3 (ii) as follows.

Lemma 3.9 (Reproducing property of Green density) For each x 2 X, gB(x, ·) 2 H2
0 . Further, for

all f 2 H2
0 with Supp f ⇢ B, it holds that E(gB(x, ·), f) = f(x) for each x 2 X.

Proof. When B is finite, this is already proved in Lemma 3.3 (ii), so let B be finite (and B 6= X

if {Yn} is recurrent). Fix x0 2 X and let Bn = B(x0, n) \ B and write ⌫n(z) = gBn(x, z). Then
⌧Bn " ⌧B so that ⌫n(z) " ⌫(z) < 1 for all z 2 X. Using the reproducing property, for m  n, we
have

E(⌫n � ⌫m, ⌫n � ⌫m) = gBn(x, x)� gBm(x, x),

which implies that {⌫n} is the Cauchy sequence in H2. It follows that ⌫n ! ⌫ in H2 and ⌫ 2 H2
0 .

Now for each f 2 H2
0 with Supp f ⇢ B, choose fn 2 C0(X) so that Supp f ⇢ Bn and fn ! f in H2.

Then, as we proved above, E(fn, ⌫n) = fn(x). Taking n ! 1 and using Lemma 1.2 (i), we obtain
E(f,⌫ ) = f(x).

As we see in Example 3.5, Re↵(0, Bc) = limn!1Re↵(0, (B \ B(0, n)c) does not hold in general.
So we introduce another resistance metric as follows.

R⇤(x, y) := sup
n |u(x)� u(y)|2

E(u, u)
: u 2 H2

0 � 1, E(u, u) > 0
o

, 8x, y 2 X,x 6= y,
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where H2
0 � 1 = {f + a : f 2 H2

0 , a 2 R}. By (3.1), the di↵erence between this and the e↵ective
resistance metric is that either supremum is taken over all H2

0 � 1 or over all H2. Clearly R⇤(x, y) 
Re↵(x, y).

Here and in the following of this subsection, we will consider R⇤(x,Bc), so we assume B 6= X.
(For R⇤(x,Bc), we consider Bc as one point by shorting.) Using R⇤(·, ·), we can generalize Lemma
3.3 (iv),(v) as follows.

Lemma 3.10 Let B ⇢ X be a set such that B 6= X. Then the following hold.
(i) R⇤(x,Bc) = gB(x, x) for each x 2 X.
(ii) Ex[⌧B]  R⇤(x, Bc)µ(B) for each x 2 X.

Proof. (i) If x /2 B, both sides are 0, so let x 2 B. Let px
B(z) = gB(x, z)/gB(x, x). Note that we

cannot follow the proof Lemma 3.3 (iv) directly because we do not have uniqueness for the solution
of the Dirichlet problem in general. Instead, we discuss as follows. Rewriting the definition, we have

R⇤(x,Bc)�1 = inf{E(f, f) : f 2 H2
0,x(B)} where H2

0,x(B) := {f 2 H2
0 � 1 : Supp f ⇢ B, f(x) = 1}.

(3.12)
Take any v 2 H2

0,x(B). (Note that H2
0,x(B) ⇢ H2

0 since B 6= X.) Then, by Lemma 3.9,

E(v � px
B, px

B) =
E(v � px

B, gB(x, ·))
gB(x, x)

=
v(x)� px

B(x)
gB(x, x)

= 0.

So we have
E(v, v) = E(v � px

B, v � px
B) + E(px

B, px
B) � E(px

B, px
B),

which shows that the infimum in (3.12) is attained by px
B. Thus by (3.8) with R⇤(·, ·) instead of

Re↵(·, ·), we obtain (i).
Given (i), (ii) can be proved exactly in the same way as the proof of Lemma 3.3 (v).

Remark 3.11 As mentioned in [78, Section 2], when (X,µ) is transient, one can show that (E , H2
0�

1) is the resistance form on X [ {�}, where {�} is a new point that can be regarded as a point of
infinity. Note that there is no weighted graph (X [ {�}, µ̄) whose associated resistance form is
(E , H2

0 � 1). Indeed, if there is, then 1{�} 2 H2
0 � 1, which contradicts the fact 1 /2 H2

0 (Proposition
1.22).

Given Lemma 3.10, Proposition 3.6 and Corollary 3.8 holds in general by changing Re↵(·, ·) to
R⇤(·, ·) without any change of the proof.

Finally, note that by Proposition 1.24, we see that H2 = H2
0 � 1 if and only if there is no non-

constant harmonic functions of finite energy. One can see that it is also equivalent to Re↵(x, y) =
R⇤(x, y) for all x, y 2 X. (The necessity can be shown by the fact that the resistance metric
determines the resistance form: see [79, Section 2.3].)
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3.3 General heat kernel estimates

In this subsection, we give general on-diagonal upper and lower heat kernel estimates. Define

B(x, r) = {y 2 X : d(x, y) < r}, V (x,R) = µ(B(x,R)).

For⌦ ⇢ X, let r(⌦) be the inradius, that is

r(⌦) = max{r 2 N : 9x0 2 ⌦ such that B(x0, r) ⇢ ⌦}.

Lemma 3.12 Assume that infx,y2X:x⇠y µxy > 0.
(i) For any non-void finite set ⌦ ⇢ X,

�1(⌦) � c1

r(⌦)µ(⌦)
. (3.13)

(ii) Suppose that there exists a strictly increasing function v on N such that

V (x, r) � v(r), 8x 2 X,8r 2 N. (3.14)

Then, for any non-void finite set ⌦ ⇢ X,

�1(⌦) � c1

v�1(µ(⌦))µ(⌦)
. (3.15)

Proof. (i) Let f be any function with Supp f ⇢ ⌦ normalized as kfk1 = 1. Then kfk22  µ(⌦).
Now consider a point x0 2 X such that |f(x0)| = 1 and the largest integer n such that B(x0, n) ⇢ ⌦.
Then n  r(⌦) and there exists a sequence {xi}n

i=0 ⇢ X such that xi ⇠ xi+1 for i = 0, 1, · · · , n� 1,
xj 2 ⌦ for j = 0, 1, · · · , n� 1 and xn /2 ⌦. So we have

E(f, f) � 1
2

n�1X
i=0

(f(xi)� f(xi+1))2µxixi+1 �
c1

n

⇣ n�1X
i=0

|f(xi)� f(xi+1)|
⌘2
� c1

n
,

where the last inequality is due to
Pn�1

i=0 |f(xi)� f(xi+1)| � |f(x0)� f(xn)| = 1. Combining these,

E(f, f)
kfk22

� c1

nµ(⌦)
� c1

r(⌦)µ(⌦)
.

Taking infimum over all such f , we obtain the result.
(ii) Denote r = r(⌦). Then, there exists x0 2 ⌦ such that B(x0, r) ⇢ ⌦, so (3.14) implies v(r)  µ(⌦).
Thus r  v�1(µ(⌦)), and (3.15) follows from (3.13).

Proposition 3.13 (Upper bound: slow decay) Assume that infx,y2X:x⇠y µxy > 0 and

V (x, r) � c1r
D, 8x 2 X,8r 2 N, (3.16)

for some D � 1. Then the following holds.

sup
x2X

pt(x, x)  c2t
� D

D+1 , 8t � 1.
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Proof. By (3.15), we have �1(⌦) � c1µ(⌦)�1�1/D. Thus the result is obtained by Theorem 2.14 by
taking ✓ = 2D/(D + 1).

Remark 3.14 We can generalize Proposition 3.13 as follows (see [14]):
Assume that infx,y2X:x⇠y µxy > 0 and (3.14) holds for all r � r0. Then the following holds.

sup
x2X

pt(x, x)  c1m(t), 8t � r2
0,

where m is defined by

t� r2
0 =

Z 1/m(t)

v(r0)
v�1(s)ds.

Indeed, by (3.14), we see that (2.6) holds with '(s)2 = cv�1(s)s. Thus the result can be obtained
by applying Remark 2.5 and Remark 2.10. In fact, the above generalized version of Proposition 3.13
also holds for geodetically complete non-compact Riemannian manifolds with bounded geometry (see
[14]).

Below is the table of the slow heat kernel decay m(t), given the information of the volume growth
v(r).

V (x, r) � exp(cr) c exp(cr↵) crD cr

supx2X pt(x, x)  ct�1 log t ct�1(log t)1/↵ ct�D/(D+1) ct�1/2

Next we discuss general form of the on-diagonal heat kernel estimate. This lower bound is quite
robust, and the argument works as long as there is a Hunt process and the heat kernel exists. Note
that the estimate is independent of the upper bound, so in general the two estimates may not coincide.

Proposition 3.15 (Lower bound) Let B ⇢ X and x 2 B. Then

p2t(x, x) � Px(⌧B > t)2

µ(B)
, 8t > 0.

Proof. Using the Chapman-Kolmogorov equation and the Schwarz inequality, we have

Px(⌧B > t)2  Px(Yt 2 B)2 = (
Z

B
pt(x, y)dµ(y))2  µ(B)

Z
B

pt(x, y)2dµ(y)  µ(B)p2t(x, x),

which gives the desired inequality.

3.4 Strongly recurrent case

In this subsection, we will restrict ourselves to the ‘strongly recurrent’ case and give su�cient condi-
tions for precise on-diagonal upper and lower estimates of the heat kernel. (To be precise, Proposition
3.16 holds for general weighted graphs, but the assumption FR,� given in other propositions holds
only for the strongly recurrent case.)
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Throughout this subsection, we fix a based point 0 2 X and let D � 1, 0 < ↵  1. As before
d(·, ·) is a graph distance, but we do not use the property of the graph distance except in Remark
3.17. In fact all the results in this subsection hold for any metric (not necessarily a geodesic metric)
on X without any change of the proof.

Proposition 3.16 For n 2 N, let fn(x) = pn(0, x) + pn+1(0, x). Assume that Re↵(0, y)  c⇤d(0, y)↵

holds for all y 2 X. Let r 2 N and n = 2[r]D+↵. Then

fn(0)  c1n
� D

D+↵

⇣
c⇤ _

rD

V (0, r)

⌘
. (3.17)

Especially, if c2rD  V (0, r), then fn(0)  c3n�D/(D+↵).

Proof. First, note that similarly to (1.7), we can easily check that

E(fn, fn) = f2n(0)� f2n+2(0). (3.18)

Choose x⇤ 2 B(0, r) such that fn(x⇤) = minx2B(0,r) fn(x). Then

fn(x⇤)V (0, r) 
X

x2B(0,r)

fn(x)µx 
X
x2G

pn(0, x)µx +
X
x2G

pn+1(0, x)µx  2,

so that fn(x⇤)  2/V (0, r). Using Lemma 3.1 (iii), Re↵(0, y)  c⇤d(0, y)↵, and (3.18), we have

fn(0)2  2
�
fn(x⇤)2 + |fn(0)� fn(x⇤)|2

�
 8

V (0, r)2
+ 2Re↵(0, x⇤)E(fn, fn)

 8
V (0, r)2

+ 2c⇤d(0, x⇤)↵E(fn, fn)  8
V (0, r)2

+ 2c⇤d(0, x⇤)↵(f2n(0)� f2n+2(0)). (3.19)

The spectral decomposition gives that k ! f2k(0)� f2k+2(0) is non-increasing. Thus

n (f2n(0)� f2n+2(0))  (2[n/2] + 1)
�
f4[n/2](0)� f4[n/2]+2(0)

�

 2
2[n/2]X
i=[n/2]

(f2i(0)� f2i+2(0))  2f2[n/2](0).

Since n = 2[r]D+↵ is even, putting this into (3.19), we have fn(0)2  8
V (0,r)2 + 4c⇤r↵fn(0)

n . Using
a + b  2(a _ b), we have

fn(0)  c1(
1

V (0, r)
_ c⇤r↵

n
). (3.20)

Rewriting, we obtain (3.17).

Remark 3.17 (i) Putting n = 2[r↵V (0, r)] in (3.20), we have the following estimate:

f2[r↵V (0,r)](0)  c1(1 _ c⇤)
V (0, r)

. (3.21)

(ii) When ↵ = 1, using Lemma 3.1(i), we see that the assumption of Proposition 3.16 holds if
infx,y2X:x⇠y µxy > 0. So (3.17) gives another proof of Proposition 3.13.
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In the following, we write BR = B(0, R). Let "� = (3c⇤�)�1/↵. We say the weighted graph (X,µ)
satisfies FR,� (or simply say that FR,� holds) if it satisfies the following estimates:

V (0, R)  �RD, Re↵(0, z)  c⇤d(0, z)↵, 8z 2 BR, Re↵(0, Bc
R) � R↵

�
, V (0, "�R) � ("�R)D

�
. (3.22)

Proposition 3.18 In the following, we fix R � 1 and � > 0.
(i) If V (0, R)  �RD, Re↵(0, z)  c⇤d(0, z)↵ for all z 2 BR, then the following holds.

Ex[⌧BR ]  2c⇤�RD+↵ 8x 2 BR. (3.23)

(ii) If FR,� holds, then there exist c1 = c1(c⇤), q0 > 0 such that the following holds for all x 2
B(0, "�R).

Ex[⌧BR ] � c1�
�q0RD+↵, (3.24)

P x(⌧BR > n) � c1��q0RD+↵ � n

2c⇤�RD+↵
8n � 0. (3.25)

Proof. (i) Using Lemma 3.3 (v) and the assumption, we have

Ex[⌧BR ]  Re↵(x, Bc
R)µ(BR)  (Re↵(0, x) + Re↵(0, Bc

R))µ(BR)  2c⇤�RD+↵, 8x 2 BR. (3.26)

(ii) Denote B0 = B(0, "�R). By Lemma 1.15 and the assumption, we have for y 2 B0,

Py(⌧BR < �{0}) = Py(�Bc
R

< �{0}) 
Re↵(y,Bc

R [ {0})
Re↵(y,Bc

R)
 Re↵(y, 0)

Re↵(0, Bc
R)�Re↵(0, y)

 c⇤d(y, 0)↵

Re↵(0, Bc
R)� c⇤d(y, 0)↵

 R↵/(3�)
R↵/��R↵/(3�)

=
1
2
.

Applying this into (3.6) and using Lemma 3.3 (v), we have for y 2 B0,

gBR(0, y) = gBR(0, 0)Py(�{0} < ⌧BR) � 1
2
Re↵(0, Bc

R) � R↵

2�
.

Thus,

E0[⌧BR ] �
X
y2B0

gB(0, y)µy �
R↵

2�
µ(B0) � "D� RD+↵

2�2
.

Further, for x 2 B0,

Ex[⌧BR ] � Px(�{0} < �BR)E0[⌧BR ] � 1
2

E0[⌧BR ] � "D� RD+↵

4�2
,

so (3.24) is obtained.
Next, by (3.23), (3.24), and the Markov property of Y , we have

c1�
�q0RD+↵  Ex[⌧BR ]  n + Ex[1{⌧BR

>n}EYn [⌧BR ]]  n + 2c⇤�RD+↵Px(⌧BR > n).

So (3.25) is obtained.

35



Proposition 3.19 If FR,� holds, then there exist c1 = c1(c⇤), q0, q1 > 0 such that the following holds
for all x 2 B(0, "�R).

p2n(x, x) � c1�
�q1n�D/(D+↵) for

c3.18.1

4�q0
RD+↵  n  c3.18.1

2�q0
RD+↵.

Proof. Using Proposition 3.15 and (3.25), we have

p2n(x, x) � Px(⌧BR > n)2

µ(BR)
� (c3.18.1/(2c⇤�q0+1))2

�RD
� c1�

�q1n�D/(D+↵),

for some c1, q1 > 0.

Remark 3.20 The above results can be generalized as follows. Let v, r : N ! [0,1) be strictly
increasing functions with v(1) = r(1) = 1 which satisfy

C�1
1

⇣ R

R0

⌘d1

 v(R)
v(R0)

 C1

⇣ R

R0

⌘d2

, C�1
2

⇣ R

R0

⌘↵1

 r(R)
r(R0)

 C2

⇣ R

R0

⌘↵2

for all 1  R0  R < 1, where C1, C2 � 1, 1  d1  d2 and 0 < ↵1  ↵2  1. Assume that the
following holds instead of (3.22) for a suitably chosen "� > 0:

V (0, R)  �v(R), Re↵(0, z)  c⇤r(d(0, z)), 8z 2 BR, Re↵(0, Bc
R) � r(R)

�
, V (0, "�R) � v("�R)

�
.

x 2 B(0, "�R). Then, the following estimates hold.
c1

�q1v(I(n))
 p2n(x, x)  c2

�q2v(I(n))
for

c0

4�q0
v(R)r(R)  n  c0

2�q0
v(R)r(R),

where I(·) is the inverse function of (v · r)(·) (see [87] for details).

3.5 Applications to fractal graphs

In this subsection, we will apply the estimates obtained in the previous subsection to fractal graphs.

2-dimensional pre-Sierpinski gasket
Let V0 be the vertices of the pre-Sierpinski gasket (Figure 1) and define V�n = 2nV0. Let

an = (2n, 0), bn = (2n�1, 2n�1
p

3) be the vertices in V�n.

Lemma 3.21 It holds that Re↵(0, {an, bn}) = 1
2

⇣
5
3

⌘n
.

Proof. Let pn = P0(�{an,bn} < �+
{0}). Let z = (3/2,

p
3/2) and define q1 = Pz(�{a1,b1} < �+

{0}).
Then, by the Markov property, p1 = 4�1(p1 + q1 + 1) and q1 = 2�1(p1 + 1). Solving them, we have
p1 = 3/5. Next, for a simple random walk {Yk} on the pre-Sierpinski gasket, define the induced
random walk {Y (n)

k } on V�n as follows.

⌘0 = min{k � 0 : Yk 2 V�n}, ⌘i = min{k > ⌘i�1 : Yk 2 V�n \ Y⌘i�1}, Y (n)
i = Y⌘i , for i 2 N.
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Then it can be easily seen that {Y (n)
k } is a simple random walk on V�n. Using this fact, we can

inductively show pn+1 = pn · p1 = pn · (3/5) = · · · = (3/5)n+1. We thus obtain the result by using
Theorem 1.14.

Let df = log 3/ log 2, dw = log 5/ log 2.

Proposition 3.22 The following hold for all R � 1.
(i) c1Rdf  V (0, R)  c2Rdf .

(ii) Re↵(0, z)  c3d(0, z)dw�df , 8z 2 X.

(iii) Re↵(0, B(0, R)c) � c4Rdw�df .

Proof. (i) Since there are 3n triangles with length 1 in B(0, 2n), we see that c13n  V (0, 2n)  c23n.
Next, for each R, take n 2 N such that 2n�1  R < 2n. Then c13n�1  V (0, 2n�1)  V (0, R) 
V (0, 2n)  c23n. Since 3 = 2df , we have the desired estimate.
(ii) We first prove the following:

c3(5/3)n  Re↵(0, an)  c4(5/3)n. (3.27)

Indeed, by the shorting law and Lemma 3.21, 2�1(5/3)n = Re↵(0, {an, bn})  Re↵(0, an). On the
other hand, let '(1)

n and '(2)
n be such that

E('(1)
n , '(1)

n ) = Re↵(0, an)�1 = Re↵(0, bn)�1 = E('(2)
n , '(2)

n ).

Then, by symmetry, '(1)
n (bn) = '(2)

n (an) =: C. So

1
2

⇣5
3

⌘n
= Re↵(0, {an, bn}) � E

⇣'(1)
n + '(2)

n

1 + C
,
'(1)

n + '(2)
n

1 + C

⌘�1

�
n 2

(1 + C)2
⇣
E('(1)

n , '(1)
n ) + E('(2)

n , '(2)
n )

⌘o�1
=

(1 + C)2

4
Re↵(0, an).

We thus obtain (3.27). Now for each z 2 X, choose n � 0 such that 2n  d(0, z) < 2n+1. We can then
take a sequence z = z0, z1, · · · , zn such that zi 2 V�i, d(zi, zi+1)  2i for i = 0, 1, · · · , n�1 (zi = zi+1

is allowed) and d(0, zn) = 2n. Similarly to (3.27), we can show that Re↵(zi, zi+1)  c5(5/3)i. Thus,
using the triangle inequality, we have

Re↵(0, z) 
n�1X
i=0

Re↵(zi, zi+1) + Re↵(0, zn)  c5

⇣ n�1X
i=0

(5/3)i + (5/3)n
⌘
 c6(5/3)n  c7d(0, z)dw�df .

So the desired estimate is obtained.
(iii) For each R, take n 2 N such that 2n�1  R < 2n. Then, by the shorting law and Lemma 3.21,

Re↵(0, B(0, R)c) � Re↵(0, {an, bn}) =
1
2

⇣5
3

⌘n
=

1
2
2n(dw�df ) � c8R

dw�df ,

so we have the desired estimate.
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By Proposition 3.16, 3.19, 3.22, we see that the following heat kernel estimate holds for simple
random walk on the 2-dimensional Sierpinski gasket.

c1n
�df /dw  p2n(0, 0)  c2n

�df /dw , 8n � 1. (3.28)

Vicsek sets

０

Figure 2: 2-dimensional Vicsek set

We next consider the Vicsek set (Figure 2). Noting that this graph is loop-free, we can apply Lemma
3.1 (ii), and Lemma 3.1 (i) trivially holds. So by a similar proof we can obtain Proposition 3.22 with
df = log 5/ log 3 and dw = df + 1, so (3.28) holds. This shows that the estimate in Proposition 3.13
is in general the best possible estimate when D = log 5/ log 3. By considering the generalization of
Vicsek set in Rd, we can see that the same is true when D = log(1 + 2d)/ log 3 (which is a sequence
that goes to infinity as d ! 1). In fact it is proved in [14, Theorem 5.1] that the estimate in
Proposition 3.13 is in general the best possible estimate for any D � 1.

Remark 3.23 It is known that the following heat kernel estimate holds for simple random walk on
the pre-Sierpinski gasket, on Vicsek sets, and in general on the so-called nested fractal graphs (see
[65, 72]):

c1n
�df /dw exp

⇣
�c2

⇣d(x, y)dw

n

⌘ 1
dw�1

⌘
 pn(x, y)+pn+1(x, y)  c3n

�df /dw exp
⇣
�c4

⇣d(x, y)dw

n

⌘ 1
dw�1

⌘
,

for all x, y 2 X, n � d(x, y). (Note that pn(x, y) = 0 if n < d(x, y).)

4 Heat kernel estimates for random weighted graphs

From this section, we consider the situation where we have a random weighted graph {(X(!), µ!) :
! 2 ⌦} on a probability space (⌦,F , P). We assume that, for each ! 2 ⌦, the graph X(!) is infinite,
locally finite and connected, and contains a marked vertex 0 2 G. We denote balls in X(!) by
B!(x, r), their volume by V!(x, r), and write

B(R) = B!(R) = B!(0, R), V (R) = V!(R) = V!(0, R).
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We write Y = (Yn, n � 0, P x
! , x 2 X(!)) for the Markov chain on X(!), and denote by p!n(x, y) its

transition density with respect to µ!. Let

⌧R = ⌧B(0,R) = min{n � 0 : Yn /2 B(0, R)}.

4.1 Random walk on a random graph

Recall that FR,� is defined in (3.22). We have the following quenched estimates.

Theorem 4.1 Let R0, �0 � 1. Assume that there exist p(�) � 0 with p(�)  c1��q0 for some
q0, c1 > 0 such that for each R � R0 and � � �0,

P({! : (X(!), µ!) satisfies FR,�}) � 1� p(�). (4.1)

Then there exist ↵1, ↵2 > 0 and ⌦0 ⇢ ⌦ with P(⌦0) = 1 such that the following holds: For all ! 2 ⌦0

and x 2 X(!), there exist Nx(!), Rx(!) 2 N such that

(log n)�↵1n�
D

D+↵  p!2n(x, x)  (log n)↵1n�
D

D+↵ , 8n � Nx(!), (4.2)

(log R)�↵2RD+↵  Ex
!⌧R  (log R)↵2RD+↵, 8R � Rx(!). (4.3)

Further, if (4.1) holds with p(�)  exp(�c2�q0) for some q0, c2 > 0, then (4.2), (4.3) hold with
log log n instead of log n.

Proof. We will take⌦ 0 = ⌦1 \ ⌦2 where⌦ 1 and⌦ 2 are defined below.
First we prove (4.2). Write w(n) = p!2n(0, 0). By Proposition 3.16 and 3.19, we have, taking

n = [c1(�)RD+↵],
P((c1�

q1)�1  nD/(D+↵)w(n)  c1�
q1) � 1� 2p(�). (4.4)

Let nk = [ek] and �k = k2/q0 (by choosing R suitably). Then, since
P

p(�k) < 1, by the Borel–
Cantelli lemma there exists K0(!) with P(K0 < 1) = 1 such that c�1

1 k�2q1/q0  nD/(D+↵)
k w(nk) 

c1k2q1/q0 for all k � K0(!). Let⌦ 1 = {K0 < 1}. For k � K0 we therefore have

c�1
2 (log nk)�2q1/q0n�D/(D+↵)

k  w(nk)  c2(log nk)2q1/q0n�D/(D+↵)
k ,

so that (4.2) holds for the subsequence nk. The spectral decomposition gives that p!2n(0, 0) is mono-
tone decreasing in n. So, if n > N0 = eK0 + 1, let k � K0 be such that nk  n < nk+1. Then

w(n)  w(nk)  c2(log nk)2q1/q0n�D/(D+↵)
k  2eD/(D+↵)c2(log n)2q1/q0n�D/(D+↵).

Similarly w(n) � w(nk+1) � c3n�D/(D+↵)(log n)�2q1/q0 . Taking q2 > 2q1/q0, so that the constants
c2, c3 can be absorbed into the log n term, we obtain (4.2) for x = 0.

If x, y 2 X(!) and k = d!(x, y), then using the Chapman–Kolmogorov equation

p!2n(x, x)(p!k (x, y)µx(!))2  p!2n+2k(y, y).
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Let ! 2 ⌦1, x 2 X(!), write k = d!(0, x), h!(0, x) = (p!k (x, 0)µx(!))�2, and let n � N0(!) + 2k.
Then

p!2n(x, x)  h!(0, x)p!2n+2k(0, 0)  h!(0, x)
(log(n + k))q2

(n + k)D/(D+↵)
 h!(0, x)

(log(2n))q2

nD/(D+↵)
 (log n)1+q2

nD/(D+↵)

provided log n � 2q2h!(0, x). Taking

Nx(!) = exp(2q2h!(0, x)) + 2d!(0, x) + N0(!), (4.5)

and ↵1 = 1 + q2, this gives the upper bound in (4.2). The lower bound is obtained in the same way.

Next we prove (4.3). Write F (R) = Ex
!⌧R. By (3.23) and (3.24), we have

P(c1�
�q0RD+↵  F (R)  2c2�RD+↵, 8x 2 B(0, "�R)) � 1� p(�). (4.6)

Let Rn = en and �n = n2/q0 , and let Fn be the event of the left hand side of (4.6) when R = Rn,
� = �n. Then we have P(F c

n)  p(�n)  n�2, so by Borel–Cantelli, if⌦ 2 = lim inf Fn, then P(⌦2) = 1.
Hence there exist M0 with M0(!) < 1 on⌦ 2, and c3, q3 > 0 such that for ! 2 ⌦2 and x 2 X(!),

(c3�
q3
n )�1  F (Rn)

RD+↵
n

 c3�
q3
n , (4.7)

provided n � M0(!) and n is also large enough so that x 2 B("�nRn). Writing Mx(!) for the
smallest such n,

c�1
3 (log Rn)�2q3/q0RD+↵

n  F (Rn)  c3(log Rn)2q3/q0RD+↵
n , for all n � Mx(!).

As F (R) is monotone increasing, the same argument as in the proof of (4.2) above enables us to
replace F (Rn) by F (R), for all R � Rx = 1 + eMx . Taking ↵2 > 2q3/q0, we obtain (4.3).

The case p(�)  exp(�c2�q0) can be proved similarly by the following changes; take �k =
(e+(2/c2) log k)1/q0 instead of �k = k2/q0 , and take Nx(!) = exp(exp(Ch!(0, x)))+2d!(0, x)+N0(!)
in (4.5). Then, log n (resp. log nk, log Rn) in the above proof are changed to log log n (resp. log log nk,
log log Rn) and the proof goes through.

We also have the following annealed estimates. Note that there are no log terms in them.

Proposition 4.2 Suppose (4.1) holds for some p(�) � 0 which goes to 0 as � ! 1, and suppose
the following hold,

E[Re↵(0, B(R)c)V (R)]  c1R
D+↵, 8R � 1. (4.8)

Then

c2R
D+↵  E[E0

!⌧R]  c3R
D+↵, 8R � 1, (4.9)

c4n
�D/(D+↵)  E[p!2n(0, 0)], 8n � 1. (4.10)
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Suppose in addition that there exist c5 > 0, �0 > 1 and q00 > 2 such that

P(��1RD  V (R), Re↵(0, y)  �d(0, y)↵, 8y 2 B(R)) � 1� c5

�q00
, (4.11)

for each R � 1, � � �0. Then

E[p!2n(0, 0)]  c6n
�D/(D+↵), 8n � 1. (4.12)

Proof. We begin with the upper bounds in (4.9). By (3.26) and (4.8),

E[E0
!⌧R]  E[Re↵(0, B(R)c)V (R)]  c1R

D+↵.

For the lower bounds, it is su�cient to find a set F ⇢ ⌦ of ‘good’ graphs with P(F ) � c2 > 0
such that, for all ! 2 F we have suitable lower bounds on E0

!⌧R or p!2n(0, 0). We assume that R � 1
is large enough so that "�0R � 1, where �0 is chosen large enough so that p(�0) < 1/4. We can then
obtain the results for all n (chosen below to depend on R) and R by adjusting the constants c2, c4

in (4.9) and (4.10).
Let F be the event of the left hand side of (4.6) when � = �0. Then P(F ) � 3

4 , and for ! 2 F ,
E0
!⌧R � c3�

�q0
0 RD+↵. So,

E[E0
· ⌧R] � E[E0

· ⌧R : F ] � c3�
�q0
0 RD+↵P(F ) � 3c3

4
��q0

0 RD+↵.

Also, by (4.4), if n = [c4(�0)RD+↵], then p!2n(0, 0) � c5�
�q1
0 n�D/(D+↵). So, given n 2 N, choose R

so that n = [c4(�0)RD+↵] and let F be the event of the left hand side of (4.4). Then

Ep·2n(0, 0) � P(F )c5�
�q1
0 n�D/(D+↵) � 3c5

4
��q1

0 n�D/(D+↵),

giving the lower bound in (4.10).
Finally we prove (4.12). Let Hk be the event of the left hand side of (4.11) with � = k. By

(3.17), we see that p!2n(0, 0)  c6kn�D/(D+↵) if ! 2 Hk, where R is chosen to satisfy n = 2[R]D+↵.
Since P([kHk) = 1, using (4.11), we have

Ep!2n(0, 0) 
X

k

c6(k + 1)n�D/(D+↵)P(Hk+1 \Hk) 
X

k

c6(k + 1)n�D/(D+↵)P(Hc
k)

 c7n
�D/(D+↵)

X
k

(k + 1)k�q00 < 1,

since q00 > 2. We thus obtain (4.12).

Remark 4.3 With some extra e↵orts, one can obtain quenched estimates of max0kn d(0, Yk) and
µ(Wn) where Wn = {Y0, Y1, · · · , Yn} (range of the random walk), and annealed lower bound of
E0
!d(0, Yn). See [87, (1.23), (1.28), (1.31)] and [18, (1.16), (1.20), (1.23)].
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4.2 The IIC and the Alexander-Orbach conjecture

The problem of random walk on a percolation cluster — the ‘ant in the labyrinth’ [57] — has received
much attention both in the physics and the mathematics literature. From the next section, we will
consider random walk on a percolation cluster, so X(!) will be a percolation cluster.

Let us first recall the bond percolation model on the lattice Zd: each bond is open with probability
p 2 (0, 1), independently of all the others. Let C(x) be the open cluster containing x; then if
✓(p) = Pp(|C(x)| = +1) it is well known (see [61]) that there exists pc = pc(d) such that ✓(p) = 0 if
p < pc and ✓(p) > 0 if p > pc.

If d = 2 or d � 19 (or d > 6 for spread-out models mentioned below) it is known (see for example
[61, 106]) that ✓(pc) = 0, and it is conjectured that this holds for d � 2. At the critical probability
p = pc, it is believed that in any box of side n there exist with high probability open clusters of
diameter of order n. For large n the local properties of these large finite clusters can, in certain
circumstances, be captured by regarding them as subsets of an infinite cluster G, called the incipient
infinite cluster (IIC for short). This IIC G = G(!) is our random weighted graph X(!).

IIC was constructed when d = 2 in [76], by taking the limit as N ! 1 of the cluster C(0)
conditioned to intersect the boundary of a box of side N with center at the origin. For large d a
construction of the IIC in Zd is given in [69], using the lace expansion. It is believed that the results
there will hold for any d > 6. [69] also gives the existence and some properties of the IIC for all d > 6
for spread-out models: these include the case when there is a bond between x and y with probability
pL�d whenever y is in a cube side L with center x, and the parameter L is large enough. We write
Gd for the IIC in Zd. It is believed that the global properties of Gd are the same for all d > dc, both
for nearest neighbor and spread-out models. (Here dc is the critical dimension which is 6 for the
percolation model.) In [69] it is proved for spread-out models that Gd has one end – i.e. any two
paths from 0 to infinity intersect infinitely often. See [106] for a summary of the high-dimensional
results.

Let Y = {Y !
t }t�0 be the (continuous time) simple random walk on Gd = Gd(!), and q!t (x, y) be

its heat kernel. Define the spectral dimension of Gd by

ds(Gd) = �2 lim
t!1

log q!t (x, x)
log t

,

(if this limit exists). Alexander and Orbach [7] conjectured that, for any d � 2, ds(Gd) = 4/3. While
it is now thought that this is unlikely to be true for small d (see [71, Section 7.4]), the results on the
geometry of Gd for spread-out models in [69] are consistent with this holding for d above the critical
dimension.

Recently, it is proved that the Alexander-Orbach conjecture holds for random walk for the IIC
on a tree ([19]), on a high dimensional oriented percolation cluster ([18]), and on a high dimensional
percolation cluster ([86]). In all cases, we apply Theorem 4.1, namely we verify (4.1) with D = 2, ↵ =
1 to prove the Alexander-Orbach conjecture. We will discuss details in the next two sections.
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5 The Alexander-Orbach conjecture holds when two-point func-

tions behave nicely

This section is based on the paper by Kozma-Nachmias ([86]) with some simplification by [101].

5.1 The model and main theorems

We write x $ y if x is connected to y by an open path. We write x
r$y if there is an open path of

length less than or equal to r that connects x and y.

Definition 5.1 Let (X,E) be a infinite graph.
(i) A bijection map f : X ! X is called a graph automorphism for X if {f(u), f(v)} 2 E if and only
if {u, v} 2 E. Denote the set of all the automorphisms of X by Aut(X)
(ii) (X,E) is said to be transitive if for any u, v 2 X, there exists � 2 Aut(X) such that �(u) = v.
(iii) For each x 2 X, define the stabilizer of x by

S(x) = {� 2 Aut(X) : �(x) = x}.

(iv) A transitive graph X is unimodular if for each x, y 2 X,

|{�(y) : � 2 S(x)}| = |{�(x) : � 2 S(y)}|.

One of the important property of the unimodular transitive graph is that it satisfies the following
X

x,y,z2X
d(0,z)=K

P(x$0 = z$y) =
X

x,y,z2X
d(x,z)=K

P(0$x = z$y), (5.1)

for each K 2 N. This can be verified on Zd using the property of group translations, and it can be
extended to unimodular transitive graphs using the mass transport technique (see for example, [102,
(3.14)]).

Let (X,µ) be a unimodular transitive weighted graph that has controlled weights, with weight 1
on each bond, i.e. µxy = 1 for x ⇠ y. In this section, allowing some abuse of notation, we denote
B(x, r) = {y 2 X : d(x, y)  r} and set @A = {x 2 A : 9z 2 Ac such that z ⇠ x}.

We fix a root 0 2 X as before. (Note that since the graph is unimodular and transitive, the
results in this section is independent of the choice of 0 2 X.) Consider a bond percolation on X and
let pc = pc(X) be its critical probability, namely

Pp(There exists an open 1-cluster.) > 0 for p > pc(X),

Pp(There exists an open 1-cluster.) = 0 for p < pc(X).

In this section, we will consider the case p = pc and denote P := Ppc . Throughout this section, we
assume that the following limit exists (independently on how d(0, x) !1).

PIIC(F ) = lim
d(0,x)!1

P(F |0 $ x) (5.2)
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for any cylinder event F (i.e., an event that depends only on the status of a finite number of edges).
We denote the realization of IIC by G(!). For the critical bond percolations on Zd, this is proved in
[69] for d large using the lace expansion.

We consider the following two conditions. The first is the triangle condition by Aizenman-
Newman ([3]), which indicates mean-field behavior of the model:

X
x,y2X

P(0 $ x)P(x $ y)P(y $ 0) < 1. (5.3)

Note that the value of the left hand side of (5.3) does not change if 0 is changed to any v 2 X because
X is unimodular and transitive.

The second is the following condition for two-point functions: There exist c0, c1, c2 > 0 and a
decreasing function  : R+ ! R+ with  (r)  c0 (2r) for all r > 0 such that

c1 (d(0, x))  P(0 $ x)  c2 (d(0, x)) 8x 2 X such that x, (5.4)

where d(·, ·) is the original graph distance on X. Because X is transitive, we have P(y $ z) = P(0 $
x) when d(0, x) = d(y, z).

Since X is unimodular and transitive, we can deduce the following from the above mentioned
two conditions.

Lemma 5.2 (i) (5.3) implies the following open triangle condition:

lim
K!1

sup
w:d(0,w)�K

X
x,y2X

P(0$x)P(x$y)P(y$w) = 0 . (5.5)

(ii) (5.5) implies the following estimates: There exist C1, C2, C3 > 0 such that

P
�
|C(0)| > n

�
 C1n

�1/2, 8n � 1, (5.6)

C2(pc � p)�1  E[|C(0)|]  C3(pc � p)�1, 8p < pc. (5.7)

where C(0) is the connected component containing 0.

Proof. (i) This is proved in [83] (see [23, Lemma 2.1] for Zd).
(ii) (5.5) implies (5.7) (see [3, Proposition 3.2] for Zd and [102, Page 291] for general unimodular
transitive graphs), and the following for h > 0 small (see [23, (1.13)] for Zd and [102, Page 292] for
general unimodular transitive graphs).

c1h
1/2 

1X
j=1

P(|C(0)| = j)(1� e�jh)  c2h
1/2.

Taking h = 1/n, we have P
�
|C(0)| > n

�
 C1n�1/2.

For the critical bond percolations on Zd, (5.4) with  (x) = x2�d was obtained by Hara, van der
Hofstad and Slade [67] for the spread-out model and d > 6, and by Hara [66] for the nearest-neighbor
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model with d � 19 using the lace expansion. (They obtained the right asymptotic behavior including
the constant.) Given (5.4) with  (x) = x2�d for d > 6, it is easy to check that (5.3) holds as well.

For each subgraph G of X, write Gp for the result of p-bond percolation. Define B(x, r;G) =
{z : dGpc

(x, z)  r} where dGpc
(x, z) is the length of the shortest path between x and z in Gpc (it is

1 if there is no such path). Note that pc = pc(X). Now define

H(r;G) = {@B(0, r;G) 6= ;}, �(r) = sup
G⇢X

P(H(r;G)).

Note that

�(r) = sup
G⇢X

P({@B(v, r;G) 6= ;}), E[|B(0, r)|] = E[|B(v, r)|], 8v 2 X, (5.8)

since X is transitive. The following two propositions play a key role.

Proposition 5.3 Assume that the triangle condition (5.3) holds. Then there exists a constant C > 0
such that the following hold for all r � 1.

i) E[|B(0, r)|]  Cr, ii)�( r)  C/r.

Proposition 5.4 Assume that (5.4) and i), ii) in Proposition 5.3 hold. Then (4.1) in Theorem 4.1
holds for PIIC with p(�) = ��1/2, D = 2 and ↵ = 1.

Consider simple random walk on the IIC and let p!n(·, ·) be its heat kernel. Combining the above
two propositions with Theorem 4.1, we can derive the following theorem.

Theorem 5.5 Assume that (5.3) and (5.4) hold. Then there exist ↵1 > 0 and N0(!) 2 N with
P(N0(!) < 1) = 1 such that

(log n)�↵1n�
2
3  p!2n(0, 0)  (log n)↵1n�

2
3 , 8n � N0(!), PIIC � a.e. !.

In particular, the Alexander-Orbach conjecture holds for the IIC.

By the above mentioned reason, for the critical bond percolations on Zd, the Alexander-Orbach
conjecture holds for the IIC for the spread-out model with d > 6, and for the nearest-neighbor model
with d � 19.

Remark 5.6 (i) In fact, the existence of the limit in (5.2) is not relevant in the arguments. Indeed,
even if the limit does not exist, subsequential limits exist due to compactness, and the above results
hold for each limit. So the conclusions of Theorem 5.5 hold for any IIC measure (i.e. any subse-
quential limit).
(ii) The opposite inequalities of Theorem 5.3 (i.e. E[|B(0, r)|] � C 0r and �(r) � C 0/r for all r � 1)
hold under weaker assumption. See Proposition 5.12.

In the following subsections, we prove Proposition 5.3 and 5.4.
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5.2 Proof of Proposition 5.4

The proof splits into three lemmas.

Lemma 5.7 Assume that (5.4) and i) in Proposition 5.3 hold. Then there exists a constant C > 0
such that for r � 1 and x 2 X with d(0, x) � 2r, we have

P(|B(0, r)| � �r2|0 $ x)  C��1, 8� � 1. (5.9)

Proof. It is enough to prove the following for r � 1 and x 2 X with d(0, x) � 2r:

E[|B(0, r)| · 1{0$x}
⇤
 c1r

2 (d(0, x)). (5.10)

Indeed, we then have, using (5.4) and (5.10),

P(|B(0, r)| � �r2|0 $ x)  E[|B(0, r)||0 $ x]
�r2

=
E[|B(0, r)| · 1{0$x}

⇤
�r2P(0 $ x)

 c1r2 (d(0, x))
�r2c2 (d(0, x))

 c3�
�1,

which gives (5.9). So we will prove (5.10).
We have

E[|B(0, r)| · 1{0$x}
⇤

=
X

z

P(0 r$z , 0$x) 
X
z,y

P({0 r$y} � {y r$z} � {y$x})


X
z,y

P(0 r$y)P(y r$z)P(y$x). (5.11)

Here the first inequality is because, if {0 r$z, 0$x} occurs, then there must exist some y such that
{0 r$y}, {y r$z} and {y$x} occur disjointly. The second inequality uses the BK inequality twice.

For d(0, y)  r and d(0, x) � 2r, we have d(x, y) � d(0, x)� d(0, y) � d(0, x)/2, so that

P(y$x)  c4 (d(x, y))  c4 (d(0, x)/2)  c5 (d(0, x)).

Thus,

(RHS of (5.11))  c5 (d(0, x))
X
z,y

P(0 r$y)P(y r$z)  c5r (d(0, x))
X
z,y

P(0 r$y)  c5r
2 (d(0, x)).

Here we use i) in Proposition 5.3 to sum, first over z (note that (5.8) is used here) and then over y

in the second and the third inequality. We thus obtain (5.10).

Lemma 5.8 Assume that (5.4) and ii) in Proposition 5.3 hold. Then there exists a constant C > 0
such that for r � 1 and x 2 X with d(0, x) � 2r, we have

P(|B(0, r)|  r2��1|0 $ x)  C��1, 8� � 1. (5.12)
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Proof. It is enough to prove the following for r � 1, " < 1 and x 2 X with d(0, x) � 2r:

P
⇣
|B(0, r)|  "r2 , 0$x

⌘
 c1" (d(0, x)). (5.13)

Indeed, we then have, using (5.4) and (5.13),

P(|B(0, r)|  r2��1|0 $ x) =
P(|B(0, r)|  r2��1, 0 $ x)

P(0 $ x)
 c1��1 (d(0, x))

c2 (d(0, x))
 c3�

�1,

which gives (5.12). So we will prove (5.13).
If |B(0, r)|  "r2, there must exist j 2 [r/2, r] such that |@B(0, j)|  2"r. We fix the smallest

such j. Now, if 0$x, there exists a vertex y 2 @B(0, j) which is connected to x by a path that does
not use any of the vertices in B(0, j � 1). We say this “x$y o↵ B(0, j � 1)”. Let A be a subgraph
of X such that P(B(0, j) = A) > 0. It is clear that, for any A and any y 2 @A, {y$x o↵ A \ @A} is
independent of {B(0, j) = A}. Thus,

P(0$x | B(0, j) = A) 
X

y2@A

P(y$x o↵ A \ @A | B(0, j) = A)

=
X

y2@A

P(y$x o↵ A \ @A) 
X

y2@A

P(y$x)  C|@A| (d(0, x)), (5.14)

where we used d(x, y) � d(0, x) � d(0, y) � d(0, x)/2 in the last inequality. By the definition of j

we have |@A|  2"r and summing over all A with P(B(0, j) = A) > 0 and @B(0, r/2) 6= ; (because
0$x) gives

P(|B(0, r)|  "r2, 0$x)  C"r (d(0, x)) ·
X
A

P(B(0, j) = A).

Since the events {B(0, j) = A1} and {B(0, j) = A2} are disjoint for A1 6= A2, we haveX
A

P(B(0, j) = A) = P(@B(0, r/2) 6= ;)  c/r,

where ii) in Proposition 5.3 is used in the last inequality. We thus obtain (5.13).

Lemma 5.9 Assume that (5.4) and i), ii) in Proposition 5.3 hold. Then there exists a constant
C > 0 such that for r � 1 and x 2 X with d(0, x) � 2r, we have

P(Re↵(0, @B(0, r))  r��1|0 $ x)  C��1/2, 8� � 1. (5.15)

Proof of Proposition 5.4. Note that Re↵(0, z)  d(0, z) holds for all z 2 B(0, R), and |B(0, R)| 
V (0, R)  c1|B(0, R)| for all R � 1. By Lemma 5.7, 5.8 and 5.9, for each R � 1 and x 2 X with
d(0, x) � 2R, we have

P({! : B(0, R) satisfies FR,�}|0 $ x) � 1� 3C��1/2 8� � 1.

Using (5.2), we obtain the desired estimate.

So, all we need is to prove Lemma 5.9. We first give definition of lane introduced in [95] (similar
notion was also given in [19]).
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Definition 5.10 (i) An edge e between @B(0, j�1) and @B(0, j) is called a lane for r if there exists
a path with initial edge e from @B(0, j � 1) to @B(0, r) that does not return to @B(0, j � 1).
(ii) Let 0 < j < r and � � 1. We say that a level j has �-lanes for r if there exist at least � edges
between @B(0, j � 1) and @B(0, j) which are lanes for r.
(iii) We say that 0 is �-lane rich for r if more than half of j 2 [r/4, r/2] have �-lanes for r.

Note that if 0 is not �-lane rich for r, then

Re↵(0, @B(0, r)) � r

8�
. (5.16)

Indeed, since 0 is not �-lane rich, there exist j1, j2, · · · , jl 2 [r/4, r/2], l � r/8 that do not have
�-lanes. For j 2 [r/4, r/2], let

Jj = {e : e is a lane for r that is between @B(0, j � 1) and @B(0, j)}. (5.17)

Then {Jjk}l
k=1 are disjoint cut-sets separating 0 from @B(0, r). Since |Jjk |  �, by the shorting law

we have Re↵(0, @B(0, r)) �
Pl

k=1 |Jjk |�1 � l/� � r/(8�), so that (5.16) holds.

Proof of Lemma 5.9. It is enough to prove the following for r � 1, � > 1 and x 2 X with
d(0, x) � 2r:

P
⇣
Re↵(0, @B(0, r))  ��1r , 0$x

⌘
 c1�

�1/2 (d(0, x)). (5.18)

Indeed, we then have, using (5.4) and (5.18),

P(Re↵(0, @B(0, r))  r��1|0 $ x) =
P(Re↵(0, @B(0, r))  r��1, 0 $ x)

P(0 $ x)

 c1��1/2 (d(0, x))
c2 (d(0, x))

 c3�
�1/2,

which gives (5.15). So we will prove (5.18). The proof consists of two steps.

Step 1 We will prove the following; There exists a constant C > 0 such that for any r � 1, for any
event E measurable with respect to B(0, r) and for any x 2 X with d(0, x) � 2r,

P(E \ {0$x})  C
p

rP(E) (d(0, x)). (5.19)

We first note that by (5.10), there exists some j 2 [r/2, r] such that

E
⇥
|@B(0, j)| · 1{0$x}

⇤
 Cr (d(0, x)).

Using this and the Chebyshev inequality, for each M > 0 we have

P(E \ {0$x})  P(|@B(0, j)| > M, 0$x) + P(E \{| @B(0, j)|  M, 0$x})

 Cr (d(0, x))
M

+ P(E \{| @B(0, j)|  M, 0$x}).
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For the second term, using (5.14) we have, for each A,

P({B(0, j) = A} \ {0$x})  C|@A| (d(0, x))P(B(0, j) = A).

Summing over all subgraphs A which satisfy E (measurability of E with respect to B(0, r) is used
here) and |@A|  M gives P(E \{| @B(0, j)|  M, 0$x})  CM (d(0, x))P(E). Thus

P(E \ {0$x})  Cr (d(0, x))
M

+ CM (d(0, x))P(E).

Taking M =
p

r/P(E), we obtain (5.19).

Step 2 For j 2 [r/4, r/2], let us condition on B(0, j), take an edge e between @B(0, j�1) and @B(0, j),
and denote the end vertex of e in @B(0, j) by ve. Let Gj be a graph that one gets by removing all
the edges with at least one vertex in B(0, j � 1). Then, {e is a lane for r} ⇢ {@B(ve, r/2;Gj) 6= ;}
in the graph Gj . By the definition of � and ii) in Proposition 5.3 (note that (5.8) is used here), we
have

P(@B(ve, r/2;Gj) 6= ;|B(0, j))  �(r/2)  C/r.

Recall the definition of Jj in (5.17). By the above argument, we obtain

E[|Jj | | B(0, j)] = P (
X

ve2@B(0,j)

1{e is a lane for r}|B(0, j))

 P (
X

ve2@B(0,j)

1{@B(ve,r/2;Gj)6=;}|B(0, j))  C

r
|@B(0, j)|.

This together with i) in Proposition 5.3 implies

E[
r/2X

j=r/4

|Jj |] =
r/2X

j=r/4

X
A

E[|Jj |1{B(0,j)=A}]

 C

r

r/2X
j=r/4

X
A

|@A|P(B(0, j) = A) =
C

r

r/2X
j=r/4

E[|@B(0, j)|]  C

r
E[|B(0, r)|]  C 0.

So, P(0 is �-lane rich for r)  C/(�r). Combining this with (5.16), we obtain

P
⇣
Re↵(0, @B(0, r))  ��1r

⌘
 C

�r
.

(Here Re↵(0, @B(0, r)) = 1 if @B(0, r) = ;.) This together with (5.19) in Step 1 implies (5.18).

5.3 Proof of Proposition 5.3 i)

The original proof of Proposition 5.3 i) by Kozma-Nachmias ([86]) (with some simplification in [82])
used an induction scheme which is new and nice, but it requires several pages. Very recently (in fact,
2 weeks before the deadline of the lecture notes), I learned a nice short proof by Sapozhnikov [101]
which we will follow. The proof is also robust in the sense we do not need the graph to be transitive
(nor unimodular).
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Proposition 5.11 If there exists C1 > 0 such that Ep[|C(0)|] < C1(pc � p)�1 for all p < pc, then
there exists C2 > 0 such that E[|B(0, r)|]  C2r for all r � 1.

Proof. It is su�cient to prove for r � 2/pc. For p < pc, we will consider the coupling of percolation
with parameter p and pc as follows. First, each edge is open with probability pc and closed with
1�pc independently. Then, for each open edge, the edge is kept open with probability p/pc and gets
closed with 1� p/pc independently. By the construction, for each r 2 N, we have

Pp(x
r$y) �

⇣ p

pc

⌘r
Ppc(x

r$y), 8x, y 2 X.

Summing over y 2 X and using Pp(x
r$y)  Pp(x$y) and the assumption, we have

E[|B(0, r)|] 
⇣ p

pc

⌘r
Ep[|C(0)|] 

⇣ p

pc

⌘r
(pc � p)�1.

Taking p = pc � 1/r, we obtain the result.

Using Lemma 5.2, we see that (5.3) implies (5.7) for unimodular transitive graphs. So the proof
of Proposition 5.3 i) is completed.

As mentioned in Remark 5.6, the opposite inequalities of Proposition 5.3 hold under weaker
assumption. Let X be a connected, locally finite graph with 0 2 X.

Proposition 5.12
(i) If X is transitive, then there exists c1 > 0 such that E[|B(0, r)|] � c1r for all r � 1.
(ii) If X is unimodular transitive and satisfies (5.3), then there exists c2 > 0 such that �(r)  c2/r

for all r � 1.

Proof. (i) It is enough to prove E[|{x : d(0, x) = r}|] � 1 for r � 1. Assume by contradiction that
E(|{x : d(0, x) = r0}|)  1� c for some r0 2 N and c > 0. Let G(r) = E(|{x : d(0, x)  r}|). Then

G(2r0)�G(r0) = E[|{x : d(0, x) 2 (r0, 2r0]}|]
 E[|{(y, x) : d(0, y) = r0, d(y, x) 2 (1, r0] and y is on a geodesic from 0 to x}|]
 E[|{y : d(0, y) = r0}|] ·G(r0)  (1� c)G(r0).

where we used Reimer’s inequality and the transitivity of X in the second inequality. (Note that we
can use Reimer’s inequality here because H := {y : d(0, y) = r0} can be verified by examining all
the open edges of B(0, r0) and the closed edges in its boundary, while {x : d(y, x)  r0} for y 2 H

can be verified using open edges outside B(0, r0).) Similarly G(nr0)  (1� c)G(n�1, r0)+G(r0). A
simple calculation shows that this implies that G(nr0) 6! 1 as n !1, which contradicts criticality.
(ii) We use a second moment argument. By (i) and Proposition 5.3 i), we have E|B(0, � r)| � c1�r

and E|B(0, r)|  c2r for each r � 1, � � 1. Putting � = 2c2/c1, we get

E|B(0, � r) \B(0, r)| � c1�r � c2r = c2r .
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Next, noting that {0 �r$x, 0 �r$y} ⇢ {0 �r$z}�{z �r$x}�{z �r$y} for some z 2 Zd, the BK inequality gives

E[|B(0, � r)|2] 
X
x,y,z

P(0 �r$z)P(z �r$x)P(z �r$y) =
h X

x2Zd

P(0 �r$x)
i3
 c3r

3 ,

where the last inequality is due to Proposition 5.3 i). The ‘inverse Chebyshev’ inequality P(Z > 0) �
(EZ)2/EZ2 valid for any non-negative random variable Z yields that

P
�
|B(0, � r) \B(0, r)| > 0

�
� c2

2r
2

c3r3
� c4

r
,

which completes the proof since {|B(0, � r) \B(0, r)| > 0} ⇢ H(r).

Note that the idea behind the above proof of (i) is that if E[|{x : d(0, x) = r}|] < 1 then the
percolation process is dominated above by a subcritical branching process which has finite mean, and
this contradicts the fact that the mean is infinity. This argument works not only for the boundary of
balls for the graph distance, but also for the boundary of balls for any reasonable geodesic metric. I
learned the above proof of (i), which is based on that of [85, Lemma 3.1], from Kozma and Nachmias
([84]). The proof of (ii) is from that of [86, Theorem 1.3 (ii)].

5.4 Proof of Proposition 5.3 ii)

In order to prove Proposition 5.3 ii), we will only need (5.6). First, note that (5.6) implies the
following estimate: There exists C > 0 such that

P
�
|CG(0)| > n

�
 C1

n1/2
8G ⇢ X, 8n � 1, (5.20)

because |C(0)| � |CG(0)|. Here CG(0) is the connected component containing 0 for Gpc , where
pc = pc(X).

The key idea of the proof of Proposition 5.3 ii) is to make a regeneration argument, which is
similar to the one given in the proof of Lemma 5.9.

Proof of Proposition 5.3 ii). Let A � 1 be a large number that satisfies 33A2/3 + C1A2/3  A,

where C1 is from (5.20). We will prove that�( r)  3Ar�1. For this, it su�ces to prove

�(3k)  A

3k
, (5.21)

for all k 2 N [ {0}. Indeed, for any r, by choosing k such that 3k�1  r < 3k, we have

�(r)  �(3k�1)  A

3k�1
<

3A

r
.

We will show (5.21) by induction – it is trivial for k = 0 since A � 1. Assume that (5.21) holds for
all j < k and we prove it for k. Let " > 0 be a (small) constant to be chosen later. For any G ⇢ X,
we have

P(H(3k;G))  P
⇣
@B(0, 3k;G) 6= ;, |CG(0)|  "9k

⌘
+ P

�
|CG(0)| > "9k

�

 P
⇣
@B(0, 3k;G) 6= ;, |CG(0)|  "9k

⌘
+

C1p
"3k

, (5.22)
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where the last inequality is due to (5.20). We claim that

P
⇣
@B(0, 3k;G) 6= ;, |CG(0)|  "9k

⌘
 "3k+1(�(3k�1))2 . (5.23)

If (5.23) holds, then by (5.22) and the induction hypothesis, we have

P(H(3k;G))  "3k+1(�(3k�1))2 +
C1p
"3k

 "33A2 + C1"�1/2

3k
. (5.24)

Put " = A�4/3. Since (5.24) holds for any G ⇢ X, we have

�(3k)  33A2/3 + C1A2/3

3k
 A

3k
,

where the last inequality is by the choice of A. This completes the inductive proof of (5.21).
So, we will prove (5.23). Observe that if |CG(0)|  "9k then there exists j 2 [3k�1, 2 · 3k�1] such

that |@B(0, j;G)|  "3k+1. We fix the smallest such j. If, in addition, @B(0, 3k;G) 6= ; then at least
one vertex y of the "3k+1 vertices of level j satisfies @B(y, 3k�1;G2) 6= ;, where G2 ⇢ G is determined
from G by removing all edges needed to calculate B(0, j;G). By (5.8) and definition of � (with G2),
this has probability  �(3k�1). Summarizing, we have

P
⇣
@B(0, 3k;G) 6= ;, |CG(0)|  "9k

��� B(0, j;G)
⌘
 "3k+1�(3k�1) .

We now sum over possible values of B(0, j;G) and get an extra term of P(H(3k�1;G)) because we
need to reach level 3k�1 from v. Since P(H(3k�1;G))  �(3k�1), we obtain (5.23).

6 Further results for random walk on IIC

In this section, we will summarize results for random walks on various IICs.

6.1 Random walk on IIC for critical percolation on trees

Let n0 � 2 and let B be the n0-ary homogeneous tree with a root 0. We consider the critical bond
percolation on B, i.e. let {⌘e : e is a bond on B} be i.i.d. such that P (⌘e = 1) = 1

n0
, P (⌘e = 0) =

1� 1
n0

for each e. Set
C(0) = {x 2 B : 9⌘–open path from 0 to x}.

Let Bn = {x 2 B : d(0, x) = n} where d(·, ·) is the graph distance. Then, it is easy to see that
Zn := |C(0) \ Bn| is a branching process with o↵spring distribution Bin(n0,

1
n0

). Since E[Z1] = 1,
{Zn} dies out with probability 1, so C(0) is a finite cluster P -a.s.. In this case, we can construct the
incipient infinite cluster easily as follows.

Lemma 6.1 (Kesten [77]) Let A ⇢ Bk := {x 2 B : d(0, x)  k}. Then

9 lim
n!1

P (C(0) \ Bk = A|Zn 6= 0) = |A \ Bk|P (C(0) \ Bk = A) =: P0(A).

Further, there exists a unique probability measure P which is an extension of P0 to a probability on
the set of 1-connected subsets of B containing 0.
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Let (⌦,F , P) be the probability space given above and for each ! 2 ⌦, let G(!) be the rooted labeled
tree with distribution P. So, (⌦,F , P) governs the randomness of the media and for each ! 2 ⌦,
G(!) is the incipient infinite cluster (IIC) on B.

For each G = G(!), let {Yn} be a simple random walk on G. Let µ be a measure on G given by
µ(A) =

P
x2G µx, where µx is the number of open bonds connected to x 2 G. Define p!n(x, y) :=

Px(Yn = y)/µy.
In this example, (4.1) in Theorem 4.1 holds for P with p(�) = exp(�c�), D = 2 and ↵ = 1,

so we can obtain the following (6.1). In [19], further results are obtained for this example. Let
Px(·) := P(·|x 2 G).

Theorem 6.2 (i) There exist c0, c1, c2, ↵1 > 0 and a positive random variable S(x) with Px(S(x) �
m)  c0

log m for all x 2 B such that the following holds

c1n
�2/3(log log n)�↵1  p!2n(x, x)  c2n

�2/3(log log n)↵1 for all n � S(x), x 2 B. (6.1)

(ii) There exists C 2 (0,1) such that for each " 2 (0, 1), the following holds for P-a.e. !

lim inf
n!1

(log log n)(1�")/3n2/3p!2n(0, 0)  C. (6.2)

We will give sketch of the proof in the next subsection.
(6.2) together with (4.10) show that one cannot take ↵1 = 0 in (6.1). Namely, there is a oscillation

of order log log for the quenched heat kernel estimates.

Remark 6.3 (i) For N 2 N, let eZ(N)
n = N�1/3d(0, YNn), n � 0. In [77], Kesten proved that P-

distribution of eZ(N)
n converges as N ! 1. Especially, { eZ(N)

· } is tight with respect to the annealed
law P⇤ := P⇥P 0

!. On the other hand, by (6.2), it can be shown that { eZ(N)
· } is NOT tight with respect

to the quenched law.
(ii) In [45], it is proved that the P-distribution of the rescaled simple random walk on IIC converges
to Brownian motion on the Aldous tree ([5]).
(iii) (4.2) is proved with D = 2 and ↵ = 1 for simple random walk on IIC of the family tree for the
critical Galton-Watson branching process with finite variance o↵spring distribution ([54]), and for
invasion percolation on regular trees ([8]).
(iv) The behavior of simple random walk on IIC is di↵erent for the family tree of the critical Galton-
Watson branching process with infinite variance o↵spring distribution. In [48], it is proved that when
the o↵spring distribution is in the domain of attraction of a stable law with index � 2 (1, 2), then
(4.2) holds with D = �/(� � 1) and ↵ = 1. In particular, the spectral dimension of the random walk
is 2�/(2� � 1). It is further proved that there is an oscillation of order log for the quenched heat
kernel estimates. Namely, it is proved that there exists ↵2 > 0 such that

lim inf
n!1

n
�

2��1 (log n)↵2p!2n(0, 0) = 0, P� a.e. !.

Note that for this case convergence of P-distribution of N�(��1)/(2��1)d(0, YNn) as N !1 is already
proved in [77].
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One may wonder if the o↵-diagonal heat kernel estimates enjoy sub-Gaussian estimates given
in Remark 3.23. As we have seen, there is an oscillation already in the on-diagonal estimates for
quenched heat kernel, so one cannot expect estimates precisely the same one as in Remark 3.23.
However, the following theorem shows that such sub-Gaussian estimates holds with high probability
for the quenched heat kernel, and the precise sub-Gaussian estimates holds for annealed heat kernel.

Let {Yt}t�0 be the continuous time Markov chain with based measure µ. Set q!t (x, y) = Px(Yt =
y)/µy, and let Px,y(·) = P(·|x, y 2 G), Ex,y(·) = E(·|x, y 2 G). Then the following holds.

Theorem 6.4 ([19]) (i) Quenched heat kernel bounds:
a) Let x, y 2 G = G(!), t > 0 be such that N := [

p
d(x, y)3/t] � 8 and t � c1d(x, y). Then, there

exists F⇤ = F⇤(x, y, t) with Px0,y0

�
F⇤(x, y, t)

�
� 1� c2 exp(�c3N), such that

q!t (x, y)  c4t
�2/3 exp(�c5N), for all ! 2 F⇤.

b) Let x, y 2 G with x 6= y, m � 1 and  � 1. Then there exists G⇤ = G⇤(x, y,m, ) with
Px0,y0

�
G⇤(x, y,m, )

�
� 1� c6�1 such that

q!2T (x, y) � c7T
�2/3e�c8(+c9)m, for all ! 2 G⇤ where T = d(x, y)3/m2.

(ii) Annealed heat kernel bounds: Let x, y 2 B. Then

c1t
�2/3 exp

�
� c2(

d(x, y)3

t
)1/2

�
 Ex,yq

·
t(x, y)  c3t

�2/3 exp
�
� c4(

d(x, y)3

t
)1/2

�
, (6.3)

where the upper bound is for c5d(x, y)  t and the lower bound is for c5(d(x, y) _ 1)  t.

Note that (6.3) coincides the estimate in Remark 3.23 with df = 2, dw = 3.

6.2 Sketch of the Proof of Theorem 6.2

For x 2 G and r � 1, let M(x, r) be the smallest number m 2 N such that there exists A =
{z1, . . . , zm} with d(x, zi) 2 [r/4, 3r/4], 1  i  m, so that any path � from x to B(x, r)c must pass
through the set A. Similarly to (5.16), we have

Re↵(0, B(0, R)c) � R/(2M(0, R)). (6.4)

So, in order to prove (4.1) with p(�) = exp(�c�) (which implies Theorem 6.2 (i) due to the last
assertion of Theorem 4.1), it is enough to prove the following.

Proposition 6.5 (i) Let � > 0, r � 1. Then

P(V (0, r) > � r2)  c0 exp(�c1�), P(V (0, r) < � r2)  c2 exp(�c3/
p
�).

(ii) Let r,m � 1. Then
P(M(x, r) � m)  c4e

�c5m.
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Proof. (Sketch) Basically, all the estimates can be obtained through large deviation estimates of
the total population size of the critical branching process.

(i) Since G is a tree, |B(x, r)|  V (x, r)  2|B(x, r)|, so we consider |B(x, r)|. Let ⌘ be the
o↵spring distribution and pi := P (⌘ = i). (Note that E[⌘] = 1, Var[⌘] < 1.) Now define the size
biased branching process {Z̃n} as follows: Z̃0 = 1, P (Z̃1 = j) = (j + 1)pj+1 for all j � 0, and
{Z̃n}n�2 is the usual branching process with o↵spring distribution ⌘. Let Ỹn :=

Pn
k=0 Z̃k. Then,

Ỹr/2[r/2]
(d)
 |B(0, r)|

(d)
 Ỹr[r].

Here, for random variable ⇠, we denote ⇠[n] :
(d)
=

Pn
i=1 ⇠i, where {⇠i} are i.i.d. copies of ⇠.

Let Ȳn :=
Pn

k=0 Zk, i.e. the total population size up to generation n. Then, it is easy to get

P (Ȳn[n] � �n2)  c exp(�c0�), P (Ȳn[n]  �n2)  c exp(�c0/
p
�).

We can obtain similar estimates for Ỹn[n] so (i) holds.
(ii) For x, y 2 G, let �(x, y) be the unique geodesic between x and y. Let D(x) be the descendents

of x and Dr(x) = {y 2 D(x) : d(x, y) = r}. Let H be the backbone and b = br/4 2 H be the point
where d(0, b) = r/4. Define

A := [z2�(0,b)\{b}(Dr/4(z) \H), A⇤ = {z 2 A : Dr/4(z) 6= ;}.

Then, any path from 0 to B(0, r)c must cross A⇤[{b}, so that M(0, r)  |A⇤|+1. Define pr := P (z 2
A⇤|z 2 A) = P (Zr/4 > 0)  c/r. Let {i} be i.i.d. with distribution Ber(pr) that are independent of
|A|. Then we see that

|A⇤| (d)
=

|A|X
i=1

i, |A|
(d)
 Z̃r/4[r/4].

Using these, it is easy to obtain P (|A⇤| > m)  e�cm, so (ii) holds.

We next give the key lemma for the proof of Theorem 6.2 (ii)

Lemma 6.6 For any " 2 (0, 1),

lim sup
n!1

V (0, n)
n2(log log n)1�"

= 1, P� a.s.

Proof. (Sketch) Let D(x; z) = {y 2 D(x) : �(x, y) \ �(x, z) = {x}}, and define

Zn = |{x : x 2 D(yi; yi+1), d(x, yi)  2n�2, 2n�1  i  2n�1 + 2n�2}|.

Thus Zn is the number of descendants o↵ the backbone, to level 2n�2, of points y on the backbone
between levels 2n�1 and 2n�1 + 2n�2. So {Zn}n are independent, |B(0, 2n)| � Zn, and Zn

(d)
=
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Ỹ2n�2 [2n�2]. It can be shown that Ỹn[n]
(d)
� c1n2Bin(n, p1/n) for some p1 > 0 so we have, if an =

(log n)1�",

Pb(|B(0, 2n)| � an4n) � Pb(Zn � an4n) � P (Ỹ2n�2 [2n�2] � an4n)

� P (Bin (2n�2, p12�n+2) � c2an) � c3e
�c2an log an � c3/n.

As Zn are independent, the desired estimate follows by the second Borel-Cantelli Lemma.

Proof of Theorem 6.2 (ii). Let an = V (0, 2n)2�2n, tn = 2nV (0, 2n) = an22n. Using (3.21) with
↵ = 1, we have frV (0,r)(0)  c/V (0, r), so p!tn(0, 0)  c/V (0, 2n) = ct�2/3

n /a1/3
n . By Lemma 6.6,

an � (log n)1�" ⇣ (log log tn)1�". We thus obtain the result.

6.3 Random walk on IIC for the critical oriented percolation cluster in Zd (d > 6)

We first introduce the spread-out oriented percolation model. Let d > 4 and L � 1. We consider an
oriented graph with vertices Zd ⇥ Z+ and oriented bonds {((x, n), (y, n + 1)) : n � 0, x, y 2 Zd with
0  kx� yk1  L}. We consider bond percolation on the graph. We write (x, n) ! (y,m) if there
is a sequence of open oriented bonds that connects (x, n) and (y,m). Let

C(x, n) = {(y,m) : (x, n) ! (y,m)}

and define ✓(p) = Pp(|C(0, 0)| = 1). Then, there exists pc = pc(d, L) 2 (0, 1) such that ✓(p) > 0 for
p > pc and ✓(p) = 0 for p  pc. In particular, there is no infinite cluster when p = pc (see [61, Page
369], [62]).

For this example, the construction of incipient infinite cluster is given by van der Hofstad, den
Hollander and Slade [68] for d > 4. Let ⌧n(x) = Ppc((0, 0) ! (x, n)) and ⌧n =

P
x ⌧n(x).

Proposition 6.7 ([68]) (i) There exists L0(d) such that if L � L0(d), then

9 lim
n!1

Ppc(E|(0, 0) ! n) =: QIIC(E) for any cylindrical events E,

where (0, 0) ! n means (0, 0) ! (x, n) for some x 2 Zd. Further, QIIC can be extended uniquely to
a probability measure on the Borel �-field and C(0, 0) is QIIC–a.s. an infinite cluster.
(ii) There exists L0(d) such that if L � L0(d), then

9 lim
n!1

1
⌧n

X
x

Ppc(E \ {(0, 0) ! (x, n)}) =: PIIC(E) for any cylindrical events E.

Further, PIIC can be extended uniquely to a probability measure on the Borel �-field and PIIC = QIIC.

Let us consider simple random walk on the IIC. It is proved in [18] that (4.1) in Theorem 4.1 holds
for PIIC with p(�) = ��1, D = 2 and ↵ = 1, so we have (4.2).

Note that although many of the arguments in Section 5 can be generalized to this oriented model
straightforwardly, some are not, due to the orientedness. For example, it is not clear how to adapt

56



Proposition 5.3 ii) to the oriented model. (The definition of�( r) needs to be modified in order to
take orientedness into account.) For the reference, we will briefly explain how the proof of (4.1) goes
in [18], and explain why d > 6 is needed.

Volume estimates Let ZR := cV (0, R)/R2 and Z =
R 1
0 dtWt(Rd), where Wt is the canonical measure

of super-Brownian motion conditioned to survive for all time.

Proposition 6.8 The following holds for d > 4 and L � L0(d).
(i) limR!1 EIICZ l

R = EZ l  2�l(l + 1)! for all l 2 N. In particular, c1R2  EIICV (0, R)  c2R2 for
all R � 1.
(ii) PIIC(V (0, R)/R2 < �)  c1 exp{�c2/

p
�} for all R,� � 1.

Proof. (Sketch) (i) First, note that for l � 1 and R large,

EIICZ l
R ⇠ EIIC[(c0R�2|B(0, R)|)l] = (c0R�2)lEIIC[(

R�1X
n=0

X
y2Zd

I{(0,0)!(y,n)})l]. (6.5)

For l � 1 and m = (m1, · · · ,ml), define the IIC (l + 1)-points function as

⇢̂(l+1)
m =

X
y1,··· ,yl2Zd

PIIC((0, 0) ! (yi,mi), 8i = 1, · · · , l).

In [68], it is proved that for t = (t1, · · · , tl) 2 (0, 1]l,

lim
s!1

(
c0

s
)l⇢̂(l+1)

st = M̂ (l+1)
1,t := N(X1(Rd), Xt1(Rd), · · · , Xtl(Rd)),

where M̂ (l+1)
1,t is the (l+1)-st moment of the canonical measure N of super-BM Xt. So taking R !1

(RHS of (6.5)) =
c0l

R2l

R�1X
n1=0

· · ·
R�1X
nl=0

⇢̂(l+1)
n1,··· ,nl =

1
R

R�1X
n1=0

· · · 1
R

R�1X
nl=0

c0l

Rl
⇢̂(l+1)

R~t

!
Z 1

0
dt1 · · ·

Z 1

0
dtlM̂

(l+1)
1,t = EZ l where ~t = (n1R

�1, · · ·nlR
�1).

(ii) By (i), we see that for any ✏ > 0, there exists � > 0 such that QIIC(V (0, R)/R2 < �) < ✏. Now
the chaining argument gives the desired estimate.

From Proposition 6.8, we can verify the volume estimates in (4.1). As we see, we can obtain it
for all d > 4.

Resistance estimates Following [18], define cut set at level n 2 [1, R] as follows:

D(n) =
⇢

e = ((w, n� 1), (x, n)) ⇢ G :
(x, n) is RW-connected to level R by a path
in G \ {(z, l) : l � n}

�
.

Here ‘(x, n) is RW-connected to level R’ means there exists a sequence of non-oriented bonds con-
necting (x, n) to (y,R) for some y 2 Zd.
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Proposition 6.9 For d > 6, there exists L1(d) � L0(d) such that for L � L1(d),

EIIC(|D(n)|)  c1(a, d), 0 < 8n < aR, 0 < 8a < 1, 8R � 1.

Note that similarly to (5.16), we have Re↵(0, @B(0, R)) �
PR

n=1
1

|D(n)| . So, once Proposition 6.9 is
proved, we can prove QIIC(Re↵(0, @B(R))  "R)  c". Thus we can verify the resistance estimates
in (4.1) and the proof is complete.

Proof of Proposition 6.9 is quite involved and use d > 6. Let us indicate why d > 6 is needed.

EIIC|D(n)| =
X

w,x2Zd

QIIC [(w,x) 2 D(n)] =
1
A

lim
N!1

X
w,x,y2Zd

Ppc [(w,x) 2 D(n), 0! y] ,

where w = (w, n� 1),x = (x, n),y = (y,N) and A = limN!1 ⌧N . Let us consider one configuration
in the event {(w,x) 2 D(n), 0! y} which is indicated by the following figure.

x
n

k

l

j

y

0

tt

t
t

t

t

By [70], we have supx2Zd ⌧n(x)  K�(n + 1)�d/2 for n � 1, and ⌧n = A(1 + O(n(4�d)/2)) as n !1.
Using these and the BK inequality, the configuration in the above figure can be bounded above by

c
1X

l=n

lX
k=n

nX
j=0

(l � j + 1)�d/2  c
1X

l=n

lX
k=n

(l � n + 1)(2�d)/2

 c
1X

l=n

(l � n + 1)(4�d)/2 = c
1X

m=1

m(4�d)/2 < 1 for d > 6.

In order to prove Proposition 6.9, one needs to estimate more complicated zigzag paths e�ciently.
(Open problem) The critical dimension for oriented percolation is 4. How does the random walk

on IIC for oriented percolation behaves when d = 5, 6?

6.4 Below critical dimension

We have seen various IIC models where simple random walk on the IIC enjoys the estimate (4.2)
with D = 2 and ↵ = 1. This is a typical mean field behavior that may hold for high dimensions
(above the critical dimension). It is natural to ask for the behavior of simple random walk on low
dimensions. Very few is known. Let us list up rigorous results that are known so far.
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(i) Random walk on the IIC for 2-dimensional critical percolation ([76])

In [76], Kesten shows the existence of IIC for 2-dimensional critical percolation cluster. Further,
he proves subdi↵usive behavior of simple random walk on IIC in the following sense. Let {Yn}n

be a simple random walk on the IIC, then there exists ✏ > 0 such that the P-distribution of
n�

1
2+✏d(0, Yn) is tight.

(ii) Random walk on the 2-dimensional uniform spanning tree ([20])

It is proved that (4.2) holds with D = 8/5 and ↵ = 1. Especially, it is shown that the spectral
dimension of the random walk is 16/13.

(iii) Brownian motion on the critical percolation cluster for the diamond lattice ([64])

Brownian motion is constructed on the critical percolation cluster for the diamond lattice.
Further, it is proved that the heat kernel enjoys continuous version of (4.2) with ↵ = 1 and some
non-trivial D that is determined by the maximum eigenvalue of the matrix for the corresponding
multi-dimensional branching process.

It is believed that the critical dimension for percolation is 6. It would be very interesting to know
the spectral dimension of simple random walk on IIC for the critical percolation cluster for d < 6.
(Note that in this case even the existence of IIC is not proved except for d = 2.) The following
numerical simulations (which we borrow from [27]) suggest that the Alexander-Orbach conjecture
does not hold for d  5.

d = 5 ) ds = 1.34± 0.02, d = 4 ) ds = 1.30± 0.04,

d = 3 ) ds = 1.32± 0.01, d = 2 ) ds = 1.318± 0.001.

6.5 Random walk on random walk traces and on the Erdös-Rényi random graphs

In this subsection, we discuss the behavior of random walk in two random environments, namely on
random walk traces and on the Erdös-Rényi random graphs. They are not IIC, but the technique
discussed in Section 3 and Subsection 4.1 can be applied to some extent. We give a brief overview
of the results.

Random walk on random walk traces
Let X(!) be the trace of simple random walk on Zd, d � 3, started at 0. Let {Y !

t }t�0 be the
simple random walk on X(!) and p!n(·, ·) be its heat kernel. It is known in general that if a Markov
chain corresponding to a weighted graph is transient, then the simple random walk on the trace of
the Markov chain is recurrent P-a.s. (see [28]). The question is to have more detailed properties
of the random walk when the initial graph is Zd. The following results show that it behaves like
1-dimensional simple random walk when d � 5.

Theorem 6.10 ([44]) Let d � 5, and let {Bt}t�0, {W (d)
t }t�0 be independent standard Brownian

motions on R and Rd respectively, both started at 0.
(i) There exist c1, c2 > 0 such that

c1n
�1/2  p!2n(0, 0)  c2n

�1/2 for large n, P-a.e. !.
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(ii) There exists �1 = �1(d) > 0 such that {n�1/2d!(0, Y !
[tn])}t�0 converges weakly to {|B�1t|}t�0

P-a.e. !, where d!(·, ·) is the graph distance on X(!). Also, there exists �2 = �2(d) > 0 such that
{n�1/4Y !

[tn]}t�0 converges weakly to {W (d)
|B�2t|}t�0 P-a.e. !.

On the other hand, the behavior is di↵erent for d = 3, 4.

Theorem 6.11 ([103, 104])
(i) Let d = 4. Then there exist c1, c2 > 0 and a slowly varying function  such that

c1n
� 1

2
�
 (n)

� 1
2  p!2n(0, 0)  c2n

� 1
2
�
 (n)

� 1
2 for large n, P-a.e. !, (6.6)

n
1
4 (log n)

1
24��  max

1kn
|Y !

k |  n
1
4 (log n)

13
12+� for large n, P 0

!-a.s. and P-a.e. !,

for any � > 0. Further,  (n) ⇡ (log n)�
1
2 , that is

lim
n!1

log (n)
log log n

= �1
2
.

(ii) Let d = 3. Then there exists ↵ > 0 such that

p!2n(0, 0)  n�
10
19 (log n)↵ for large n, P-a.s. !.

These estimates suggest that the ‘critical dimension’ for random walk on random walk trace for Zd

is 4. Note that some annealed estimates for the heat kernel (which are weaker than the above) are
obtained in [44] for d = 4.

One of the key estimates to establish (6.6) is to obtain a sharp estimate for E[Re↵(0, Sn)] where
{Sn}n is the simple random walk on Z4 started at 0. In [37], Burdzy and Lawler obtained

c1(log n)�
1
2  1

n
E[Re↵(0, Sn)]  c2(log n)�

1
3 for d = 4. (6.7)

This comes from naive estimates E[Ln]  E[Re↵(0, Sn)]  E[An], where Ln is the number of cut points
for {S0, · · · , Sn}, and An is the number of points for loop-erased random walk for {S0, · · · , Sn}. (The
logarithmic estimates in (6.7) are those of E[Ln] and E[An].) In [103], Shiraishi proves the following.

1
n

E[Re↵(0, Sn)] ⇡ (log n)�
1
2 for d = 4,

which means the exponent that comes from the number of cut points is the right one. Intuitively
the reason is as follows. Let {Tj} be the sequence of cut times up to time n. Then the random walk
trace near STj and STj+1 intersects typically when Tj+1 � Tj is large, i.e. there exists a ‘long range
intersection’ . So E[Re↵(STj , STj+1)] ⇡ 1, and E[Re↵(0, Sn)] ⇣ E[

Pan
j=1 Re↵(STj , STj+1)] ⇡ E[an] ⇣

n(log n)�1/2, where an := sup{j : Tj  n}.

Random walk on the Erdös-Rényi random graphs
Let Vn := {1, 2, · · · , n} be labeled vertices. Each bond {i, j} (i, j 2 Vn) is open with probability

p 2 (0, 1), independently of all the others. The realization G(n, p) is the Erdös-Rényi random graph.
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It is well-known (see [34]) that this model has a phase transition at p = 1/n in the following sense.
Let Cn

i be the i-th largest connected component. If p ⇠ c/n with c < 1 then |Cn
1 | = O(log n), with

c > 1 then |Cn
1 | ⇣ n and |Cn

j | = O(log n) for j � 2, and if p ⇠ c/n with c = 1 then |Cn
j | ⇣ n2/3 for

j � 1.
Now consider the finer scaling p = 1/n + �n�4/3 for fixed � 2 R – the so-called critical window.

Let |Cn
1 | and Sn

1 be the size and the surplus (i.e., the minimum number of edges which would need
to be removed in order to obtain a tree) of Cn

1 . Then the well-known result by Aldous ([4]) says
that (n�2/3|Cn

1 |, Sn
1 ) converges weakly to some random variables which are determined by a length

of the largest excursion of reflected Brownian motion with drift and by some Poisson point process.
Recently, Addario-Berry, Broutin and Goldschmidt ([1]) prove further that there exists a (random)
compact metric space M1 such that n�1/3Cn

1 converges weakly to M1 in the Gromov-Hausdor↵ sense.
(In fact, these results hold not only for Cn

1 , Sn
1 but also for the sequences (Cn

1 , Cn
2 , · · · ), (Sn

1 , Sn
2 , · · · ).)

Here M1 can be constructed from a random real tree (given by the excursion mentioned above) by
gluing a (random) finite number of points (chosen according to the Poisson point process) – see [1]
for details.

Now we consider simple random walk {Y Cn
1

m }m on Cn
1 . The following results on the scaling limit

and the heat kernel estimates are obtained by by Croydon ([43]).

Theorem 6.12 ([43]) There exists a di↵usion process (‘Brownian motion’ ) {BM1
t }t�0 on M1 such

that {n�1/3Y
Cn
1

[nt]}t�0 converges weakly to {BM1
t }t�0 P-a.s.. Further, there exists a jointly continuous

heat kernel pM1
t (·, ·) for {BM1

t }t�0 which enjoys the following estimates.

c1t
�2/3(ln1 t�1)�↵1 exp

⇣
� c2

⇣d(x, y)3

t

⌘1/2⇣
ln1(

d(x, y)
t

)
⌘↵2

⌘
 pM1

t (x, y)

 c3t
�2/3(ln1 t�1)1/3 exp

⇣
� c4

⇣d(x, y)3

t

⌘1/2⇣
ln1(

d(x, y)
t

)
⌘�↵3

⌘
, 8x, y 2M1, t  1,

where ln1 x := 1 _ log x, and c1, · · · , c4, ↵1, · · · , ↵3 are positive (non-random) constants.

The same results hold for Cn
i and Mi for each i 2 N (with constants depending on i).

7 Random conductance model

Consider weighted graph (X,µ). As we have seen in Remark 1.7, there are two continuous time
Markov chains with transition probability P (x, y) = µxy/µx. One is constant speed random walk
(CSRW) for which the holding time is the exponential distribution with mean 1 for each point, and
the other is variable speed random walk (VSRW) for which the holding time at x is the exponential
distribution with mean µ�1

x for each x 2 X. The corresponding discrete Laplace operators are given
in (1.4), (1.9), which we rewrite here.

LCf(x) =
1
µx

X
y

(f(y)� f(x))µxy,

LV f(x) =
X

y

(f(y)� f(x))µxy.
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Recall also that for each f, g that have finite support, we have

E(f, g) = �(LV f, g)⌫ = �(LCf, g)µ.

7.1 Overview

Consider Zd, d � 2 and let Ed be the set of non-oriented nearest neighbor bonds and let the
conductance {µe : e 2 Ed} be stationary and ergodic on a probability space (⌦,F , P). For each
! 2 !, let ({Yt}t�0, {P x

!}x2Zd) be either the CSRW or VSRW and define

q!t (x, y) = P x
! (Yt = y)/✓y

be the transition density of {Xt}t�0 where ✓ is either ⌫ or µ. This model is called the random con-
ductance model (RCM for short). We are interested in the long time behavior of {Yt}t�0, especially
in obtaining the heat kernel estimates for q!t (·, ·) and a quenched invariance principle (to be precise,
quenched functional central limit theorem) for {Yt}t�0. Note that when Eµe < 1, it was proved
in the 1980s that "Yt/"2 converges as " ! 0 to Brownian motion on Rd with covariance �2I in law
under P⇥ P 0

! with the possibility � = 0 for some cases (see [50, 80, 81]). This is sometimes referred
as the annealed (or averaged) invariance principle.

From now on, we will discuss the case when {µe : e 2 Ed} are i.i.d.. If p+ := P(µe > 0) < pc(Zd)
where pc(Zd) is the critical probability for bond percolation on Zd, then {Yt}t�0 is confined to a
finite set P⇥ P x

! -a.s., so we consider the case p+ > pc(Zd). Under the condition, there exists unique
infinite connected components of edges with strictly positive conductances, which we denote by C1.
Typically, we will consider the case where 0 2 C1, namely we consider P(·|0 2 C1).

We will consider the following cases:

• Case 0: c�1  µe  c for some c � 1,

• Case 1: 0  µe  c for some c > 0,

• Case 2: c  µe < 1 for some c > 0.

(Of course, Case 0 is the special case of Case 1 and Case 2.) For Case 0, the following both sides
quenched Gaussian heat kernel estimates

c1t
�d/2 exp(�c2|x� y|2/t)  q!t (x, y)  c3t

�d/2 exp(�c4|x� y|2/t) (7.1)

holds P-a.s. for t � |x�y| by the result in [49], and the quenched invariance principle is proved in [105].
When µe 2 {0, 1}, which is a special case of Case 1, the corresponding Markov chain is a random walk
on supercritical percolation clusters. In this case, isoperimetric inequalities are proved in [92] (see also
[56]), both sides quenched Gaussian long time heat kernel estimates are obtained in [11] (precisely,
(7.1) holds for 1_Sx(!)_ |x� y|  t where {Sx}x2Zd satisfies Pp(Sx � n, x 2 C(0))  c1 exp(�c2n"d)
for some "d > 0), and the quenched invariance principle is proved in [105] for d � 4 and later extended
to all d � 2 in [30, 91].
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Case 1 This case is treated in [31, 32, 53, 90] for d � 2. (Note that the papers [31, 32] consider
a discrete time random walk and [53, 90] considers CSRW. In fact, one can see that there is not a
big di↵erence between CSRW and VSRW in this case, as we will see in Theorem 7.2.)

Heat kernel estimates In [53, 31], it is proved that Gaussian heat kernel bounds do not hold in
general and anomalous behavior of the heat kernel is established for d large (see also [36]). In [53],
Fontes and Mathieu consider VSRW on Zd with conductance given by µxy = !(x) ^ !(y) where
{!(x) : x 2 Zd} are i.i.d. with !(x)  1 for all x and

P(!(0)  s) ⇣ s� as s # 0,

for some � > 0. They prove the following anomalous annealed heat kernel behavior.

lim
t!1

log E[P 0
!(Yt = 0)]
log t

= �(
d

2
^ �).

We now state the main results in [31]. Here we consider discrete time Markov chain with transition
probability {P (x, y) : x, y 2 Zd} and denote by Pn

! (0, 0) the heat kernel for the Markov chain, which
(in this case) coincides with the return probability for the Markov chain started at 0 to 0 at time n.

Theorem 7.1 (i) For P-a.e. !, there exists C1(!) < 1 such that for each n � 1,

Pn
! (0, 0)  C1(!)

8><
>:

n�d/2, d = 2, 3,

n�2 log n, d = 4,

n�2, d � 5.

(7.2)

Further, for d � 5, limn!1 n2Pn
! (0, 0) = 0 P-a.s.

(ii) Let d � 5 and  > 1/d. There exists an i.i.d. law P on bounded nearest-neighbor conductances
with p+ > pc(d) and C2(!) > 0 such that for a.e. ! 2 {|C(0)| = 1},

Pn
! (0, 0) � C2(!)n�2 exp(�(log n)), 8n � 1.

(iii) Let d � 5. For any increasing sequence {�n}n2N, �n !1, there exists an i.i.d. law P on bounded
nearest-neighbor conductances with p+ > pc(d) and C3(!) > 0 such that for a.e. ! 2 {|C(0)| = 1},

Pn
! (0, 0) � C3(!)n�2��1

n

along a subsequence that does not depend on !.

As we can see, Theorem 7.1 (ii), (iii) shows anomalous behavior of the Markov chain for d � 5.
Once (ii) is proved, (iii) can be proved by a suitable choice of subsequence. We will give a key idea
of the proof of (ii) here and give complete proof of it in Subsection 7.3.

Suppose we can show that for large n, there is a box of side length `n centered at the origin such
that in the box a bond with conductance 1 (‘strong’ bond) is separated from other sites by bonds
with conductance 1/n (‘weak’ bonds), and at least one of the ‘weak’ bonds is connected to the origin
by a path of bonds with conductance 1 within the box. Then the probability that the walk is back
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to the origin at time n is bounded below by the probability that the walk goes directly towards the
above place (which costs eO(`n) of probability) then crosses the weak bond (which costs 1/n), spends
time n � 2`n on the strong bond (which costs only O(1) of probability), then crosses a weak bond
again (another 1/n term) and then goes back to the origin on time (another eO(`n) term). The cost
of this strategy is O(1)eO(`n)n�2 so if can take `n = o(log n) then we get leading order n�2.

Quenched invariance principle For t � 0, let {Yt}t�0 be either CSRW or VSRW and define

Y (")
t := "Yt/"2 . (7.3)

In [32, 90], they prove the following quenched invariance principle.

Theorem 7.2 (i) Let {Yt}t�0 be the VSRW. Then P-a.s. Y (") converges (under P 0
!) in law to

Brownian motion on Rd with covariance �2
V I where �V > 0 is non-random.

(ii) Let {Yt}t�0 be the CSRW. Then P-a.s. Y (") converges (under P 0
!) in law to Brownian motion

on Rd with covariance �2
CI where �2

C = �2
V /(2dEµe).

Case 2 This case is treated in [16] for d � 2.
Heat kernel estimates The following heat kernel estimates for the VSRW is proved in [16]. (We

do not give proof here.)

Theorem 7.3 Let q!t (x, y) be the heat kernel for the VSRW and let ⌘ 2 (0, 1). Then, there exist
constants c1, · · · , c11 > 0 (depending on d and the distribution of µe) and a family of random variables
{Ux}x2Zd with

P(Ux � n)  c1 exp(�c2n
⌘),

such that the following hold.
(a) For all x, y 2 Zd and t > 0,

q!t (x, y)  c3t
�d/2.

(b) For x, y 2 Zd and t > 0 with |x� y| _ t1/2 � Ux,

q!t (x, y)  c3t
�d/2 exp(�c4|x� y|2/t) if t � |x� y|,

q!t (x, y)  c3 exp(�c4|x� y|(1 _ log(|x� y|/t))) if t  |x� y|.

(c) For x, y 2 Zd and t > 0,

q!t (x, y) � c5t
�d/2 exp(�c6|x� y|2/t) if t � U2

x _ |x� y|1+⌘.

(d) For x, y 2 Zd and t > 0 with t � c7 _ |x� y|1+⌘,

c8t
�d/2 exp(�c9|x� y|2/t)  E[q!t (x, y)]  c10t

�d/2 exp(�c11|x� y|2/t).

Quenched invariance principle For t � 0, define Y (")
t as in (7.3). Then the following quenched

invariance principle is proved in [16].
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Theorem 7.4 (i) Let {Yt}t�0 be the VSRW. Then P-a.s. Y (") converges (under P 0
!) in law to

Brownian motion on Rd with covariance �2
V I where �V > 0 is non-random.

(ii) Let {Yt}t�0 be the CSRW. Then P-a.s. Y (") converges (under P 0
!) in law to Brownian motion

on Rd with covariance �2
CI where �2

C = �2
V /(2dEµe) if Eµe < 1 and �2

C = 0 if Eµe = 1.

Local central limit theorem In [17], a su�cient condition is given for the quenched local limit
theorem to hold (see [47] for a generalization to sub-Gaussian type local CLT). Using the results,
the following local CLT is proved in [16]. (We do not give proof here.)

Theorem 7.5 Let q!t (x, y) be the VSRW and write kt(x) = (2⇡t�2
V )�d/2 exp(�|x|2/(2�2

V t) where �V

is as in Theorem 7.4 (i). Let T > 0, and for x 2 Rd, write [x] = ([x1], · · · , [xd]). Then

lim
n!1

sup
x2Rd

sup
t�T

|nd/2q!nt(0, [n1/2x])� kt(x)| = 0, P� a.s.

The key idea of the proof is as follows: one can prove the parabolic Harnack inequality using Theorem
7.3. This implies the uniform Hölder continuity of nd/2q!nt(0, [n1/2·]), which, together with Theorem
7.4 implies the pointwise convergence.

For the case of simple random walk on the supercritical percolation, this local CLT is proved in
[17]. Note that in general when µe  c, such local CLT does NOT hold because of the anomalous
behavior of the heat kernel and the quenched invariance principle.

More about CSRW with Eµe = 1 According to Theorem 7.4 (ii), one does not have the usual
central limit theorem for CSRW with Eµe = 1 in the sense the scaled process degenerates as "! 0.
A natural question is what is the right scaling order and what is the scaling limit. The answers are
given in [13, 22] for the case of heavy-tailed environments with d � 3. Let {µe} satisfies

P(µe � c1) = 1, P(µe � u) = c2u
�↵(1 + o(1)) as u !1, (7.4)

for some constants c1, c2 > 0 and ↵ 2 (0, 1].
In order to state the result, we first introduce the Fractional-Kinetics (FK) process.

Definition 7.6 Let {Bd(t)} be a standard d-dimensional Brownian motion started at 0, and for
↵ 2 (0, 1), let {V↵(t)}t�0 be an ↵-stable subordinator independent of{Bd(t)}, which is determined by
E[exp(��V↵(t))] = exp(�t�↵). Let V �1

↵ (s) := inf{t : V↵(t) > s} be the rightcontinuous inverse of
V↵(t). We define the fractional-kinetics process FKd,↵ by

FKd,↵(s) = Bd(V �1
↵ (s)), s 2 [0,1).

The FK process is non-Markovian process, which is �-Hölder continuous for all � < ↵ /2 and is

self-similar, i.e. FKd,↵(·) (d)
= ��↵/2FKd,↵(�·) for all � > 0. The density of the process p(t, x) started

at 0 satisfies the fractional-kinetics equation

@↵

@t↵
p(t, x) =

1
2
�p(t, x) + �0(x)

t�↵

�(1� ↵)
.

This process is well-known in physics literatures, see [110] for details.
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Theorem 7.7 Let d � 3 and Let {Yt}t�0 be the CSRW of RCM that satisfies (7.4).
(i) ([13]) Let ↵ 2 (0, 1) in (7.4) and let Y (")

t := "Yt/"2/↵. Then P-a.s. Y (") converges (under P 0
!)

in law to a multiple of the fractional-kinetics process c · FKd,↵ on D([0,1), Rd) equipped with the
topology of the uniform convergence on compact subsets of [0,1).
(ii) ([22]) Let ↵ = 1 in (7.4) with c1 = c2 = 1 and let Y (")

t := "Yt log(1/")/"2. Then P-a.s. Y (")

converges (under P 0
!) in law to Brownian motion on Rd with covariance �2

CI where �C = 2�1/2�V >

0.

Remark 7.8 (i) In [24], a scaling limit theorem similar to Theorem 7.7 (i) was shown for symmetric
Bouchaud’s trap model (BTM) for d � 2. Let {⌧x}x2Zd be a positive i.i.d. and let a 2 [0, 1] be a
parameter. Define a random weight (conductance) by

µxy = ⌧a
x ⌧

a
y if x ⇠ y,

and let µx = ⌧x be the measure. Then, the BTM is the CSRW with the transition probability
µxy/

P
y µxy and the measure µx. If a = 0, then the BTM is a time change of the simple ran-

dom walk on Zd and it is called symmetric BMT, while non-symmetric refers to the general case
a 6= 0. (This terminology is a bit confusing. Note that the Markov chain for the BTM is symmetric
(reversible) w.r.t. µ for all a 2 [0, 1].) According to the result in [24], one may expect that Theorem
7.7 (i) holds for d = 2 as well with a suitable log correction in the scaling exponent.
(ii) For d = 1, the scaling limit is quite di↵erent from the FK process. In [52, 25], it is proved that
the scaling limit (in the sense of finite-dimensional distributions) of the BTM on R is a singular
di↵usion in a random environment, called FIN di↵usion. The result can be extended to RCM for
d = 1.

Remark 7.9 Isoperimetric inequalities and heat kernel estimates are very useful to obtain various
properties of the random walk. For the case of supercritical percolation, estimates of mixing times
([29]) and the Laplace transform of the range of a random walk ([99]) are obtained with the help
of isoperimetric inequalities and heat kernel estimates. For 2-dimensional supercritical percolation
([21, 39]), and other models including IICs on trees and IIC on Zd with d � 19 ([21]), it is proved
that two independent random walks started at the same point collide infinitely often P-a.s..

Remark 7.10 (i) RCM is a special case of random walk in random environment (RWRE). The
subject of RWRE has a long history; we refer to [35, 111] for overviews of this field.
(ii) For directed random walks in (space-time) random environments, the quenched invariance prin-
ciple is obtained in [98]. Since the walk enters a new environment at every time step, one can use
independence more e�ciently, but the process is no longer symmetric (reversible). Because of the di-
rected nature of the environment, one may consider distributions with a drift for which a CLT is not
even expected to hold in general for the undirected setting; see for example [108, 26] for ‘pathologies’
that may arise.
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7.2 Percolation estimates

Consider the supercritical bond percolation p > pc(d) on Zd for d � 2. In this subsection, we will
give some percolation estimates that are needed later. We do not give proof here, but mention the
corresponding references.

Let C(0) be the open cluster containing 0 and for x, y 2 C(0), let d!(x, y) be the graph distance
for C(0) and |x � y| be the Euclidean distance. The first statement of the next proposition gives a
stretched-exponential decay of truncated connectivities due to [61, Theorem 8.65]. The second state-
ment is a comparison of the graph distance and the Euclidean distance due to Antal and Pisztora [9,
Corollary 1.3].

Proposition 7.11 Let p > pc(d). Then the following hold.
(i) There exists c1 = c1(p) such that

Pp(|C(0)| = n)  exp(�c1n
(d�1)/d) 8n 2 N.

(ii) There exists c2 = c2(p, d) > 0 such that the following holds Pp-almost surely,

lim sup
|y|!1

d!(0, y)1{0$y}
|y|  c2.

For ↵ > 0, denote C1,↵ the set of sites in Zd that are connected to infinity by a path whose edges
satisfy µb � ↵. The following proposition is due to [32, Proposition 2.3]. Similar estimate for the
size of ‘holes’ in C1 can be found in [90, Lemma 3.1].

Proposition 7.12 Assume p+ = P(µb > 0) > pc(d). Then there exists c(p+, d) > 0 such that if ↵
satisfies

P(µb � ↵) > pc(d) and P(0 < µb < ↵) < c(p+, d), (7.5)

then C1,↵ 6= ; and C1 \ C1,↵ has only finite components a.s.
Further, if K(x) is the (possibly empty) component of C1 \ C1,↵ containing x, then

P
�
x 2 C1, diam K(x) � n

�
 c1e

�c2n, n � 1, (7.6)

for some c1, c2 > 0. Here ‘diam’ is the diameter in Euclidean distance on Zd.

7.3 Proof of some heat kernel estimates

Proof of Theorem 7.1(ii). For  > 1/d let ✏ > 0 be such that (1 + 4d✏)/d < . Let P be an i.i.d.
conductance law on {2�N : N � 0}Ed such that

P(µe = 1) > pc(d), P(µe = 2�N ) = cN�(1+✏), 8N � 1, (7.7)

where c = c(✏) is the normalized constant. Let e1 denote the unit vector in the first coordinate
direction. Define the scale `N = N (1+4d✏)/d and for each x 2 Zd, let AN (x) be the event that the
configuration near x, y = x + e1 and z = x + 2e1 is as follows:
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(1) µyz = 1 and µxy = 2�N , while every other bond containing y or z has µe  2�N .

(2) x is connected to the boundary of the box of side length (log `N )2 centered at x by bonds with
conductance one.

Since bonds with µe = 1 percolate and since P(µe  2�N ) ⇣ N�✏, we have

P
�
AN (x)

�
� cN�[1+(4d�2)✏]. (7.8)

Now consider a grid of vertices GN in [�`N , `N ]d \Zd that are located by distance 2(log `N )2. Since
{AN (x) : x 2 GN} are independent, we have

P
⇣ \

x2GN

AN (x)c
⌘

⇣
1� cN�[1+(4d�2)✏]

⌘|GN |
 exp

n
�c

⇣ `N
(log `N )2

⌘d
N�[1+(4d�2)✏]

o
 e�cN✏

, (7.9)

so using the Borel-Cantelli, \x2GN AN (x)c occurs only for finitely many N .
By Proposition 7.11 (i), every connected component of side length (log `N )2 in [�`N , `N ]d \ Zd

will eventually be connected to C1 in [�2`N , 2`N ]d \ Zd. Summarizing, there exists N0 = N0(!)
with P(N0 < 1) = 1 such that for N � N0, AN (x) occurs for some x = xN (!) 2 [�`N , `N ]d \ Zd

that is connected to 0 by a path (say PathN ) in [�2`N , 2`N ]d, on which only the last N0 edges (i.e.
those close to the origin) may have conductance smaller than one.

Now let N � N0 and let n be such that 2N  2n < 2N+1. Let xN 2 [�`N , `N ]d \ Zd be such
that AN (xN ) occurs and let rN be the length of PathN . Let ↵ = ↵(!) be the minimum of µe for e

within N0 steps of the origin. The Markov chain moves from 0 to xN in time rN with probability at
least ↵N0(2d)�rN , and the probability of staying on the bond (y, z) for time 2n� 2rN � 2 is bounded
independently of !. The transitions across (x, y) cost order 2�N each. Hence we have

P 2n
! (0, 0) � c↵2N0(2d)�2rN 2�2N . (7.10)

By Proposition 7.11 (ii), we have rN  c`N for large N . Since n ⇣ 2N and `N  (log n), we obtain
the result.

7.4 Corrector and quenched invariance principle

Our goal is to prove Theorem 7.2 and Theorem 7.4 assuming the heat kernel estimates. Let us first
give overview of the proof. As usual for the functional central limit theorem, we use ‘corrector’. Let
' = '! : Zd ! Rd be a harmonic map, so that Mt = '(Yt) is a P 0

!-martingale. Let I be the identity
map on Zd. The corrector is

�(x) = ('� I)(x) = '(x)� x.

It is referred to as the ‘corrector’ because it corrects the non-harmonicity of the position function.
For simplicity, let us consider CLT (instead of functional CLT) for Y . By definition, we have

Yt

t1/2
=

Mt

t1/2
� �(Yt)

t1/2
.
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Since we can control ' (due to the heat kernel estimates), the martingale CLT gives that Mt/t1/2

converges weakly to the normal distribution. So all we need is to prove �(Yt)/t1/2 ! 0. This can be
done once we have (a) P 0

!(|Yt| � At1/2) is small and (b) |�(x)|/|x| ! 0 as |x| ! 1. (a) holds by
the heat kernel upper bound, so the key is to prove (b), namely sublinearity of the corrector. Note
that there maybe many global harmonic functions, so we should chose one such that (b) holds. As
we will see later, we in fact prove the sublinearity of the corrector for C1,↵.

We now discuss details. Let

⌦ =

(
[0, 1]Ed for Case 1,

[1,1]Ed for Case 2.

(Note that one can choose c = 1 in Case 1 and Case 2.) The conductance {µe : e 2 Ed} are defined
on (⌦, P) and we write µ{x,y}(!) = !x,y for the coordinate maps. Let Tx : ⌦ ! ⌦ denote the shift
by x, namely (Tz!)xy := !x+z,y+z.

The construction of the corrector is simple and robust. Let {Qx,y(!) : x, y 2 Zd} be a sequence of
non-negative random variables such that Qx,y(Tz!) = Qx+z,y+z(!), which is stationary and ergodic.
Assume that there exists C > 0 such that the following hold:

X
x2Zd

Q0,x(!)  C P-a.e. !, and E[
X
x2Zd

Q0,x|x|2] < 1. (7.11)

The following construction is based on Mathieu and Piatnitski [91].

Theorem 7.13 There exists a function � : ⌦ ⇥ Zd ! Rd that satisfies the following (1)–(3) P-a.e.
!.

(1) (Cocycle property) �(!, 0) = 0 and, for all x, y 2 Zd,

�(!, x)� �(!, y) = �(Ty!, x� y). (7.12)

(2) (Harmonicity) '!(x) := x + �(!, x) enjoys LQ'
j
!(z) = 0 for all 1  j  d and z 2 Zd where

'j
! is the j-th coordinate of '! and

(LQf)(x) =
X
y2Zd

Qx,y(!)(f(y)� f(x)). (7.13)

(3) (Square integrability) There exists C < 1 such that for all x, y 2 Zd,

E
⇥
|�(·, y)� �(·, x)|2 Qx,y(!)

⇤
< C. (7.14)

Remark 7.14 (i) In fact, one can construct the corrector under milder condition E[
P

x2Zd Q0,x|x|2] <

1 instead of (7.11) by suitable changes of function spaces in the proof.
(ii) In [33, Lemma 3.3], it is proved that for the uniform elliptic case (Case 0), i.e. P(c1  Qxy 
c2) = 1 for some c1, c2 > 0, the corrector is uniquely determined by the properties (1)–(3) in Theorem
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7.13 and (3-2) in Proposition 7.16 below.
(iii) In [91, 32] the corrector is defined essentially on ⌦⇥ B where B = {e1, · · · , ed,�e1, · · · ,�ed}
is the set of unit vectors. However, one can easily extend the domain of the corrector to ⌦ ⇥ Zd by
using the cocycle property.

Given the construction of the corrector, we proceed as in Biskup and Prescott [32]. We first give
su�cient condition for the (uniform) sublinearity of the corrector in this general setting and then
show that the assumption given for the su�ciency of the sublinearity can be verified for Case 1 and
Case 2.

We consider open clusters with respect to the (in general long range) percolation for {Qxy}x,y2Zd .
Assume that the distribution of {Qxy} is given so that there exists unique infinite open cluster P-a.s.,
and denote it by C1. We also consider (random) one-parameter family of infinite sub-clusters which
we denote by C1,↵, where we set C1,0 = C1. We assume P(0 2 C1,↵) > 0. (The concrete choice of
C1,↵ will be given later.)

Let Y = {Yt}t�0 be the VSRW on C1 (with based measure ⌫x ⌘ 1 for x 2 C1) that corresponds
to LQ in (7.13). We introduce the trace of Markov chain to C1,↵ (cf. Subsection 1.3). Define
�1, �2, . . . the time intervals between successive visits of Y to C1,↵, namely, let

�j+1 := inf
�
n � 1: Y�0+···+�j+n 2 C1,↵

 
, (7.15)

with �0 = 0. For each x, y 2 C1,↵, let Q̂xy := Q̂(↵)
xy (!) = P x

! (Y�1 = y) and define the operator

LQ̂f(x) :=
X

y2C1,↵

Q̂xy
�
f(y)� f(x)

�
. (7.16)

Let Ŷ = {Ŷt}t�0 be the continuous-time random walk corresponding to LQ̂.

The following theorem gives su�cient condition for the sublinearity of the corrector  ! on C1,↵.
Let P↵(·) := P(·|0 2 C1,↵) and let E↵ be the expectation w.r.t. P↵.

Theorem 7.15 Fix ↵ � 0 and suppose  ! : C1,↵ ! Rd, ✓ > 0 and Ŷ satisfy the following (1)–(5)
for P↵-a.e. !:

(1) (Harmonicity) If '!(x) = ('1
!(x), · · · , 'd

!(x)) := x +  !(x), then LQ̂'
j
! = 0 on C1,↵ for

1  j  d.

(2) (Sublinearity on average) For every ✏ > 0,

lim
n!1

1
nd

X
x2C1,↵

|x|n

1{| !(x)|�✏n} = 0. (7.17)

(3) (Polynomial growth) There exists ✓ > 0 such that

lim
n!1

max
x2C1,↵

|x|n

| !(x)|
n✓

= 0. (7.18)
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(4) (Di↵usive upper bounds) For a deterministic sequence bn = o(n2) and a.e. !,

sup
n�1

max
x2C1,↵

|x|n

sup
t�bn

Ex
!|Ŷt � x|p

t
< 1, (7.19)

sup
n�1

max
x2C1,↵

|x|n

sup
t�bn

td/2P x
! (Ŷt = x) < 1. (7.20)

(5) (Control of big jumps) Let ⌧n = {t � 0 : |Ŷt � Ŷ0| � n}. There exist c1 > 1 and N! > 0 which
is finite for P↵-a.e. ! such that |Ŷ⌧n � Ŷ0|  c1n for all t > 0 and n � N!.

Then for P↵-a.e. !,

lim
n!1

max
x2C1,↵

|x|n

| !(x)|
n

= 0. (7.21)

Now we discuss how to apply the theorem for Case 1 and Case 2.
Case 1: In this case, we define Qx,y(!) = !x,y. Then it satisfies the conditions for {Qxy} given

above including (7.11). Denote by L! the generator of VSRW (which we denote by {Yt}t�0), i.e.,

(L!f)(x) =
X

y : y⇠x

!xy(f(y)� f(x)). (7.22)

LQ = L! in this case. The infinite cluster C1 is the cluster for {b 2 Ed : µb > 0} (since we assumed
p+ = P(µb > 0) > pc(d), it is the supercritical percolation so there exists unique infinite cluster.)
Fix ↵ � 0 that satisfies (7.5) and C1,↵ the the cluster for {b 2 Ed : µb � ↵}. (Again it is the
supercritical percolation so there exists unique infinite cluster.) We let Q̂xy := P x

! (Y�1 = y). Note
that although Ŷ may jump the ‘holes’ of C1,↵, Proposition 7.12 shows that all jumps are finite. Let
'!(x) := x + �(!, x) where � is the corrector on C1. Then, by the optional stopping theorem, it is
easy to see that LQ̂'! = 0 on C1,↵ (see Lemma 7.21 (i)).

Case 2: First, note that if we define Qx,y(!) similarly as in Case 1, it does not satisfy (7.11).
Especially when Eµe = 1, we cannot define correctors for {Yt}t�0 in a usual manner. The idea
of [16] is to discretize {Yt}t�0 and construct the corrector for the discretized process {Y[t]}t�0. Let
q!t (x, y) be the heat kernel of {Yt}t�0. Note that q!t (x, y) = P x

! (Yt = y) = q!t (y, x). We define

Qx,y(!) = q!1 (x, y), 8x, y 2 Zd.

Then Qx,y  1 and
P

y Qx,y = 1. Note that in this case P(Qxy > 0) > 0 for all x, y 2 Zd, so C1 = Zd.
Integrating Theorem 7.3 (b), we have E[E0

· |Yt|2] = E[
P

x Q0x|x|2]  ct for t � 1, so (7.11) holds.
One can easily check other conditions for {Qxy} given above. In this case, we do not need to consider
C1,↵ and there is no need to take the trace process. So, ↵ = 0, Q̂x,y = Qx,y, LQ̂ = LQ, and Ŷt = Y[t]

(discrete time random walk) in this case.

The next proposition provides some additional properties of the corrector for Case 1 and Case
2. This together with Lemma 7.28 below verify for Case 1 and Case 2 the su�cient conditions for
sublinearity of the corrector given in Theorem 7.15. As mentioned above, for Case 2, we consider
only ↵ = 0.
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Proposition 7.16 Let ↵ > 0 for Case 1 and ↵ = 0 for Case 2, and let � be the corrector given in
Theorem 7.13. Then � satisfies (2), (3) in Theorem 7.13 for P↵-a.e. ! if P(0 2 C1,↵) > 0. Further,
it satisfies the following.
(1) (Polynomial growth) There exists ✓ > d such that the following holds P↵-a.e. !:

lim
n!1

max
x2C1,↵

|x|n

|�(!, x)|
n✓

= 0. (7.23)

(2) (Sublinearity on average) For each ✏ > 0, the following holds P↵-a.e. !:

lim
n!1

1
nd

X
x2C1,↵

|x|n

1{|�(!,x)|�✏n} = 0.

(3-1) Case 1: (Zero mean under random shifts) Let Z : ⌦ ! Zd be a random variable such that
(a) Z(!) 2 C1,↵(!), (b) P↵ is preserved by ! 7! ⌧Z(!)(!), and (c) E↵[d(↵)

! (0, Z(!))q] < 1 for
some q > 3d. Then �(·, Z(·)) 2 L1(⌦,F , P↵) and

E↵
⇥
�(·, Z(·))

⇤
= 0. (7.24)

(3-2) Case 2: (Zero mean) E
⇥
�(·, x)

⇤
= 0 for all x 2 Zd.

7.5 Construction of the corrector

In this subsection, we prove Theorem 7.13. We follow the arguments in Barlow and Deuschel [16,
Section 5] (see also [32, 33, 91]).

We define the process that gives the ‘environment seen from the particle’ by

Zt = TYt (!), 8t 2 [0,1), (7.25)

where {Yt}t�0 is the Markov chain corresponding to LQ. Note that the process Z is ergodic under
the time shift on ⌦ (see for example, [30, Section 3], [50, Lemma 4.9] for the proof in discrete time).

Let L2 = L2(⌦, P) and for F 2 L2, write Fx = F � Tx. Then the generator of Z is

L̂F (!) =
X
x2Zd

Q0,x(!)(Fx(!)� F (!)).

Define
Ê(F, G) = E

h X
x2Zd

Q0,x(F � Fx)(G�Gx)
i

8F, G 2 L2.

The following lemma shows that Ê is the quadratic form on L2 corresponding to L̂.

Lemma 7.17 (i) For all F 2 L2 and x 2 Zd, it holds that EF = EFx and E[Q0,xFx] = E[Q0,�xF ].
(ii) For F 2 L2, it holds that Ê(F, F ) < 1 and L̂F 2 L2.
(iii) For F, G 2 L2, it holds that Ê(F, G) = �E[GL̂F ].
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Proof. (i) The first equality is because P = P � Tx. Since Q0,x � T�x = Q�x,0 = Q0,�x, E[Q0,xFx] =
E[(Q0,x � T�x)F ] = E[Q0,�xF ] so the second equality holds.
(ii) For F 2 L2, we have

Ê(F, F ) = E[
X

x

Q0,x(F � Fx)2]  2E[
X

x

Q0,x(F 2 + F 2
x )]

= 2CEF 2 + 2E[
X

x

Q0,�xF 2] = 4CkFk22, (7.26)

where we used (i) in the second equality, and C is a constant in (7.11). Also,

E|L̂F |2 = E[
X
x,y

Q0,xQ0,y(Fx � F )(Fy � F )]

 E
h
(
X
x,y

Q0,xQ0,y(Fx � F )2)1/2(
X
x,y

Q0,xQ0,y(Fy � F )2)1/2
i
 CÊ(F, F )  4C2kFk22

where (7.26) is used in the last inequality. We thus obtain (ii).
(iii) Using (i), we have

E[Q0,�xG(F � F�x)] = E[Q0,xGx(Fx � F )]. (7.27)

So

�E[GL̂F ] =
X

x

E[GQ0,x(F � Fx)] =
1
2

X
x

E[GQ0,x(F � Fx)] +
1
2

X
x

E[GQ0,�x(F � F�x)]

=
1
2

X
x

E[Q0,x(GF �GFx + GxFx �GxF )] = Ê(F, G),

where (7.27) is used in the third equation, and (iii) is proved.

Next we look at ‘vector fields’. Let M be the measure on⌦ ⇥ Zd defined asZ
⌦⇥Zd

GdM := E[
X
x2Zd

Q0,xG(·, x)], for G : ⌦⇥ Zd ! R.

We say G : ⌦⇥Zd ! R has the cocycle property (or shift-covariance property) if the following holds,

G(Tx!, y � x) = G(!, y)�G(!, x), P� a.s.

Let L
2 = {G 2 L2(⌦ ⇥ Zd,M) : G has the cocycle property.} and for G 2 L2(⌦ ⇥ Zd,M), write

kGk2
L

2 := E[
P

x2Zd Q0,xG(·, x)2]. It is easy to see that L
2 is a Hilbert space. Also, for G 2 L

2, it
holds that G(!, 0) = 0 and G(Tx!,�x) = �G(!, x).

Define r : L2 ! L
2 by

rF (!, x) := F (Tx!)� F (!), for F 2 L2.

Since krFk2
L

2 = Ê(F, F ) < 1 (due to Lemma 7.17 (ii)) and rF (Tx!, y � x) = F (Ty!)� F (Tx!) =

rF (!, y)�rF (!, x), we can see that rF is indeed in L
2.
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Now we introduce an orthogonal decomposition of L
2 as follows

L
2 = L2

pot � L2
sol.

Here L2
pot = Cl {rF : F 2 L2} where the closure is taken in L

2, and L2
sol is the orthogonal comple-

ment of L2
pot. Note that ‘pot’ stands for ‘potential’, and ‘sol’ stands for ‘solenoidal’.

Before giving some properties of L2
pot and L2

sol, we now give definition of the corrector. Let
⇧ : Rd ! Rd be the identity and denote by⇧ j the j-th coordinate of⇧ . Then,⇧ j 2 L

2. Indeed,
⇧j(y � x) = ⇧j(y) � ⇧j(x) so it has the cocycle property, and by (7.11), k⇧jk2

L
2 < 1. Now define

�j 2 L2
pot and� j 2 L2

sol by
⇧j = �j � �j 2 L2

pot � L2
sol.

This gives the definition of the corrector � = (�1, · · · , �d) : ⌦⇥ Zd ! Rd.

Remark 7.18 The corrector can be defined by using spectral theory as in Kipnis and Varadhan [80].
This ‘projection’ definition is given in Giacomin, Olla and Spohn [58], and Mathieu and Piatnitski
[91] (also in [16, 32, 33] etc. mentioned above).

Lemma 7.19 For G 2 L2
sol, it holds that

X
x2Zd

Q0,xG(!, x) = 0, P� a.s. (7.28)

Hence Mn := G(!, Yn) is a P 0
!-martingale for P-a.e. !.

Proof. Recall that G(Tx!,�x) = �G(!, x) for G 2 L
2. Using this, we have for each F 2 L2

X
x

E[Q0,xG(·, x)Fx(·)] =
X

x

E[T�xQ0,xG(T�x·, x)Fx(T�x·)]

=
X

x

E[Q0,�x(�G(·,�x))F (·)] = �
X

x

E[Q0,xG(·, x)F (·)].

So
P

x E[Q0,xG(·, x)(F + Fx)(·)] = 0. If G 2 L2
sol, then since rF 2 L2

pot, we have

0 =
Z

⌦⇥Zd
GrFdM =

X
x

E[Q0,xG(·, x)(Fx � F )].

So we have E[
P

x Q0,xGF ] = 0. Since this holds for all F 2 L2, we obtain (7.28). Since

E0
![G(!, Yn+1)�G(!, Yn)|Yn = x] =

X
y

Qxy(!)(G(!, y)�G(!, x))

=
X

y

Q0,y�x(Tx!)G(Tx!, y � x) = 0,

where the cocycle property is used in the second equality and (7.28) is used in the last inequality,
we see that Mn := G(!, Yn) is a P 0

!-martingale.
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Verification of (1)-(3) in Theorem 7.13: (1) and (3) in Theorem 7.13 is clear by definition
of � and the definition of the inner product on L2(⌦ ⇥ Zd,M). By Lemma 7.19, we see that (2) in
Theorem 7.13 hold. – Here, note that by the cocycle property of ',

(LQ'
j
!)(x) =

X
y2Zd

Qx,y(!)('j
!(y)� 'j

!(x)) =
X
y2Zd

Q0,y�x(Tx!)'j
Tx!

(y � x) = 0,

for 1  j  d where the last equality is due to (7.28).

In [33, Section 5], there is a nice survey of the potential theory behind the notion of the corrector.
There it is shown that⇧ � � (here ⇧ is the identity map) spans L2

pot (see [33, Corollary 5.6]).

7.6 Proof of Theorem 7.15

The basic idea of the proof of Theorem 7.15 is that sublinearity on average plus heat kernel upper
bounds imply pointwise sublinearity, which is (according to [32]) due to Y. Peres. In Theorem 7.15,
the inputs that should come from the heat kernel upper bounds are reduced to the assumptions
(7.19), (7.20). In order to prove Theorem 7.15, the next lemma plays a key role.

Lemma 7.20 Let
R̄n := max

x2C1,↵

|x|n

�� !(x)
��.

Under the conditions (1,2,4,5) of Theorem 7.15, for each ✏ > 0 and � > 0, there exists c1 > 1 and a
random variable n0 = n0(!, ✏,� ) which is finite a.s. finite such that

R̄n  ✏n + �R̄2c1n. n � n0. (7.29)

Before proving this lemma, let us prove Theorem 7.15 by showing how this lemma and (7.18)
imply (7.21).

Proof of Theorem 7.15. Suppose that R̄n/n 6! 0 and choose c with 0 < c < lim supn!1 R̄n/n.
Let ✓ be is as in (7.18) and choose ✏ := c/2 and � := (2c1)�✓�1. Note that then c � ✏ � (2c1)✓�c.
If R̄n � cn (this happens for infinitely many n’s) and n � n0, then (7.29) implies

R̄2c1n �
c� ✏
�

n � (2c1)✓cn

and, inductively, R̄(2c1)kn � (2c1)k✓cn. However, (7.18) says R̄(2c1)kn/(2c1)k✓ ! 0 as k !1 for each
fixed n, which is a contradiction.

We now prove Lemma 7.20. The idea behind is the following. Let {Ŷt} be the process correspond-
ing to LQ̂ started at the maximizer of R̄n, say z⇤. Using the martingale property, we will estimate
Ez⇤
! [ !(Ŷt)] for time t = o(n2). The right-hand side of (7.29) expresses two situations that may

occur at time t: (i) | !(Ŷt)|  ✏n (by ‘sublinearity on average’, this happens with high probability),
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(ii) Ŷ has not yet left the box [�2c1n, 2c1n]d and so  !(Ŷt)  R̄2c1n. It turns out that these two are
the dominating strategies.

Proof of Lemma 7.20. Fix ✏, �> 0 and let z⇤ be the site where the maximum R̄n is achieved.
Denote

On :=
�
x 2 C1,↵ : |x|  n, | !(x)| � 1

2✏n
 
.

Recall that {Ŷt} is the continuous-time random walk on C1,↵ corresponding to LQ̂! in (7.16). We
denote its expectation for the walk started at z⇤ by Ez⇤

! . Define

Sn := inf
�
t � 0: |Ŷt � z⇤| � 2n

 
.

Note that, by Theorem 7.15 (5), there exists n1(!) which is a.s. finite such that we have |Ŷt^Sn�z⇤| 
2c1n for all t > 0 and n � n1(!). Using the harmonicity of x 7! x+ !(x) and the optional stopping
theorem, we have

R̄n = | !(z⇤)|  Ez⇤
!

h�� !(Ŷt^Sn) + Ŷt^Sn � z⇤
��i. (7.30)

We will consider t that satisfies
t � b3c1n, (7.31)

where bn = o(n2) is the sequence in Theorem 7.15 (4), and we will estimate the expectation separately
on {Sn < t} and {Sn � t}.

Case i {Sn < t}: On this event, the integrand of (7.30) R̄2c1n+2c1n. To estimate P!,z⇤(Sn < t),
we consider the subcases |Ŷ2t � z⇤| � n and  n. For the former case, (7.31) and (7.19) imply

P!,z⇤

�
|Ŷ2t � z⇤| � n

�
 Ez⇤

! |Ŷ2t � z+|
n

 c2
p

t

n
,

for some c2 = c2(!). For the latter case, we have
�
|Ŷ2t � z⇤|  n

 
\ {Sn < t} ⇢

�
|Ŷ2t � ŶSn | � n

 
\ {Sn < t}.

Noting that 2t� Sn 2 [t, 2t] and using (7.31), (7.19) again, we have

P!,x
�
|Ŷs � x| � n

�
 c3

p
t

n
when x := ŶSn and s := 2t� Sn,

for some c3 = c3(!). From the strong Markov property we have the same bound for P!,z⇤(Sn <

t, |Ŷ2t � z⇤| � n). Combining both cases, we have P!,z⇤(Sn < t)  (c2 + c3)
p

t/n. So

Ez⇤
!

h�� !(Ŷt^Sn) + Ŷt^Sn � z⇤
��1{Sn<t}

i
 (R̄2c1n + 2c1n)

(c2 + c3)
p

t

n
. (7.32)

Case ii {Sn � t}: On this event, the expectation in (7.30) is bounded by

Ez⇤
!

⇥
| !(Ŷt)|1{Sn�t}

⇤
+ Ez⇤

! |Ŷt � z⇤|.
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By (7.19), the second term is less than c4
p

t for some c4 = c4(!) provided t � bn. The first term can
be estimated depending on whether Ŷt 62O 2n or not:

Ez⇤
!

⇥
| !(Ŷt)|1{Sn�t}

⇤
 1

2
✏n + R̄2c1nP!,z⇤(Ŷt 2 O2n).

For the probability of Ŷt 2 O2n we get

P!,z⇤(Ŷt 2 O2n) =
X

x2O2n

P!,z⇤(Ŷt = x)


X

x2O2n

P!,z⇤(Ŷt = z⇤)1/2P!,x(Ŷt = x)1/2  c5
|O2n|
td/2

,

where c5 = c5(!) denote the suprema in (7.20). Here is the first inequality we used the Schwarz
inequality and the second inequality is due to (7.20).

Ez⇤
!

h�� !(Ŷt^Sn) + Ŷt^Sn � z⇤
��1{Sn�t}

i
 c4

p
t +

1
2
✏n + R̄2c1nc5

|O2n|
td/2

. (7.33)

By (7.32) and (7.33), we conclude that

R̄n  (R̄2c1n + 2c1n)
(c2 + c3)

p
t

n
+ c4

p
t +

1
2
✏n + R̄2c1nc5

|O2n|
td/2

. (7.34)

Since |O2n| = o(nd) as n !1 due to (7.17), we can choose t := ⇠n2 with ⇠ > 0 so small that (7.31)
applies and (7.29) holds for the given ✏ and � once n is su�ciently large.

7.7 Proof of Proposition 7.16

In this subsection, we prove Proposition 7.16 for Case 1 and Case 2 separately.

7.7.1 Case 1

For Case 1, we need to work on C1,↵, but we do not need to use Proposition 7.12 seriously yet
(although we use it lightly in (7.39)). By definition, it is clear that � satisfies Theorem 7.13 (3) for
P↵ for all ↵ � 0 with P(0 2 C1,↵) > 0. The next lemma proves Theorem 7.13(2) for P↵.

Lemma 7.21 Let � be the corrector on C1 and define '!(x) = ('1
!(x), · · · , 'd

!(x)) := x + �(!, x).
Then LQ̂'

j
!(x) = 0 for all x 2 C1,↵ and 1  j  d.

Proof. Note that (LQ̂'!)(x) = Ex
!

⇥
'!(Y�1)

⇤
� '!(x). Also, since {Yt}t�0 moves in a finite compo-

nent of C1 \ C1,↵ for t 2 [0, �1], '!(Yt) is bounded. Since {'!(Yt)}t�0 is a martingale and �1 < 1
a.s., the optional stopping theorem gives Ex

!'!(Y�1) = '!(x).
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Proof of Proposition 7.16 (1). In this Case 1, the result holds for all ✓ > d as we shall prove.
Let ✓ > d and write

Rn := max
x2C1,↵

|x|n

���(!, x)
��.

By Proposition 7.11 (ii),

�(!) := sup
x2C1,↵

d(↵)
! (0, x)
|x| < 1, P↵-a.s., (7.35)

where we let d(↵)
! (x, y) be the graph distance between x and y on C1,↵. So it is enough to prove

Rn/n✓ ! 0 on {�(!)  �} for all � < 1. Note that on {�(!)  �} every x 2 C1,↵ \ [�n, n]d can be
connected to the origin by a path that is inside C1,↵ \ [��n,�n ]d. Using this fact and �(!, 0) = 0,
we have, on {�(!)  �},

Rn 
X

x2C1,↵

|x|�n

X
b2B

1{!x,x+b2C1,↵}
���(!, x + b)� �(!, x)

��  X
x2C1,↵

|x|�n

X
b2B

r
!x,x+b

↵

���(!, x + b)� �(!, x)
��,

(7.36)
where B = {e1, · · · , ed,�e1, · · · ,�ed} is the set of unit vectors. Using the Schwarz and (7.14), we
get

E↵[(Rn1{�(!)�})2] 
2d(�n)d

↵
E↵

h X
x2C1,↵

|x|�n

X
b2B

!x,x+b

���(!, x + b)� �(!, x)
��2i  Cn2d (7.37)

for some constant C = C(↵, �, d) < 1. Applying Chebyshev’s inequality, for ✓0 2 (d,✓ ),

P↵(Rn1{�(!)�} � n✓
0
)  C

n2(✓0�d)
.

Taking n = 2k and using the Borel-Cantelli, we have R2k/2k✓0  C on {�(!)  �} for large k, so
R2k/2k✓ ! 0 a.e. Since R2k/2k+1  Rn/n  2R2k+1/2k+1 for 2k  n  2K+1, we have Rn/n✓ ! 0
a.s. on {�(!)  �}.

We will need the following lemma which is easy to prove using the Hölder inequality (see [30,
Lemma 4.5] for the proof).

Lemma 7.22 Let p > 1 and r 2 [1, p). Let {Xn}n2N be random variables such that supj�1 kXjkp <

1 and let N be a random variable taking values in positive integers such that N 2 Ls for some s >

r(1 + 1
p)/(1� r

p). Then
PN

j=1 Xj 2 Lr. Explicitly, there exists C = C(p, r, s) > 0 such that

k
NX

j=1

Xjkr  C
�
sup
j�1

kXjkp
��
kNks

�s[ 1
r�

1
p ],

where C is a finite constant depending only on p, r and s.
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Proof of Proposition 7.16 (3-1). Let Z be a random variable satisfying the properties (a)–
(c). Since � 2 L2

pot, there exists a sequence  n 2 L2 such that

�n(·, x) :=  n � Tx �  n �!
n!1

�(·, x) in L2(⌦⇥ Zd).

Without loss of generality we may assume that �n(·, x) ! �(·, x) almost surely. Since Z is P↵-
preserving, we have E↵[�n(·, Z(·))] = 0 once we can show that �n(·, Z(·)) 2 L1. It thus su�ces to
prove that

�n
�
·, Z(·)

�
�!
n!1

�
�
·, Z(·)

�
in L1. (7.38)

Abbreviate K(!) := d(↵)
! (0, Z(!)) and note that, as in (7.36),

���n(!,Z(!))
��  X

x2C1,↵

|x|K(!)

X
b2B

r
!x,x+b

↵

���n(!, x + b)� �n(!, x)
��.

Note that p!x,x+b

���n(!, x + b) � �n(!, x)
��1{x2C1,↵} is bounded in L2, uniformly in x, b and n,

and assumption (c) shows that K 2 Lq for some q > 3d. Thus, by choosing p = 2, s = q/d and
N = 2d(2K + 1)d in Lemma 7.22 (note that N 2 Ls), we obtain,

sup
n�1

k�n(·, Z(·))kr < 1,

for some r > 1. Hence, the family {�n(·, Z(·))} is uniformly integrable, so (7.38) follows by the fact
that �n(·, Z(·)) converge almost surely.

The proof of Proposition 7.16 (2) is quite involved since there are random holes in C1,↵. We
follow the approach in Berger and Biskup [30].

Lemma 7.23 For ! 2 {0 2 C1,↵}, let {xn(!)}n2Z be the intersections of C1,↵ and one of the
coordinate axis so that x0(!) = 0. Then

lim
n!1

�(!, xn(!))
n

= 0, P↵-a.s.

Proof. Similarly to (7.25), let �(!) := Tx1(!)(!) denote the “induced” shift. As before, it is standard
to prove that � is P↵-preserving and ergodic (cf. [30, Theorem 3.2]). Further, using Proposition 7.12,

E↵
�
d(↵)
! (0, x1(!))p

�
< 1, 8p < 1. (7.39)

Now define  (!) := �(!, x1(!)). Using (7.39), we can use Proposition 7.16 (3-1) with Z(!) = x1(!)
and obtain

 2 L1(⌦, P↵) and E↵ (!) = 0.

Using the cocycle property of �, we can write

�(!, xn(!))
n

=
1
n

n�1X
k=0

 � �k(!)
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and so the left-hand side tends to zero P↵-a.s. by Birkho↵’s ergodic theorem.

Since the hole is random, we should ‘build up’ averages over higher dimensional boxes inductively,
which is the next lemma. We first give some definition and notation.

Given K > 0 and ✏ > 0, we say that a site x 2 Zd is (K,✏ )-good if x 2 C1(!) and
���(y,! )� �(x,! )

�� < K + ✏|x� y|

holds for every y 2 C1,↵(!) of the form y = `e, where ` 2 Z and e is a unit vector. We denote by
GK,✏ = GK,✏(!) the set of (K,✏ )-good sites.

For each ⌫ = 1, . . . , d, let ⇤⌫n be the ⌫-dimensional box

⇤⌫n =
�
k1e1 + · · ·+ k⌫e⌫ : ki 2 Z, |ki|  n 8i = 1, . . . , ⌫

 
.

For each ! 2 ⌦, define

%⌫(!) = lim
✏#0

lim sup
n!1

inf
y2C1,↵(!)\⇤1

n

1
|⇤⌫n|

X
x2C1,↵(!)\⇤⌫

n

1{|�(!,x)��(!,y)|�✏n}. (7.40)

Note that the infimum is taken only over sites in one-dimensional box⇤ 1
n. The idea is to prove

%⌫ = 0 P↵-a.s. inductively for all 1  ⌫  d.

Our goal is to show by induction that %⌫ = 0 almost surely for all ⌫ = 1, . . . , d. The induction
step is given the following lemma which is due to [30, Lemma 5.5].

Lemma 7.24 Let 1  ⌫ < d. If %⌫ = 0, P↵-almost surely, then also %⌫+1 = 0, P↵-almost surely.

Proof. Let p1 = P↵(0 2 C1,↵). Let ⌫ < d and suppose that %⌫ = 0, P↵-a.s.. Fix � with 0 < � < 1
2p2
1.

Consider the collection of ⌫-boxes

⇤⌫n,j = ⌧je⌫+1(⇤
⌫
n), j = 1, . . . , L.

Here L is a deterministic number chosen so that

�0 =
�
x 2 ⇤⌫n : 9j 2 {0, . . . , L� 1}, x + je⌫+1 2 ⇤⌫n,j \ C1,↵

 
is so large that |�0| � (1� �)|⇤⌫n| once n is su�ciently large.

Choose ✏ > 0 so that
L✏+ � <

1
2
p2
1. (7.41)

Pick ✏ > 0 and a large value K > 0. Then for P↵-a.e. !, all su�ciently large n, and for each
j = 1, . . . , L, there exists a set of sites� j ⇢ ⇤⌫n,j \ C1,↵ such that

��(⇤⌫n,j \ C1,↵) \�j

��  ✏|⇤⌫n,j |

and ���(x,! )� �(y,! )
��  ✏n, x, y 2 �j . (7.42)
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Moreover, for n su�ciently large,� j could be picked so that� j \ ⇤1
n 6= ; and, assuming K large,

the non-(K,✏ )-good sites could be pitched out with little loss of density to achieve even� j ⇢ GK,✏.
(These claims can be proved directly by the ergodic theorem and the fact that P↵(0 2 GK,✏) converges
to the density of C1,↵ as K !1.) Given� 1, . . . ,�L, let ⇤ be the set of sites in⇤ ⌫+1

n \C1,↵ whose
projection onto the linear subspace H = {k1e1 + · · · + k⌫e⌫ : ki 2 Z} belongs to the corresponding
projection of� 1 [ · · · [�L. Note that the� j could be chosen so that⇤ \ ⇤1

n 6= ;.
By the construction, the projections of the� j ’s, j = 1, . . . , L, onto H ‘fail to cover’ at most L✏|⇤⌫n|

sites in� 0, and so at most (�+L✏)|⇤⌫n| sites in⇤ ⌫
n are not of the form x+ ie⌫+1 for some x 2

S
j �j .

It follows that ��(⇤⌫+1
n \ C1,↵) \ ⇤

��  (� + L✏)|⇤⌫+1
n |, (7.43)

i.e., ⇤ contains all except at most (L✏ + �)-fraction of all sites in⇤ ⌫+1
n . Next note that if K is

su�ciently large, then for all 1  i < j  L, H contains at least 1
2p2
1-fraction of sites x such that

zi := x + ie⌫ 2 GK,✏ and zj := x + je⌫ 2 GK,✏.

By (7.41), if n is large enough, for each pair (i, j) with 1  i < j  L such zi and zj can be found
so that zi 2 �i and zj 2 �j . But the �j ’s were picked to make (7.42) true and so via these pairs of
sites we have ���(y,! )� �(x,! )

��  K + ✏L + 2✏n (7.44)

for every x, y 2 �1 [ · · · [�L.
From (7.42) and (7.44), we can conclude that for all r, s 2 ⇤,

���(r,! )� �(s,! )
��  3K + ✏L + 4✏n < 5✏n, (7.45)

provided that ✏n > 3K + ✏L. If %⌫,✏ denotes the right-hand side of (7.40) before taking ✏ # 0, the
bounds (7.43) and (7.45) and⇤ \ ⇤1

n 6= ; yield

%⌫+1,5✏(!)  � + L✏,

for P↵-a.e. !. But the left-hand side of this inequality increases as ✏ # 0 while the right-hand side
decreases. Thus, taking ✏ # 0 and � # 0 proves that ⇢⌫+1 = 0 holds for P↵-a.e. !.

Proof of Proposition 7.16 (2). First, by Lemma 7.23, we know that %1(!) = 0 for P↵-a.e.
!. Using induction, Lemma 7.24 then gives %d(!) = 0 for P↵-a.e. !. Let ! 2 {0 2 C1,↵}. By
Lemma 7.24, for each ✏ > 0 there exists n0 = n0(!) which is a.s. finite such that for all n � n0(!),
we have |�(x,! )|  ✏n for all x 2 ⇤1

n \ C1,↵(!). Using this to estimate away the infimum in (7.40),
%d = 0 now gives the desired result for all ✏ > 0.
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7.7.2 Case 2

Recall that for Case 2, we only need to work when ↵ = 0, so C1,↵ = C1 = Zd in this case.
We follow [16, Section 5]. Let Q(n)

x,y = q!n (x, y). Since the based measure is ⌫x ⌘ 1, we have
Q(n)

x,y =
P

z Q(n�1)
x,z Q(1)

z,y. We first give a preliminary lemma.

Lemma 7.25 For G 2 L
2, we have

E[
X

y

Q(n)
0,yG(·, y))2]  nkGk2

L
2 . (7.46)

Proof. Let a2
n be the left hand side of (7.46). Then, by the cocycle property, we have

a2
n = E[

X
x

X
y

Q(n�1)
0,x Qx,y(G(Tx·, y � x) + G(·, x))2]

= E[
X

x

X
y

Q(n�1)
0,x Qx,y{G(Tx·, y � x)2 + 2G(Tx·, y � x)G(·, x) + G(·, x)2}] =: I + II + III.

Then,

I = E[
X

x

X
y

Q(n�1)
�x,0 (Tx·)Q0,y�x(Tx·)G(Tx·, y � x)2]

= E[
X

x

X
z

Q(n�1)
�x,0 (·)Q0,z(·)G(·, z)2] = E[

X
z

Q0,z(·)G(·, z)2] = kGk2
L

2 ,

III = E[
X

x

X
y

Q(n�1)
0,x Qx,yG(·, x)2] = E[

X
x

Q(n�1)
0,x G(·, x)2] = a2

n�1,

II = 2E[
X

x

X
z

Q(n�1)
0,x (·)Q0,z(Tx·)G(Tx·, z)G(·, x)]  2I1/2II1/2 = 2an�1kGkL

2 .

Thus an  an�1 + kGk
L

2  · · ·  nkGk
L

2 .

The next lemma proves Proposition 7.16 (1). We use the heat kernel lower bound in the proof.

Lemma 7.26 Let G 2 L
2.

(i) For 1  p < 2, there exists cp > 0 such that

E[|G(·, x)|p]1/p  cp|x| · kGkL
2 , 8x 2 Zd. (7.47)

(ii) It follows that limn!1max|x|n n�d�4|G(!, x)| = 0, P-a.e. !.

Proof. Using the cocycle property and the triangle inequality iteratively, for x = (x1, · · · , xd), we
have

E[|G(·, x)|p]1/p 
dX

i=1

|xi|E[|G(·, ei)|p]1/p,
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so it is enough to prove E[|G(·, ei)|p]  cpkGkp

L
2 for 1  i  d. By Theorem 7.3, there exists an

integer valued random variable Wi with Wi � 1 such that P(Wi = n)  c1 exp(�c2n⌘) for some ⌘ > 0
and q!t (0, ei) � c3t�d/2 for t � Wi. Set ⇠n,i = q!n (0, ei). Then

E[|G(·, ei)|p] =
1X

n=1

E[|G(·, ei)|p1{Wi=n}].

Let ↵ = 2/p and ↵0 = 2/(2� p) be its conjugate. Then, using the heat kernel bound and the Hölder,

E[|G(·, ei)|p1{Wi=n}] = E[⇠1/↵
n |G(·, ei)|p⇠�1/↵

n 1{Wi=n}]  E[⇠nG(·, ei)2]1/↵E[⇠�↵
0/↵

n 1{Wi=n}]1/↵0

 E[
X

y

Q(n)
0,yG(·, y)2]1/↵

⇣
(c3n

�d/2)�↵
0/↵c1 exp(�c2n

⌘)
⌘1/↵0

 (nkGk2
L

2)1/↵c4n
d/(2↵) exp(�c5n

⌘) = c4n
(d+2)/(2↵) exp(�c5n

⌘)kGkp

L
2 ,

where we used (7.46) in the last inequality. Summing over n � 1, we obtain E[|G(·, ei)|p]  cpkGkp

L
2

for 1  i  d.
(ii) We have

P(max
|x|n

|G(·, x)| > �n)  (2n + 1)d max
|x|n

P(|G(·, x)| > �n)  cnd

�n
max
|x|n

E[|G(·, x)|]  c0nd+1

�n
kGk

L
2 ,

where we used (7.47) in the last inequality. Taking �n = nd+3 and using the Borel-Cantelli gives the
desired result.

We next prove Proposition 7.16 (3-2). One proof is to apply Proposition 7.16 (3-1) with Z(·) ⌘ x.
Here is another proof.

Lemma 7.27 For G 2 L2
pot, it holds that E[G(·, x)] = 0 for all x 2 Zd.

Proof. If G = rF where F 2 L2, then E[G(x, ·)] = E[Fx � F ] = EFx � EF = 0. In general, there
exist {Fn} ⇢ L2 such that G = limnrFn in L

2. Since P(Q0,x > 0) = 1 for all x 2 Zd, it follows
that rFn(·, x) converges to G(·, x) in P-probability. By (7.47), for each p 2 [1, 2), {rFn(·, x)}n

is bounded in Lp so that rFn(·, x) converges to G(·, x) in L1 for all x 2 Zd. Thus E[G(·, x)] =
limn E[rFn(·, x)] = 0.

By this lemma, we have E[�(·, ei)] = 0 where ei is the unit vector for 1  i  d. Using the
cocycle property inductively, we have

�(!, nei) =
nX

k=1

�(T(k�1)ei
!, ei) =

nX
k=1

 � T(k�1)ei
,

where ( !) := �(!, ei). By the proof of Lemma 7.27, we see that 2 L1. So Birkho↵’s ergodic
theorem implies

lim
n!1

1
n
�(!, nei) = 0, P-a.e. !. (7.48)

Given this, which corresponds to Lemma 7.23 for Case 1, the proof of Proposition 7.16 (2) for Case
2 is the same (in fact slightly easier since C1 = Zd in this case) as that of Case 1.
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7.8 End of the proof of quenched invariance principle

In this subsection, we will complete the proof of Theorem 7.2 and Theorem 7.4. Throughout this
subsection, we assume that ↵ satisfies (7.5) for Case 1 and ↵ = 0 for Case 2.

First, we verify some conditions in Theorem 7.15 to prove the sublinearity of the corrector. The
heat kernel estimates and percolation estimates are seriously used here.

Lemma 7.28 (i) The di↵usive bounds (7.19), (7.20) hold for P↵-a.e. !.
(ii) Let ⌧n = {t � 0 : |Ŷt � Ŷ0| � n}. Then for any c1 > 1, there exists N! = N!(c1) > 0 which is
a.s. finite such that |Ŷ⌧n � Ŷ0|  c1n for all t > 0 and n � N!.

Proof. (i) For Case 2, this follows from Theorem 7.3. For Case 1, the proof is given in [32, Section
6]. (See also [90, Section 4]. In fact, in this case both sides Gaussian heat kernel bounds which are
similar to the ones for simple random walk on the supercritical percolation clusters hold.)
(ii) For Case 1, this follows directly from Proposition 7.12 and the Borel-Cantelli. For Case 2, using
Theorem 7.3, we have for any z 2 Zd with |z|  n and c1 > 1,

P⇥ P z
!(|Y1| � c1n)  P(Uz � c1n) + E[

X
z2B(0,c1n)c\Zd

q·1(z, y) : Uz < c1n]

 c2 exp(�c3n
⌘) + c4n

d�1 exp(�c5(c1 � 1)n log n),

where c2, · · · , c5 > 0 does not depend on z. So the result follows by the Borel-Cantelli.

Proof of Theorem 7.2 and Theorem 7.4. By Proposition 7.16 and Lemmas 7.28, the
corrector satisfies the conditions of Theorem 7.15. It follows that � is sublinear on C1,↵ (for Case
2, since ↵ = 0, � is sublinear on C1). However, for Case 1, by (7.6) the diameter of the largest
component of C1 \ C1,↵ in a box [�2n, 2n] is less than C(!) log n for some C(!) < 1. Using the
harmonicity of '! on C1, the optional stopping theorem gives

max
x2C1
|x|n

���(!, x)
��  max

x2C1,↵

|x|n

���(!, x)
��+ 2C(!) log(2n),

hence � is sublinear on C1 as well.
Having proved the sublinearity of � on C1 for both Case 1 and Case 2, we proceed as in the d = 2

proof of [30]. Let {Yt}t�0 be the VSRW and Xn := Yn, n 2 N be the discrete time process. Also, let
'!(x) := x + �(!, x) and define Mn := '!(Xn). Fix v̂ 2 Rd. We will first show that (the piecewise
linearization) of t 7! v̂ ·M[tn] scales to Brownian motion. For K � 0 and for m  n, let

fK(!) := E0
!

⇥
(v̂ ·M1)21{|v̂·M1|�K}

⇤
, and Vn,m(K) := V (!)

n,m(K) =
1
n

m�1X
k=0

fK � TXk(!).

Since

Vn,m(✏
p

n) =
1
n

m�1X
k=0

E0
!

h
(v̂ · (Mk+1 �Mk))21{|v̂·(Mk+1�Mk)|�✏pn}

���Fk

i
,

for Fk = �(X0, X1, . . . , Xk), in order to apply the Lindeberg-Feller functional CLT for martingales,
we need to verify the following for P0-almost every ! (recall P0(·) := P(·|0 2 C1)):
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(i) Vn,[tn](0) ! Ct in P 0
!-probability for all t 2 [0, 1] and some C 2 (0,1),

(ii) Vn,n(✏
p

n) ! 0 in P 0
!-probability for all ✏ > 0.

By Theorem 7.13 (3), fK 2 L1 for all K. Since n 7! TXn(!) (c.f. (7.25)) is ergodic, we have

Vn,n(K) =
1
n

n�1X
k=0

fK � TXk(!) �!
n!1

E0fK , (7.49)

for P0-a.e. ! and P 0
!-a.e. path {Xk}k of the random walk. Taking K = 0 in (7.49), condition (i)

above follows by scaling out the t-dependence first and working with tn instead of n. On the other
hand, by (7.49) and the fact that f✏pn  fK for su�ciently large n, we have, P0-almost surely,

lim sup
n!1

Vn,n(✏
p

n)  E0fK = E0

h
E0
!

⇥
(v̂ ·M1)21{|v̂·M1|�K}

⇤i
�!

K!1
0,

where we can use the dominated convergence theorem since v̂ ·M1 2 L2. Hence, conditions (i) and
(ii) hold (in fact, even with P 0

!-a.s. limits). We thus conclude that the following continuous random
process

t 7! 1p
n

�
v̂ ·M[nt] + (nt� [nt]) v̂ · (M[nt]+1 �M[nt])

�

converges weakly to Brownian motion with mean zero and covariance E0f0 = E0E0
!

⇥
(v̂ ·M1)2

⇤
. This

can be written as v̂ ·Dv̂ where D is the matrix defined by

Di,j := E0E
0
!

�
(ei ·M1)(ej ·M1)

�
, 8i, j 2 {1, · · · , d}.

Thus, using the Cramér-Wold device and the continuity of the process, we obtain that the linear in-
terpolation of t 7! M[nt]/

p
n converges to d-dimensional Brownian motion with covariance matrix D.

Since Xn �Mn = �(!,Xn), in order to prove the convergence of t 7! X[nt]/
p

n to Brownian motion
P0-a.e. !, it is enough to show that, for P0-a.e. !,

max
1kn

|�(Xk, !)|p
n

�!
n!1

0, in P 0
!-probability. (7.50)

By the sublinearity of �, we know that for each ✏ > 0 there exists K = K(!) < 1 such that

|�(x,! )|  K + ✏|x|, 8x 2 C1(!).

Putting x = Xk and substituting Xk = Mk � �(Xk, !) in the right hand side, we have, if ✏ < 1
2 ,

|�(Xk, !)|  K

1� ✏ +
✏

1� ✏ |Mk|  2K + 2✏|Mk|.

But the above CLT for {Mk} and the additivity of {Mk} imply that maxkn |Mk|/
p

n converges
in law to the maximum of Brownian motion B(t) over t 2 [0, 1]. Hence, denoting the probability law
of Brownian motion by P , we have

lim sup
n!1

P 0
!

�
max
kn

|�(Xk, !)| � �
p

n
�
 P

⇣
max
0t1

|B(t)| � �

2✏

⌘
.
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The right-hand side tends to zero as ✏! 0 for all � > 0. Hence we obtain (7.50). We thus conclude
that t 7! B̂n(t) converges to d-dimensional Brownian motion with covariance matrix D, where

B̂n(t) :=
1p
n

�
X[tn] + (tn� [tn])(X[tn]+1 �X[tn])

�
, t � 0.

Noting that

lim
n!1

P 0
!( sup

0sT
| 1p

n
Ysn � B̂n(s)| > u) = 0, 8u, T > 0,

which can be proved using the heat kernel estimates (using Theorem 7.3; see [16, Lemma 4.12]) for
Case 2, and using the heat kernel estimates for Ŷ and the percolation estimate Proposition 7.12 for
Case 1 (see [90, (3.2)]; note that a VSRW version of [90, (3.2)] that we require can be obtained along
the same line of the proof), we see that t 7! Ytn/

p
t converges to the same limit.

By the reflection symmetry of P0, we see that D is a diagonal matrix. Further, the rotation
symmetry ensures that D = (�2/d) I where �2 := E0E0

!|M1|2. To see that the limiting process is
not degenerate to zero, note that if � = 0 then �(·, x) = �x holds a.s. for all x 2 Zd. But that is
impossible since, as we proved, x 7! �(·, x) is sublinear a.s.

Finally we consider the CSRW. For each x 2 C1, let µx(!) :=
P

y !xy. Let F (!) = µ0(!) and

At =
Z t

0
µYsds =

Z t

0
F (Zs)ds.

Then ⌧t = inf{s � 0 : As > t} is the right continuous inverse of A and Wt = Y⌧t is the CSRW. Since
Z is ergodic, we have

lim
t!1

1
t
At = EF = 2dEµe, P⇥ P 0

!-a.s.

So if Eµe < 1, then ⌧t/t ! (2dEµe)�1 =: M > 0 a.s. Using the heat kernel estimates for Case 2
(i.e. using Theorem 7.3; see [16, Theorem 4.11]), and using the heat kernel estimates for Ŷ and the
percolation estimate Proposition 7.12 for Case 1 (i.e. using the VSRW version of [90, (3.2)]), we have

lim
n!1

P 0
!( sup

0sT
| 1p

n
Wsn �

1p
n

YsMn| > u) = 0, 8T, u > 0, P-a.e. !.

Thus, 1p
n
Wsn = 1p

n
YsMn + 1p

n
Wsn � 1p

n
YsMn converges to �CBt where {Bt} is Brownian motion

and �2
C = M�2

V > 0.
If Eµe = 1, then we have ⌧t/t ! 0, so 1p

n
Wsn converges to a degenerate process.

Remark 7.29 Note that the approach of Mathieu and Piatnitski [91] (also [90]) is di↵erent from the
above one. They prove sublinearity of the corrector in the L2-sense and prove the quenched invariance
principle using it. (Here L2 is with respect to the counting measure on C1,↵ or on C1. In the above
arguments, sublinearity of the corrector is proved uniformly on C1,↵, which is much stronger.) Since
compactness is crucial in their arguments, they first prove tightness using the heat kernel estimates –
recall that the above arguments do not require a separate proof of tightness. Then, using the Poincaré
inequality and the so-called two-scale convergence, weak L2 convergence of the corrector is proved.
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This together with the Poincaré inequality again, they prove strong L2 convergence of the corrector
(so the L2-sublinearity of the corrector). In a sense, they deduce weaker estimates of the corrector
(which is however enough for the quenched CLT) from weaker assumptions.
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[56] P. Gábor. A note on percolation on Zd: isoperimetric profile via exponential cluster repulsion. Electron.
Comm. Probab. 13 (2008), 377–392.

[57] P.G. de Gennes. La percolation: un concept unificateur. La Recherche, 7 (1976), 919–927.

[58] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for r� interface model. Ann. Probab. 29
(2001), 1138–1172.

[59] A. Grigor’yan. Analysis on Graphs. http://www.math.uni-bielefeld.de/ grigor/aglect.pdf

[60] A. Grigor’yan. Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana,
10 (1994), 395–452.

[61] G. Grimmett. Percolation. 2nd ed., Springer, Berlin, 1999.

[62] G. Grimmett and P. Hiemer. Directed percolation and random walk. In and out of equilibrium (Mam-
bucaba, 2000), pp. 273–297, Progr. Probab. 51, Birkhäuser, Boston, 2002.

[63] G. Grimmett, H. Kesten and Y. Zhang. Random walk on the infinite cluster of the percolation model.
Probab. Theory Relat. Fields 96 (1993), 33-44.

[64] B.M. Hambly and T. Kumagai. Di↵usion on the scaling limit of the critical percolation cluster in the
diamond hierarchical lattice. Comm. Math. Phys., 295 (2010), 29–69.

[65] B.M. Hambly and T. Kumagai. Heat kernel estimates for symmetric random walks on a class of fractal
graphs and stability under rough isometries. In: Fractal geometry and applications: A Jubilee of B.
Mandelbrot, Proc. of Symposia in Pure Math. 72, Part 2, pp. 233–260, Amer. Math. Soc. 2004.

[66] T. Hara. Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and
animals. Ann. Prob. 36 (2008), 530–593.

[67] T. Hara, R. van der Hofstad and G. Slade. Critical two-point functions and the lace expansion for
spread-out high-dimensional percolation and related models. Ann. Probab., 31 (2003), 349–408.

90



[68] R. van der Hofstad, F. den Hollander, and G. Slade. Construction of the incipient infinite cluster for
spread-out oriented percolation above 4 + 1 dimensions. Comm. Math. Phys., 231 (2002) 435–461.
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