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1 Introduction

Bond percolation on Z% (d > 2)
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dp. € (0, 1) s.t. Floo-cluster for p > p., no co-cluster for p < p,.
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‘Anomalous’ behavior of the random walk at critical probability.

Let p; (2, y) == PJ(Yy = y)/ pny and

ds = —21lim,, . logps (z,x)/logn: Spectral dimension.

Alexander-Orbach conjecture (J. Phys. Lett., '82)

d>2= ldg=4J/3 (NOT d).

(It is now believed that this is false for small d.)




Motivations and Historical Remark

Analyze “anomalous” random walks or diffusions on disordered media

Math. Physicists’ work since late 60’s

Survey: Ben-Avraham and S. Havlin (’00)

Detailed study of heat conduction and wave transmission on

e Complicated network = Random walk on fractals Rammal-Toulose (’83) etc.
e Random models at critical probability (Percolation cluster etc.)

De Gennes ("76) “the ant in the labyrinth”



Motivations and Historical Remark

Analyze “anomalous” random walks or diffusions on disordered media

Math. Physicists’ work since late 60’s

Survey: Ben-Avraham and S. Havlin (’00)

Detailed study of heat conduction and wave transmission on

e Complicated network = Random walk on fractals Rammal-Toulose (’83) etc.
e Random models at critical probability (Percolation cluster etc.)
De Gennes ('76) “the ant in the labyrinth”
= Late 80’s~: Kesten ('86) anomalous behavior of RW on the critical perco. cluster
= Diffusions / analysis on fractals (Fractals are “ideal” disordered media)

= Stability theory, global analysis = Applications to random media
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2 Anomalous heat transfer on fractals

G pre-Sierpinski gasket (left figure),  M: Sierpinski gasket (right figure)
{Y(n) :n=0,1,2,---}: simple random walk (SRW) on G
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2 Anomalous heat transfer on fractals

G: pre-Sierpinski gasket (left figure),  M: Sierpinski gasket (right figure)
{Y(n):n=0,1,2,---}: simple random walk (SRW) on G

27"Y([5"]) = B, : Brownian motion on M [Goldstein ‘87, Kusuoka '87]

Af(x) = ?}Lngo 5”(% Z f(z;) — f(x)) . Laplacian on M [Kigami '89]

T;~T



Cf.

E*los] =5 Bl = 4

27"Y ([5"t]) "% B, : Brownian motion on M

Cf. Invariance principle on R, {Y'(i)}: SRW on Z,

27y ([4"4]) % B, : Brownian motion on R,



Cf.

E*los] =5 Bl = 4

27"Y ([5"]) = 27"V (2™"]) =3 B, : Brownian motion on M

d,, =logh/log2 > 2 is called a walk dimension.
Cf. Invariance principle on R, {Y'(i)}: SRW on Z,

27Y ([4™]) = 27"V ([2°"¢]) == B, : Brownian motion on R



Theorem 2.1 [Barlow-Perkins '88]  Heat kernel estimates (HK(d,,))

dp(z,y): jointly continuous heat kernel (HK) w.r.t. p (Hausdorff meas.)
(Bf(x) == E[f(B)] = [y pelz,y) f(y)u(dy) Vo € M, Gpi(zo, x) = Apy(o, ) ) s.t.

dy :=log3/log2: Hausdorff dim., ds = 2log3/log5 < 2: spectral dim.
Note d./2 = d;/d,: called the Einstein relation. (Cf. BM on R%: d, = d; = d,d,, = 2.)



Theorem 2.1 [Barlow-Perkins '88]  Heat kernel estimates (HK(d,,))

dp;(x, y): jointly continuous heat kernel (HK) w.r.t. pu (Hausdorff meas.)
(Pif(x) = E*[f(BW)] = [y, pil, 9) f(y)p(dy) Yo € M, Gpi(ao, x) = Apy(wp, ) ) s.t.

dy :=log3/log2: Hausdorff dim., ds = 2log3/log5 < 2: spectral dim.
Note d./2 = d;/d,: called the Einstein relation. (Cf. BM on R%: d, = d; = d,d,, = 2.)

From -, many properties can be deduced!
o it/ < EYd(0, By)] < cot'/® (dy, > 2, sub-diffusive)

e Holder continuity of harmonic and caloric functions.

e Estimates of Green functions e Laws of iterated laws etc.
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Construction of BM and estimates such as (HK (d,,)): Done on various fractals.
(dy,dy, and ds depend on fractals.)

Open Prob. Existing construction of BM on the carpet (e.g. [Barlow-Bass '99])
requires detailed uniform control of harmonic functions on the approximating proc.

Construct BM on the carpet without such detailed information.



3 Stability of parabolic Harnack inequalities and sub-Gaussian heat kernel estimates

Sierpinski gasket is “Too ideal”

(Q) Is the heat kernel estimate “stable” under some perturbation?



Back to the classical case
[Aronson '67] L=}, %(aij(a:)a%j) on R%: sym. and uniform elliptic
le. o < A(x) = (a;i(x));; < col), then (HK(2)) holds.
J J

[Li-Yau '86] M: Non-cpt R-mfd, Ricci > 0, A: Laplace-Beltrami = (HK(2)) holds.

Assume that the HK for a Dirichlet form &, E(f, f) = — [,, f x)dz, satisfies
(HK(2)) and E'(f, f) < E(f, f) for all f. Does the HK of £’ satisfy (HK(2))’7
= YES! By the following characterization of (HK(2)).



(M, d, ;1): metric measure space,  &: ‘nice’ Dirichlet form on L*(M, )
|Grigor’yan '92, Saloft-Coste 92, Sturm "96, Delmotte 99

e (VD): volume doubling condition
u(B(x,2R)) < ep(B(x.R) Y r€M.R>0.
e (PI(2)): scaled Poincaré¢ inequality VBpr = B(xg, R), R >0

[ 0@ = FoPutde) < R €, (5. ). VS

Br
where f5 = u(B) " [ f(a)n(da)
B
e (PHI(2)): parabolic Harnack inequality of order 2. ‘Regularity’ of caloric functions



Theorem 3.4 [Barlow-Bass '03, Barlow-Bass-K '06, Andres-Barlow "13]

(CS (B8)): cut-off Sobolev inequality Remark. (CS(2)) always holds.

C1 d(z,y)" 3 d(z,y)’

Bz, 177 exp ( — e ; )F1) < pelw,y) < W(Blw, 077)) exp ((— cu )-1). (HK(B))

Remark. Gasket case: § =d,, = log5/log2, w(B(x,t"V7%)) = td/dw = ¢ds/2,

[The theorem still holds if s” is replaced by 1{531}551 + 1{5>1}352.]
= Stability of (HK(/)) is established.



Fractal-like manifold




Theorem 3.4 [Barlow-Bass '03, Barlow-Bass-K '06, Andres-Barlow "13]

(CS (B)): cut-off Sobolev inequality Remark. (CS(2)) always holds.

C1 d(z,y)" 3 d(z,y)’

Bz, 177 exp ( — e ; )F1) < pelw,y) < W(Blw, 077)) exp ((— cu )-1). (HK(B))

Remark. Gasket case: § =d,, = log5/log2, w(B(x,t"V7%)) = td/dw = ¢ds/2,

[The theorem still holds if s” is replaced by 1{831}351 + 1{8>1}552.]

= Stability of (HK(/)) is established.

- (CS (0)) is hard to verify! Open Prob. Provide a simpler cond.
Strongly recurrent case: simpler equiv. condition [Barlow-Coulhon-K "05]

= Applicable for random media.



4 Random walk on percolation clusters

4.1 Supercritical case
(§2, F,P): prob. space for the random media, G = G(w): unique oco-cluster
{40 SRW on G(w) pi(x,y) = P(Y, =vy)/ 1. (u,: § of bonds con. to y.)

Although the media is not ‘uniform elliptic’, long time behavior is NOT anomalous.



4 Random walk on percolation clusters

4.1 Supercritical case
(2, F,P): prob. space for the random media, G = G(w): unique oco-cluster
{Y“}oso: SRWon G(w) pi(z,y) = PY(Y, =vy)/1y. (1 & of bonds con. to y.)

Although the media is not ‘uniform elliptic’, long time behavior is NOT anomalous.
Theorem 4.1 [Barlow '04] (Gaussian heat kernel estimates)

(HK(2)) holds P-a.s. w for t > d(x,y) VvV 3U,, x,y € G(w).
Theorem 4.2 [Sidoravicius-Sznitman 04, Berger-Biskup '07, Mathieu-Piatnitski. '07]

— Cf. 7Annealed” invariance principle: known since 80’s
[Kipnis-Varadhan 86, De Masi-Ferrari-Goldstein-Wick '89 (o > 0)]

= Extensions to random conductance models. (Skip.)



4.2 Critical case
Percolation on Z? with d > 6 (rigorously proved for d > 15)
Let C(0) be the set of vertices connected to 0 by open bonds (random medial)
At p = p., C(0) is a finite cluster with prob. 1!

(But, in any box of side n, 3 open clusters of diam. < n w.h.p.)



4.2 Critical case
Percolation on Z? with d > 6 (rigorously proved for d > 15)
Let C(0) be the set of vertices connected to 0 by open bonds (random medial)
At p = p., C(0) is a finite cluster with prob. 1!
(But, in any box of side n, 3 open clusters of diam. < n w.h.p.)

= Consider incipient infinite cluster (I1C). Pre(+) := limy,—o00 Py, (+]0 <= 0B(0,n))

(L.e. at the critical prob., conditioned on |C(0)] = o0.)

Belief: Local prop. of the large finite clusters can be captured
by regarding them as subsets the I1C.

Existence of the IIC known for this model. [van der Hofstad-Jarai '04]



(G(w),w e Q). 1IC, d>15, {Y¥}>0: SRW on G(w)

Theorem 4.4 [Kozma-Nachmias '09]  Jay, as > 0 s.t. the following hold.

7 (logn)™ = <y (3, 2) < (logn)n =%, forlargen . P —a.s.

Especially, ds(G(w)) = 3, P-a.s. w (solves the Alexander-Orbach conjecture ).

where 74 == inf{n >0:Y* & A}



General result: Volume + Resistance = HK estimates
(G(w),w € Q): random graph on (2, F,P), 30 € Q and D > 1.

For R, A > 1, we say B(0, R) is ‘A-good if

D

R R )



(General result: Volume + Resistance = HK estimates
(G(w),w € Q): random graph on (Q, F,P), 30 € Q and D > 1.

For R, A > 1, we say B(0, R) is ‘A-good if
RD D R c

Theorem 4.5 [Barlow-Jarai-K-Slade '08, K-Misumi "08]
If g s.t. P({w : B(0, R) is A-good}) > 1 — A™D for large R, A — (*).

= Jdag, a0 > 0 s.t. for P-as. w and z € G(w), AN, (w), R, (w) € N the following hold

(2) (log n)_o‘ln_D%l < ps.(z,r) < (log n)o‘ln_DLH for n > N (w),
(27) (log R)" R < E'rp.p < (log R)?R"* for n > Ry(w).

Especially, _, and the RW is recurrent.

[1C for high dim. percolation satisfies (*) with D = 2.

Open Prob. Provide a simpler sufficient condition for dy > 2.



[1C (for Galton-Watson branching tree): D = 2

Other examples. (i) Infinite incipient cluster (11C) for Galton-Watson branching tree
[Barlow-K '06] D =2 and d, =4/3 — Quenched versions of Kesten’s (’86) results.
(ii) TIC for spread out oriented percolation for d > 6

[Barlow-Jarai-K-Slade 08]  (d < 5 No! for Branching RW [Jarai-Nachmias '13])

(iii) Invasion percolation on a regular tree. [Angel-Goodman-den Hollander-Slade "08]



[1C (for Galton-Watson branching tree): D = 2

Other examples. (i) Infinite incipient cluster (11C) for Galton-Watson branching tree
[Barlow-K ’06] D =2 and dy = 4/3 — Quenched versions of Kesten’s ('86) results.
(ii) TIC for spread out oriented percolation for d > 6
[Barlow-Jarai-K-Slade 08]  (d < 5 No! for Branching RW |Jarai-Nachmias "13])
(iii) Invasion percolation on a regular tree. [Angel-Goodman-den Hollander-Slade "08]
(iv) IIC for a-stable GW trees [Croydon-K 08| D = /(v — 1), ds = 2a/ (200 — 1)
(v) 2-dim. uniform spanning trees [Barlow-Masson '11] D =8/5 =2/(5/4), d, = 13/5



Below critical dimensions

e RW on the IIC for 2-dimensional critical percolation [Kesten "86]
(a) 3 of I1C for 2-dimensional crit. perco. cluster is proved.
(b) Subdiffusive behavior of SRW on IIC is proved in the following sense.
Jde > 0 s.t. the P-distribution of n_%+€d(0, Y, ) is tight.

|Damron-Hanson-Sosoe "13] 7o) > n?*¢ for large n, P-a.s. and a.e. RW path



Below critical dimensions

(a) 9 of [IC for 2-dimensional crit. perco. cluster is proved.

(b) Subdiffusive behavior of SRW on IIC is proved in the following sense.
de > 0 s.t. the P-distribution of n_%“d(o, Y,,) is tight.

2+4¢

[Damron-Hanson-Sosoe "13] 79 ) = n° " for large n, P-a.s. and a.e. RW path

Remark. SO ConjechireisBelicved FONOIASTOR@=0| (Critical dimension is d = 6)
Numerical simulations suggest that _ for d <'5.

d=5=d,=1344+002, ---, d=2=d,=1.318 % 0.001

Open Prob. Disprove the Alexander-Orbach conjecture in low dimensions.



Other examples in low dimensional random media

e RW on the uniform infinite planar triangulation (D = 4)
[Benjamini-Curien "13, Gurel-Gurevich and Nachmias "13]

e Liouville BM [Garban-Rhodes-Vargas 13, Berestycki 13,
Maillard-Rhodes-Vargas-Zeitouni '14, Andres-Kajino "14]

e BM on the critical percolation cluster for the diamond lattice [Hambly-K "10]

e RW on the non-intersecting two-sided random walk trace on Z? and Z3

[Shiraishi "14]

Open Prob. 1) Lower dimensional models: prove the existence of ds, d,,.

2) Compute resistance for random media when it is not linear order.



5 Scaling limits of random walks on random media

Ex. 0 T%: rooted critical Galton-Watson tree (finite var.), cond. to have N vertices.

e Scaling limit of T is the cont. random tree 7 (Aldous '91).  Y*: SRW on T,
) — d
Theorem. [Croydon '08] { N 1/2}/[%3/%]}@0 = {BT} 0.



5 Scaling limits of random walks on random media

Ex. 0 T%: rooted critical Galton-Watson tree (finite var.), cond. to have N vertices.
e Scaling limit of T is the cont. random tree 7 (Aldous '91).  Y*: SRW on T,
) — d
Theorem. [Croydon '08] { N 1/2}/[%3/%]}@0 = {BT} 0.

Ex. 1 Erdos-Rényi random graph in critical window
G(N,p): Erdés-Rényi random graph — Le. Vi :={1,2,---, N} vertices
Percolation on the complete graph: each bond open w.p. p ~ ¢/N.

CcN: largest con. comp. E.g. N =200,c=0.8 N =200,c= 1.2 Pictures by C. Goldschmidt.




Critical window: p=1/N +AN"3 for fixed A\ € R = |CV] < N?/3. (Aldous '97)
e [Addario-Berry, Broutin, Goldschmidt "12]: M = M, (random compact set) s.t.

N-3eN L M = M, (Gromov-Hausdorff sense).

Theorem 5.1 [Croydon '12] {N~ 1/3YCA }t>0 4, {BM},~p: BM on M



Critical window: p=1/N +AN"3 for fixed A\ € R = |CV] < N?/3. (Aldous '97)
e [Addario-Berry, Broutin, Goldschmidt "12]: M = M, (random compact set) s.t.

N-3eN L M = M, (Gromov-Hausdorff sense).
Theorem 5.1 [Croydon '12] {N~ 1/3YCA | F=0 4, {BM}~0: BM on M
Ex. 2 2-dimensional uniform spanning tree (UST)

A = [-n,n]? N Z2, let U™ be a spanning tree on A, (no cycle)

— choose uniformly at random among all spanning trees

fiseat




U: UST on Z? is a local limit of 4™ (spanning tree of Z* a.s.)
e UST scaling limit: [Schramm ’00] topological properties of any possible scaling lim.

[Lawler-Schramm-Werner "04] uniqueness of the scaling limit.

Theorem 5.2 [Barlow-Croydon-K "14] 3{6,},>1 \, 0 s.t. {57;}/5”13/%}7520 4, {B7},~0.



U: UST on Z? is a local limit of 4™ (spanning tree of Z* a.s.)
e UST scaling limit: [Schramm '00] topological properties of any possible scaling lim.

[Lawler-Schramm-Werner "04] uniqueness of the scaling limit.

Theorem 5.2 [Barlow-Croydon-K "14] 3{0; };>1 \, 0 s.t. {52-}/;’13/415%20 4, {B7},~0.

Theorem. In all 3 cases, Ip(-, -): joint cont. HK of BY, 3T > 0 s.t. for P-a.e. w € €,

1
d dw\ dp=T —1
Hay) < at @it exp o (d(x’tw ) (l (d@;’ y))

1
d d dw\ dw—1
e, y) > et Bt ) exp —04( (aj’ty) ) l (d(‘z’ y)>

\

aVa

/
\

VY

/

for all z,y € U, t < Ty with ((z) := (1 Vilogx)?, (30 > 0).

For Ex 0, 1, [dFSS@SdIEISS) , and for Ex 2, [@FSS/5@ISdT=8]5




6 Conclusions

Diffusions / analysis on (exactly self-similar) fractals.

= Stability theory, global analysis (generalization of the classical perturbation theory).

New insights to [AHRIVSISIONINGOHCHTCASING SpACes:

= Applications to RW /diffusions on random media
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Future challenges e Dynamics on conformal invariant media.

e Dynamics (jump-processes) on random media with long-range correlations.

Further developments will continue to lead to important interactions

between probability, analysis and mathematical physics.



6 Conclusions

Diffusions / analysis on (exactly self-similar) fractals.
= Stability theory, global analysis (generalization of the classical perturbation theory).
New insights to lanalysis on metric measure spaces.
= Applications to RW /diffusions on random media

Future challenges e Dynamics on conformal invariant media.

e Dynamics (jump-processes) on random media with long-range correlations.

Further developments will continue to lead to important interactions

between probability, analysis and mathematical physics.

Thank you!
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