
Abstracts

Aging in mean field spin glasses

Anton Bovier (University of Bonn)

Aging is a common term to describe anomalous slow dynamics of random processes in
random environments. A characteristic feature is the emergence of an α-stable subordina-
tor as the universal asymptotic random mechanism that governs the long term behaviour
of such systems. I will explain the modelling approaches through trap models and discuss
their rigorous justification in some mean field spin glass models.
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An equality on Ginibre random point field and tagged particles of
interacting Brownian motions with 2D Coulomb potentials.

Hirofumi Osada (Kyushu University)

In this talk we introduce an equality concerning on a pair of functions of the 2D con-
figuration space that holds almost surely with respect to the Ginibre random point field
µ. We apply it to prove the tagged particle of the interacting Brownian motions is sub
diffusive.
Ginibre random point field µ is a probability measure on the space of configurations over
R2. It is known that µ is translation and rotation invariant. Moreover, µ is so called a
determinantal random point field and their n-correlation function is given by

ρn(x1, . . . , xn) = det[K(xi.xj)]1≤i,j≤n, (1)

where K :R2 × R2→C is the kernel defined by

K(x, y) =
1

π
exp(− |x|2

2
− |y|2

2
) · exȳ. (2)

Here we identify R2 as C by the obvious correspondence: R2 3 x = (x1, x2) 7→ x1 +√
−1x2 ∈ C, and ȳ = y1−

√
−1y2 means the complex conjugate under this identification.

Intuitively, µ is a measure interacting 2D Coulomb potentials Ψ such that

Ψ(x) = −2 log |x| (x ∈ R2). (3)

We remark that the DLR equation for µ does not make sense. However, we will prove
that µ is the reversible measure of the diffusion

Xt =
X

i∈N

δXi
t
, (4)
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where Xt = (X i
t) ∈ (R2)N is the solution of the infinitely dimensional SDE:

dX i
t = dBi

t + lim
r→∞

X

|Xi
t−Xj

t |<r

X i
t −Xj

t

|X i
t −Xj

t |2
dt (X0 = (xi)i∈N). (5)

We remark the unlabeled diffusion Xt is translation and rotation invariant. By (5) one
can say µ is a measure with 2D Coulomb interaction potentialΨ.

Theorem 1 There exists a set S ⊂ (R2)N such that µ({
P

i∈N δxi ;x = (xi) ∈ S}) = 1
and that (5) has a solution for all initial points x = (xi)i∈N ∈ S. Moreover, for all initial
points x ∈ S,

P (Xt ∈ S ∩ Ssingle for all t) = 1.

Here Ssingle = {s = (si) ∈ (R2)N ; si 6= sj if i 6= j}.

The key point of Theorem 1 is to calculate the log derivative of the one moment measure
of µ and to introduce a coupling of an infinite system of Dirichlet spaces describing (5).

Theorem 2 Let α be the self-diffusion matrix of Ginibre interacting Brownian motion
(5). Then α = 0.

We remark (5) has only repulsive interaction; there are no center force. If the interaction
is of Ruelle class and d ≥ 2, then α is always non degenerate. This was proved mathe-
matically when the particle have convex hard cores [O. 98, PTRF]. So the result above
caused by the strength of the long range part of the interaction potentialΨ.
A key point of the proof is a µ-almost sure equality on functions of the configuration
space. We also use the invariant principle and, moreover, the necessary and sufficient
condition for the non degeneracy of the limit coefficients under diffusive scaling obtained
in [O. 98, IHP].
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Exact value of the resistance exponent for four dimensional random walk
trace

Daisuke Shiraishi (Kyoto University)

Let S be a simple random walk starting at the origin in Z4. We consider G = S[0,∞)
to be a random subgraph of the integer lattice and assume that a resistance of unit 1 is
put on each edge of the graph G. Let Rn be the effective resistance between the origin
and Sn. We derive the exact value of the resistance exponent; more precisely, we prove
that n−1E(Rn) ≈ (log n)−

1
2 . Furthermore, we derive the precise exponent for the heat

kernel of a random walk on G at the quenched level. These results give the answer to the
problem raised by Burdzy and Lawler (1990) in four dimension.
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Localization for branching Brownian motions in random environment with
extinction

Yuichi Shiozawa (Okayama University)

We consider a model of branching Brownian motions in time-space random environment
associated with the Poisson random measure. We prove that, on the survival event, the
slow growth of the total population size is equivalent to the localization in terms of the
replica overlap. This result is based on an ongoing joint work with Yukio Nagahata and
Nobuo Yoshida.
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Hydrodynamic limit for an evolutional model of 2D Young diagrams 1

Makiko Sasada (University of Tokyo)

We construct dynamics of two-dimensional Young diagrams, which are naturally associ-
ated with their grandcanonical ensembles, by allowing the creation and annihilation of
unit squares located at the boundary of the diagrams. The grandcanonical ensembles,
which were introduced by Vershik [3], are uniform measures under conditioning on their
size (or equivalently, area). We then show that, as the averaged size of the diagrams
diverges, the corresponding height variable converges to a solution of a certain non-linear
partial differential equation under a proper hydrodynamic scaling. Furthermore, the sta-
tionary solution of the limit equation is identified with the so-called Vershik curve. We
discuss both Bose and Fermi statistics for the Young diagrams.
The asymptotic shapes of two-dimensional random Young diagrams with large size were
studied by Vershik [3] under several types of statistics including the so-called Bose and
Fermi statistics. To each partition p = {p1 ≥ p2 ≥ · · ·≥ pj ≥ 1} of a positive integer n
by positive integers {pi}j

i=1 (i.e., n =
Pj

i=1 pi), a Young diagram is associated by piling
up j sticks of height 1 and side-length pi, more precisely, the height function of the Young
diagram is defined by

ψp(u) =
jX

i=1

1{u<pi}, u ≥ 0.

For each fixed n, Bose statistics µn
B assigns an equal probability to each of possible par-

titions p of n, i.e., to the Young diagrams of area n. Fermi statistics µn
F also assigns an

1Based on a joint work with T.Funaki
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equal probability, but restricting to the partitions satisfying q = {q1 > q2 > · · · > qj ≥ 1}.
These probabilities are called canonical ensembles. Grandcanonical ensembles µε

B and µε
F

with parameter 0 < ε< 1 are defined by superposing the canonical ensembles in a sim-
ilar manner known in statistical physics. Vershik [3] proved that, under the canonical
Bose and Fermi statistics µN2

B and µN2

F (with n = N2), the law of large numbers holds as
N →∞ for the scaled height variable

ψ̃N
p (u) :=

1

N
ψp(Nu), u ≥ 0, (6)

of the Young diagrams ψp(u) with size (i.e., area) N2 and for ψ̃N
q (u) defined similarly, and

the limit shapes ψB and ψF are given by

ψB(u) = − 1

α
log

°
1− e−αu

¢
and ψF (u) =

1

β
log

°
1 + e−βu

¢
, u ≥ 0, (7)

with α = π/
√

6 and β = π/
√

12, respectively. These results can be extended to the
corresponding grandcanonical ensembles µε

B and µε
F , if the averaged size of the diagrams

is N2 under these measures. Such types of results are usually called the equivalence of
ensembles in the context of statistical physics. The corresponding central limit theorem
and large deviation principle were shown by Pittel [2] and Dembo et. al. [1], respectively.
All these results are at the static level.
The purpose of our talk is to study and extend these results from a dynamical point
of view. We will see that, to the grandcanonical Bose and Fermi statistics, one can
associate a weakly asymmetric zero-range process pt respectively a weakly asymmetric
simple exclusion process qt as natural time evolutions of the Young diagrams, or more
precisely, those of the gradients of their height functions. Then, under the diffusive
scaling in space and time and choosing the parameter ε = ε(N) of the grandcanonical
ensembles such that the averaged size of the Young diagrams is N2, we will derive the
hydrodynamic equations in the limit and show that the Vershik curves defined by (7)
are actually stationary solutions to the limiting non-linear partial differential equations
in both cases.
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Profile convergence of a gradient interface model with non convex potential

Jean-Dominique Deuschel (TU-Berlin)

We consider a model of interface defined on D, a bounded open subset of R2. The height
of the interface is defined inside D at all sites of a grid of width 1/N and fixed at O outside
D. The height differences of the interface between nearest neighbors are penalized through
a non convex potential V . In this setting, we prove the convergence of the profile of the
interface as N tends to infinity. Our approch is based on the work of Deuschel, Giacomin
and Ioffe (1999) and Cotar, Deuschel (2008) and consists in considering the restriction of
the model to half of the sites only. The latter allows to recover a strictly convex potential
when the temperature is large enough.
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Branching Random Walks in Random Environment: Survival Probability
and Growth Rates

Nobuo Yoshida (Kyoto University)

We study the survival probability and the growth rate for branching random walks in
random environment (BRWRE). The particles perform simple symmetric random walks
on the d-dimensional integer lattice, while at each time unit, they split into independent
copies according to time-space i.i.d. offspring distributions. The BRWRE is naturally
associated with the directed polymers in random environment (DPRE), for which the
quantity called the free energy is well studied. We discuss the survival probability (both
global and local) for BRWRE and give a criterion for its positivity in terms of the free
energy of the associated DPRE. We also show that the global growth rate for the number
of particles in BRWRE is given by the free energy of the associated DPRE, though the
local growth rate is given by the directional free energy. This is a joint work with Francis
Comets.
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Central Limit Theorem for Branching Random Walk in Random
Environment

Makoto Nakashima (Kyoto University)

We consider the branching random walks in d-dimensional integer lattice with time-space
i.i.d. offspring distributions. Then, the normalization of total population is a non-negative
martingale and it converges to a certain random variables almost surely. When d ≥ 3 and
the fluctuation of environment satisfies a certain uniform square integrability, then it is
non-degenerate and we prove a central limit theorem for the density of the population in
terms of almost sure convergence.
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Hydrodynamic limit for the interface model with general potentials

Takao Nishikawa (Nihon University)

We discuss the hydrodynamic limit for the Ginzburg-Landau interface model. Under the
assumption that the microscopic interaction potential is strictly convex, the study of the
asymptotic behavior for microscopic stochastic dynamics, including the hydrodynamic
limit, is highly developed. The aim of this talk is to discuss the behavior of Ginzburg-
Landau interface model without the assumption of strict convexity of the potential, and
to derive the hydrodynamic limit in this setting.
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Localization for a class of linear systems

Yukio Nagahata (Osaka University)

We consider a class of interacting particle systems with value in [0,∞)Zd
, of which the

binary contact path process is an example. We show a certain relation between growth
rate of total number of particles and replica overlap.
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