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ABSTRACT. In this paper, we study sharp heat kernel estimates for a large
class of symmetric jump-type processes in R% for all ¢ > 0. A prototype of
the processes under consideration are symmetric jump processes on R? with
jumping intensity

1 / (e, 7,y)
v(da),
@(|z —y|) [ar,a2] |z — y|d+a

where v is a probability measure on [a1, az2] C (0,2), ® is an increasing func-
tion on [0, c0) with crec2r” <Po(r) < czeca™ with B € (0,00), and c¢(a, z,y)
is a jointly measurable function that is bounded between two positive con-
stants and is symmetric in (z,y). They include in particular mixed relativistic
symmetric stable processes on R? with different masses. We also establish
parabolic Harnack principle.

1. INTRODUCTION

The objective of this paper is to give sharp heat kernel estimates for a large class
of symmetric jump-type processes in R% whose jumping kernels decay exponen-
tially. Discontinuous Markov processes and their associated non-local generators
have been of current research interest both in probability theory and in PDE, due
to their importance in theory and in applications. See, for example, [4, 12, 13, 5]
and the references therein. The transition density p(t, z,y) of a Markov process X
(if it exists) is the fundamental solution (also called heat kernel) of a PDE involving
the infinitesimal generator £, whose explicit expression is typically impossible to
get. Thus it is a fundamental problem both in probability theory and in analysis
to obtain sharp estimates of p(t,z,y). When X is a symmetric diffusion on R?
whose infinitesimal generator is a uniformly elliptic and bounded divergence form
operator, it is well known that p(t, z,y) enjoys the celebrated Aronson’s Gaussian
type estimates. When X is a pure jump symmetric process on Z% or R? whose
jumping kernel is of stable or mixed stable type (that decays polynomially at in-
finity), sharp estimates on p(¢,z,y) has been derived in [4] (on Z?) and in [12, 13]

Received by the editors .

1991 Mathematics Subject Classification. Primary 60J75, 60J35; Secondary 31C25, 31B05.

Key words and phrases. Dirichlet form, jump process, jumping kernel, parabolic Harnack
inequality, heat kernel estimates.

The first author’s research was supported by NSF Grant DMS-0906743.

The second author’s research was supported by National Research Foundation of Korea Grant
funded by the Korean Government (2009-0087117).

The second and the third authors’ research was supported by the Global COE program at
Department of Mathematics, Faculty of Science, Kyoto University.

©XXXX American Mathematical Society



2 ZHEN-QING CHEN, PANKI KIM, AND TAKASHI KUMAGAI

(on R? and beyond). Moreover, in [13], sharp heat kernel estimate has also been
obtained in finite time interval for a class of symmetric jump-type processes whose
jumping kernels decay at rate e~ <%l as || — oo. It in particular contains rela-
tivistic stable processes as a special case. Relativistic stable processes is a class of
symmetric Lévy processes whose infinitesimal generators are m — (m?/® — A)®/2,
where a € (0,2) and m > 0. The operator m —vm? — A, corresponding to a = 1,
is important in mathematical physics due to its correspondence with the kinetic
energy of a relativistic particle with mass m, see, for example, [7, 18]. In applica-
tions, one also encounters a class of pure jump Lévy processes in R? whose jumping
kernels decaying at rate e=c1*l” as |z| — oo for B € (0, 00] other than 8 = 1, which
includes a subclass of tempered stable processes in R?. The later arises in statistical
physics to model turbulence as well as in mathematical finance to model stochastic
volatility, see, for example, [8, 17, 19, 21, 23]. In these models, both the small time
and large time behavior for the transition density function are important. However
except in some very special case and especially for the large time region, detailed
quantitative knowledge on the global behavior of p(¢,z,y) for these models is not
available until now. The motivation of this paper is to give sharp global transi-
tion density estimates of a class of pure jump symmetric processes (not just Lévy
processes) in R? whose jumping kernels decaying at rate e~cl=l” ag |2] — oo for all
B € (0, 0].

Throughout this paper, d > 1. Let R? be the d-dimensional Euclidean space and
dx or pg be the d-dimensional Lebesgue measure in R, For z € R? and r > 0,
let B(x,r) denote the open ball centered at « with radius r. For two non-negative
functions f and g, the notation f =< g means that there are positive constants
c1,c2,c3 and ¢q so that ci1g(cax) < f(z) < ezg(caz) in the common domain of
definitions for f and g. The Euclidean distance between x and y will be denoted
as |z — y|. For a,b € R, a Ab:=min{a,b} and a Vb := max{a, b}. Here and in the
following, we use “:=” to denote a definition, which is read as “is defined to be”.

We assume that ¢ can be expressed as

(1.1) o(r) = ¢1(r)a(r) for >0,

where 9 is an increasing function on [0,00) with ¢1(r) = 1 for 0 < r
there are constants v > ~v; > 0 and § > 0 so that

IN

1 and

(1.2) cle%’“ﬂ <y(r) < 626727‘[} for every 1 <71 < o0,
while ¢ is a strictly increasing function on [0, 00) with ¢1(0) = 0, ¢1(1) = 1 and
there exist constants 0 < ¢; < ¢a, ¢3 > 0 and 0 < B; < By < 2 so that

B B2
(1.3) c1 (%) < ill((]j)) < ¢ (?) forevery 0 <r < R < o0

and
2

(1.4) /0 qb%(s) ds < c3 ¢iﬂ7(7“) for every r > 0.

Remark 1.1. Note that condition (1.3) is equivalent to the existence of constants
c4,c5 > 1 and Lo > 1 such that for every r > 0,

(1.5) cap1(r) < ¢1(Lor) < e5 1 (r).



GLOBAL HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES 3

Let J be a symmetric measurable function on R% x R?\ {x = y} such that
1

o ) = e =
By (1.5), the condition (1.6) is equivalent to
nl_l !

|z = yl4¢1 (e — yl)vbr(ra|z — yl)

1

|z — yli1(|z — yDvr (kslz — yl)
for every (z,y) € RY x R4\ {(z,y) € RE x R?: x = y}. Here ky, ko, k3 are positive

constants.
For u € L?(R?, dx), define

(1.8) E(u,u) := /Rd Rd(u(a:) —u(y))?J(z,y)dzdy

and for 3 > 0,

(1.7)

< J(z,y) < K

Es(u,u) == E(u,u) + B | u(z)de.
Rd

Let C.(R?) denote the space of continuous functions with compact support in R¢,
equipped with the uniform topology. Define

(1.9) D(E) := {f € C.(RY) : E(f, f) < o0}.
By [13, Proposition 2.2], (£,F) is a regular Dirichlet form on L?(R% dz), where
F :=D(E) . So there is a Hunt process Y associated with it on RY, starting

from quasi-every point in R? (see [16]). In fact, by Meyer’s construction (see, e.g.,
[13, §4.1]), process Y can be constructed from the pure jump process X whose
corresponding jumping kernel is the same as Y but with constant function 1 in
place of 1, by removing jumps of size larger than 1 with suitable rate. From
the Holder continuity and the two-sided estimates for the transition density of X
obtained [13], we can refine the process X and therefore the process Y to start from
every point in R?. Furthermore, by (1.6) and [20, Theorem 3.1], Y is conservative;
that is Y has infinite lifetime.
It is not difficult to see that with J satisfying (1.7), we have

(1.10) F={uc L*(R%dz): E(u,u) < oo}.
We say UJS holds (see [2]) if for a.e. x,y € R?,

c
J(z,y) < ] /B(I , J(z,y)dz whenever r < |z — y|. (UJs)

Note that, UJS holds if k2 = k3 in (1.7); see Lemma 2.1.

The jumping intensity kernel J(x,y) determines a Lévy system of Y, which
describes the jumps of the process Y: for any non-negative measurable function f
on R, x R? x R? with f(s,2,2) =0 for all s > 0 and 2 € R? and stopping time T
(with respect to the filtration of V),

T
(1.11)  E, ng;f(s,ys_,ys) =E, /0 (Rdf(s,Ys,y)J(Ys,y)dy> ds].

(See, for example, [12, Proof of Lemma 4.7] and [13, Appendix A]).
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A prototype of the model consider in this paper is the following. Let
0.0 = [ (@)= @) e.g) dody
R4 xR
F {f e LA (R, dz) : E(f, f) < oo},

where J(z,y) is a symmetric kernel given by
c(a, z,y)
(1.12) J(x,y) = / v(da)
[al,ag] |x - y|d+a ¢(|',I: - y|)

where v is a probability measure on [a1,as] C (0,2), ® is an increasing function
on [0, 00) with crece” < O(r) < cses™ with 3 € (0,00), and c(a, z,y) is a jointly
measurable function that is symmetric in (z, y) and is bounded between two positive
constants.

The main result of this paper is the following heat kernel estimates. The inverse
function of the strictly increasing function ¢ — ¢(t) will be denoted by ¢—1(¢). In
this theorem, constants may depend on 3 > 0.

Theorem 1.2. Assume that the conditions (1.1)—(1.4), (1.7) and UJS hold. Then
there is a conservative Feller process Y associated with (€,F) that can start from
every point in R%. Moreover the process Y has a continuous transition density
function p(t,x,y) on (0,00) x R? x R? with respect to the Lebesgue measure, which
has the following estimates (see Figures 1 and 2).

(1) When 0 < g < 1:

(1.a) (Short time estimates) There are positive constants ci, ca and C' > 1 such
that for every t € (0,1] and x,y € R,

1 t

1.13 c! < A )
1 5101 " o ylatelr )

1 t

<plt,z,y) <C ( A ) .
() < O\ G " e yloteal o)
(1.b) (Large time estimates) There are positive constants c1, ca and C > 1 such
that for every t € [1,00) and x,y € RY,

(L14) otz e (el n =) < g oy < oz emea(lemuln ),
(2) When € (1,00):

(2.a) (Short time estimates) There are positive constants ci, ca and C' > 1 such
that

—1 1 t
(1.15) (s T )

1 t
C—l
< p(t,l‘, y) < (q’)ll(t)d A |JC — y|d¢1(|x - y|)> ’

for every t € (0,1] and |z —y| < 1, and

[z—y|
t

(116) C’*l tefcl((hc*y\ |log7 w*”/ﬁ)

Alz—y|?)

lz—y]

< plt,z,y) < Ctece (vl [10g !5
for every t € (0,1] and |z —y| > 1.

‘(571)//3)/\@_2/‘;3)
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FIGURE 2

(2.b) (Large time estimates) There are positive constants c¢1, ca and C > 1 such
that for every t € [1,00) and z,y € RY,

lz—y]|

(1.17) Ciltfd/zefcl«ley‘ |IOET (ﬁil)/ﬁ)A@)

ot 2,y) < 01072 e-on((e-ol g 250 ) i)
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Remark 1.3. (i) When 8 = 1, the short time heat kernel estimates in Theorem

1.2(1.a) is first established in [13, Theorem 1.2].

Theorem 1.2 shows that there is a phase transition at § = 1 for both the
short time and the large time estimates for the transition density function
of Y.

Observe that when S > 1, there is a constant ¢ = ¢(8) > 0 so that for
t>1and |z —y| > 1 (by considering cases |z — y| > 2t and |z — y| < 2t
separately),

_ oyl ((B-1)/8 _
Ixtyl‘ )/\Iw yl*

clo— 1" = (1o~ 1|10 t

This explains why |z —y|? does not appear in the exponent of the estimates
(1.17).

By the definition (1.1) of ¢, when 8 € (0, 1], estimate (1.13) for ¢ € (0, 1]
and |z — y| > 1 is equivalent to the following: there are positive constants
¢1,¢2 and C' > 1 so that for every t € (0,1] and |z — y| > 1,

O~ te= v < p(t,a,y) < Ctec2lovl”

To comprehend estimate (1.14), observe that

@ — g2 {|x—y|ﬁ if |z —y[>~7 > 1,

B
xr — N =
| Yl t L_tyIZ if [z —y[>% < 1.

When J(z,y) is a function of |x — y|, the associated process Y is a sym-
metric Lévy process. There is a large class of symmetric Lévy processes
whose Lévy jumping kernels satisfying the condition (1.7), including rela-
tivistic stable processes mentioned at the beginning of this paper. Theorem
1.2 in particular gives global two-sided sharp estimates for these Lévy pro-
cesses. The large time heat kernel estimates are new even for relativistic
stable processes. (Short time heat kernel estimates for relativistic stable
processes were obtained in [13].) Of course, Theorem 1.2 goes far beyond
Lévy processes; it covers a large class of symmetric Markov processes which
may not be Lévy and gives the stability results on the heat kernel estimates
for this class of symmetric jump processes. ([

The next theorem deals with the limiting case § — oco. It extends the heat kernel
estimate result in [10] where ¢ (r) is taken to be r® for any « € (0,2). However the
proof in [10] extends easily to the general ¢; that satisfies the conditions (1.3) and
(1.4). So we skip the proof of Theorem 1.4. Note that, from the proof of Lemma
2.1, it is easy to see that UJS holds for J in the next theorem.

Theorem 1.4. Assume that the conditions (1.3) and (1.4) hold and J(z,y) =<
ml{lr—y\él}' Then there is a conservative Feller process Y associated

with (€, F) that starts from every point in R?. Moreover the process Y has a
continuous transition density function on (0,00) x R% x R, which has the following
estimates; There are positive constants ¢y, co and C > 1 such that

(1.19)

. 1 t
¢ <¢11(t)d : |z — yl?o1(|x —y)>

1 t
C—l
<ot < O i N )
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for every t € (0,1] and |z —y| < 1,

lz—y| [z—y|

(1.20) Clemerlemul s 52 < (g, 4, ) < Cemealevl og 5

for every t € (0,1] and |z —y| > 1,
(1.21) o1 =d/2—er ((Jo—yl log lozul ) plz=ul®)

< plt,z,y) < Cr—d/2g—c1 (1ol tog L7el) Alzsp2 )
for every t > 1 and x,y € RY.

Note that the estimate in (1.20)—(1.21) is the limiting case as 8 — oo in (1.16)—
(1.17). This indicates that the constant C' as well as ¢; and ¢z in Theorem 1.2 may
be independent of 8 € [By, o) for every Sy > 1. But we are not going to pursue
this independence in this paper.

The proof of Theorem 1.2 requires different techniques for different cases, which
will be given separately. In fact, some estimates in Theorem 1.2, especially the
upper bound estimates, are established for more general jumping kernel J under
condition (3.12) rather than under (1.7).

For the upper bounds, the proof of (1.18) is given in Theorem 3.4. The strat-
egy is to first consider the finite range process YN, whose jumping kernel is
J(x,y)1{jz—y|<r}, and use Davies’ method from [6] to derive an upper bound es-
timate for the transition density function of Y through carefully chosen testing
functions. Here we need to select the value of X in a very careful way that depends
on the values of ¢, |z — y| and 8. The upper bound estimates for the transition
density function of Y are then obtained from those of Y through Meyer’s con-
struction of Y from Y. Specifically, (1.14) is proved in Proposition 3.1 when
|z —y| < ¢ and in Theorem 3.3 when |z —y| > ¢. The upper bounds proof for (1.17)
and (1.16) are given in Theorem 3.2 and Theorems 3.4-3.6 respectively. All these
are summarized in Theorem 3.6, where the proof of the upper bound estimates in
Theorem 1.4 is also given.

For the lower bounds, the proof of (1.18) is given in Theorem 5.3. The strategy
is to first derive large time near diagonal lower bound estimate. For this, we follow
an approach from [1], using an enhanced version of weighted Poincaré inequality
which was initially established in [10] and an entropy argument. We next establish
parabolic Harnack principle (PHI in abbreviation) for Y. The lower bound off-
diagonal estimates on p(t, x,y) are then obtained after certain exit time estimates
and transition probability estimates are established. Specifically, (1.14) is proved
in Theorem 4.8 and Theorem 5.4. The lower bounds of (1.16) and (1.17) are
established in Theorems 5.5, 4.8 and 5.4(3).

Throughout this paper, we use ¢y, cs, - - - to denote generic constants, whose exact
values are not important and can change from one appearance to another. The
labeling of the constants c1, ca, - - - starts anew in the statement of each result. The
dependence of the constant ¢ on the dimension d may not be mentioned explicitly.
For p € [1, oc], we will use | f||, to denote the LP-norm in LP(R?, dz).

2. UJS AND EXAMPLES

Lemma 2.1. Assume that J is given by (1.7) with ko = k3. Then UJS holds.
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Proof. Suppose 2r < |y|. By the change of variable z = |y|w, we have

1 / dz 1 / dw J
il - w
r? Jpom 12— yl%0(z = yl) 19 S,z lw = grl?e(llylw —y))
Let

r

—, |w — y‘ < 1}.
|yl ly]

Since 2r < |y|, it is easy to see that there exists a constant ¢y = ¢o(d) > 0 indepen-
dent of r and y such that pq(A,,) > cor?/|y|?. Thus, since ¢ is increasing,

Ay, = {w eR?: |w| <

1 / dz S 1 / dw S 1
— > > ¢ .
r o 12— yl4o(lz = yl) = o(lyrd Ja,, lw— I *Tylo(Jy))

By the above inequality, we conclude that there exists a constant ¢; > 0 such that
for every r > 0 and 2r < |z — y|, we have

i/ dz e dz
9 [ 12— yl4o(z —yl) = o —yl4o(lz —yl)

That is, UJS holds when ko = k3 in (1.7). O

Example 2.2. The examples below clearly satisfy UJS by Lemma 2.1.

(i) Let ¢1(r) == f(jf r*v(da) where 0 < oy < a2 < 2 and v is a probability
measure on [y, az]. Then it is easy to see that (1.3)—(1.4) are satisfied.
Thus if

B
C(w7y)677|m7y‘
J(z,y) = 3 ~
[z =yl [, e —yl*v(da)

where ¢(z, y) is a jointly measurable function that is symmetric in (z, y) and
is bounded between two positive constants, then the conditions in Theorem
1.2 holds.
(ii) Similarly, condition (1.3)—(1.4) are satisfied if ¢4 (r) := (f;f r~%v(da))™t,
where v is a probability measure on (a1, as] C (0,2). Thus if

o) = e |

ay

a2

c(z,y, @)
fo =y )

where ¢(a, z,y) is a jointly measurable function that is symmetric in (z,y)
and is bounded between two positive constants, then the conditions in The-
orem 1.2 holds. A particular case is when v is a discrete measure. Theorem
1.2 in particular gives the heat kernel estimate for Markov processes on R¢
which are linear combinations of independent symmetric tempered-stable-
like processes (see [23] for tempered stable processes), i.e.,

k
_ _ c‘(x,y)
T(z,y) = e 7701y W
=1

where ¢;(z,y) is a jointly measurable function that is symmetric in (z,y)
and is bounded between two positive constants.
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(iii) ¢1(r) = ), where 0 < a(r) < B3 < 2, a(r)logr is increasing and
(a(2r) — a(r))logr is bounded. «a(r) = c¢— i3 is a such an example
for ¢ € (0,2). This case corresponds to the jumping density

B
. C(x’y)efwlwiy‘
J(l'ay) - |x—y|d+a(|r—7y\)

d

Example 2.3. (i) Let Y = {Y;,¢ > 0} be the relativistic a-stable processes
on R? with mass m > 0. That is, {Y;,# > 0} is a Lévy process on R? with

Eofexp(i(¢, Yi))] = exp (¢ (m® = (g2 +m?)*/2))

where m > 0, « € (0,2). It is shown in [14] that the corresponding jumping
intensity is

Yo (m|z —yl)
J(x,y) = W

where U, (r) is decreasing and W, (r) is asymptotically equal to e™"(1 +
rld+e=1/2) near r = 0o, and W, (r) = 14+ U”(0)r?/2+o(r*) near r = 0. So
it is not covered by Example 2.2. However, since ¥, (r) is decreasing, UJS
holds by Lemma 2.1. So the conditions in Theorem 1.2 is satisfied for the
jumping intensity kernel for every relativistic a-stable processes on R¢.

When a = 1, the process is called a relativistic Hamiltonian process. In
this case, the heat kernel can be written as

t
t,x,y) = e
e T Y e /

see [13, Example 2.4]. It can be shown that the estimate of this heat kernel
given in [13, page 287, line 3-5] is the same as that of Theorem 1.2 (1) for
o(r)=rand g =1.

(ii) Let Y := Y 4+ ... + Y where Y(?)’s are independent relativistic a;-
stable processes on R? with mass m; where {a1,---,a;} C (0,2) and
{mi, -+ ,mi} C (0,00). The corresponding jumping intensity is a sym-
metric kernel given by

)

mt o=/ =y P+ (2P 4m?) g,

k

J(.’E,y) _ Z \Ilaz‘ (m2|x - yl) )

P |.13 _ y|d+ai
. . Vo, (milz—yl) . L.
Since by (i) each e satisfies UJS, so does J. The other conditions
of Theorem 1.2 are also satisfied. O

When ko # k3, the conditions (1.1)—(1.4) and (1.7) do not need to imply UJS.
We give a simple example showing that there is a continuous jumping kernel satis-
fying the conditions (1.1)—(1.4) and (1.7) but not satisfying UJS.

Example 2.4. For the convenience, assume d = 1 and « € (0,2). Let
Upi={y:2n+1)—e " < |yl < 2n+1)+e "}, U:=U2,U,
and

Vii={y:2n+1)—e <y <@n+l)+e 1), Vi=U2,V,
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and ¢( a continuous function from (0, 00) to [1/4, 1] such that
1/4 on UX {r:(2n+1)—e 2l <r<(2n+1)+e 2771},
wolr) = {1 on (0,00) \ U {r:(2n+1)—e ™ <r<(2n+1)+e 2"},
Note that ¢q is not a monotone function. We consider a jumping kernel
J(x,y) = |z =y~ =" exp (—go(lz — yl)lz — yl),

which is radial and continuous. It is easy to check that the conditions (1.1)—(1.4)
and (1.7) but with distinct k2 and k3. For every x € R, y € 2+V,, and z € B(z, n),
iz —y| < |y —2|. Thus

/ J(2,y)dy

B(z,n)

<olte|y —y|~lmaemdleyl / eil7vldy 4 / e~ 3lFvlgy
B(z,n)N(U+y) B(z,m)\(U+y)

<2 (z,y) / e%‘z—y'der/ e 2z | < e J(a,y),
B(z,n)N(U+y) R?

from which it is easy to show that UJS can not hold for this J. (]

3. UrPPER BOUND ESTIMATE

Throughout this section, we consider more general non-local Dirichlet forms and
the corresponding heat kernels. Set

(o}

s ern= [ [ (@)= s@P ey dedy. D= CHE

where the jump kernel Jy(x,y) is a symmetric non-negative function of x and y
so that [ pa 1A |z — y[2Jo(z,y)dady < oo for every compact subset K of R
Here Q1(f, f) :== Q(f, f) + Ifl13, CL(R?) denotes the space of C' functions on R?
with compact support, and D is the closure of C!(R?) with respect to the metric
Q1(f, f)'/2. The Dirichlet form (Q, D) is regular on R? and so it associates a Hunt
process Y, starting from quasi-everywhere in R?. In the following, the transition
density for YV (if exists) will be denoted by q(t, z, y).

Recall that ¢ is the non-decreasing function defined by (1.1) through (1.2)—(1.4).

Proposition 3.1. Suppose there exist positive constants k1, k2 > 0 such that
1

|z = y|?p(|z — yl)

Then there is a properly Q-exceptional set N' C R?, a positive symmetric kernel

q(t,x,y) defined on [0,00) x (R*\ N) x (R \ N) and a positive constant ¢ =
c(d, k1, K2, B, B1) such that

(3.2) Jo(@,y) = k1

forall ly — x| < kg .

(3.3) E,. [f(Yy)] = / q(t,z,y) f(y)dy for every x € RO\ N and t > 0,
Rd

(34) q(t + S,.’I,',y) = / Q(taxaz)q(sﬂzvy)dz fOT’ every t78 > 07$7y € Rd \N7
R4
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and
(3.5) q(t,z,y) <c (qbfl(t)_d v t_d/z) fort >0 and z,y € R\ N.
Moreover, there is an Q-nest {Fy,k > 1} of compact subsets of R? so that N' =

R\ U, Fy. and that for everyt > 0 and y € RE\ N, © +— q(t,x,vy) is continuous
on each Fj.

Proof. For u € CL(RY), let

0 . (u(z) — u(y))? .
) = [T Rl g s
o (u(e) —u(w)?*

Eluw = / = — g2z — ) W

STrmat &
)

and define D° := C1(R4) ', D! := CL(R%) Note that under condition (3.2),
Q(u,u) > E%u,u) for every u € CH(RY) and hence for every u € D. Moreover,
since

2
Elu,u) — E%u, u) < 4k / [u(@)]
(o) = EQwu) S AR v o=yl — ]

it is easy to see that there exists a positive constant ¢; > 0 depending on d, k1, K2, 3, 51
such that

)1{\zfy|>nz}dwdy7

(3.6) El(u,u) < c1EY(u,u) < 191 (u,u) for every u € D.

Hence D° = D' O D. Recall that, for p > 1, the LP(R?, dx)-norm of a function
u on R? is denoted as ||u||, . It follows from [13, Theorem 3.1] and (3.6) that the
following Nash’s inequality holds: there is a constant co > 0 so that for every f € D
with |l = 1,

3.7 O(fll2) € 2 (F f) < cic2 Qu(f, ) where 8(r) =

T
G(r=1/4)°

Observe that (Qi,D) is the Dirichlet form of the 1-subprocess of Y. We have
by [1, Theorem 3.1] and the same way as that for [13, Theorem 3.2] using (3.7),
that there is a properly Q-exceptional set N' C R? and a positive symmetric kernel
q(t, z,y) defined on [0,00) x (R \ N) x (R?\ N) such that for every x € R4\ N/
and t > 0, (3.3)-(3.4) are true, and that for every z,y € R\ NV,

(3.8) q(t,z,y) < czet ¢ ()¢ for ¢ > 0.

Moreover, there is an Q-nest {Fj,k > 1} of compact subsets of R so that N =
R4\ U, Fy and that for every t > 0 and y € R*\ N, &+ q(t, z,y) is continuous
on each FJ.

On the other hand, by the third line from the end of the proof of [10, Proposition
2.2], there is a constant ¢, > 0 so that for every u € D C WH/22(R?) with
Q(u, u) < [lulli,

4
el < 4 Qu, w) 7 uf 7.
Therefore by [6, Theorem 2.9] and [1, Theorem 3.1], we have

q(t,z,y) < cs /2 for every t > 1 and z,y € R*\ N.
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Combining this, (3.8) and the observation that e*¢=1(t)~% < e¢;*(t)"¢ for t €
(0,1] and the fact that ¢ ()% > cgt=%2 for t € (0,1] and ¢; ' (t)~¢ < c7t~ /2 for
t > 1, we conclude that (3.5) holds. O

Let 12 be an increasing function on [0, c0) with ¢2(r) =1 for 0 <r <1 and

B B
(3.9) 17370 < ahy(r) < cpei™’ for every 1 < r < oo,

for some constants 4 > 3 > 0. Here §y € (0, 3], where § is the constant given
n (1.2). We also let ¢o be a strictly increasing function on [0, 00) with ¢5(0) = 0,

$2(1) =1,

R\ B3 ¢2(R) R\ Ba
1 — < < — f
(3.10) cl(r) = 5 _cz(r) or every 0 <r < R < o0
and
(3.11) /7“ * ds<ec r for every r > 0
. — — Vi
o 0205) "~ P o) Y

for some 0 < ¢; < ¢g, ¢3 > 0 and 0 < B3 < B4 < 2. (Note that ¢o, 12 can be
different from ¢, 91, which were given in (1.1).)
Now we further assume that there exists a positive constant x; > 0 such that
for every x,y € RY,
1 1
K] i
[z =yl (lz —yDa |z —yl)

< Jo(z,y) <k !
= JOo\4, >~ Rl .
|z = yl4a(|z — yDva(lz — yl)

In the remaining of this section, we will use the following Davies’ method many
times: using Proposition 3.1(ii), (1.3), [1, Theorems 3.1 and 3.2], and [6, Corollary
3.28], we have that for every z,y € R?\ A and t > 0,

(3.12)

(3.13) q(t,z,y) < (tid/ﬁl Vv tid/Q) exp(—FE(2t,z,y)).

Here FE(2t,z,y) is given by the following:

L(f)(x) = / ("1 —1)2Jo (2, y)dy, Af)? = IT(F)lloo V IIT(=F)l|oc,
B(t,z,y) := sup{|f(z) — f(y)| = tA(f)* : [ € Lip, with A(f) < oo},
where Lip, is a space of compactly supported Lipschitz continuous functions on R9.

Theorem 3.2. Suppose the jumping kernel Jy satisfies (3.12) and By > 1. Then
for every 0 < C, < 1, there exist c1,co > 0 such that

_ 2
(3.14) q(t,z,y) < (t‘d/ﬁl v t—d/Q) exp (_02|xty|>

for x,y € RA\N and t > 0 with |z —y| < t/C., and

Bo
— B
09 st <o (100 e (e (a2

for x,y € RA\N and t > 0 with |z —y| > t/C..
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Proof. Fix z,y € R” and let r = |z —y|. Define f(&) := A(|¢ — 2| Ar) for £ € R?
where A is a constant to be chosen later. Note that |f(§) — f(n)| < A& —n| for
every £,m € RZ. Since |e® — 1|2 < s2e?l°l.

T(f)E) = / (efO=TM) —1)275 (&, m)dn < N2 / & — 02?1, (¢, m)dn
R4 Rd

(3.16) )\2/ e2ME=n|—7s|§—n|70 p \2 0 g e2As—ss% p
. < K n<c / —ds,
Y Jra 1€ =0l 205(1€ = ) e bele)

where the lower bound of (3.9) is used in the second to the last inequality.

We first prove (3.14). When 0 < A < 73/4,

1 00
T(f)(§) < c2A? </0 (b%(s)ds+ #(1)/1 36735/2ds> < ez N2,

where we used (3.11) in the last inequality. So we have

(3.17) —E2t,2,y) < =M+ c3tA? = A\(—r + c3t))  for all A < 3/4.
Choose c3 larger if necessary so that c3 > Ci% For each r < t/C., take
S S 7!

Then from (3.17), we get —E(2t,z,y) < —ﬁzt. Putting this into (3.13), we obtain
(3.14) for |€ —n| < t/C..
We next prove (3.15). With ¢ := (4/73)"/(P~1  we have by (3.16),

ca A/ (Bo=1) 205 ) —~3570 /2
Sse se
LA < 02/\2/ ds + co\? ———ds
(&) 0 $2(s) caAl/ G- P2(8)
< (ca At/ Bo=1)2 )\ a0/0s0-1) Ao/ (Bo—1)

2 2 _cr
= o <¢2(C4)\1/(ﬁ01)) ¢ N 1) S ’

where we used (3.11) and (3.10) in the second and last inequality, respectively. So
we have that for every A > 0

(318) —E(2t,I,y) S —)\T 4 CGtAQG(W)\BO/(ﬁOfl) _ A’r‘ (CGA(t/T)ec7)\50/(50*1) _ 1) )

Choose cg < (2¢7)~(Po=1/Fo gmall so that

_ 1
cecs | sup (loga)® 1)/Bo cfl/z(C',.}/2 V1) | <=
a>Co! 2
and take X\ := cg (log(r/t))(’go*l)/ﬁ0 . Then
(t/r)ee™ 07— ey T < ) (P (/1) 2 = (A1) (/)2

Thus from (3.18), we get
~EQ@ta,y) < A (cocs (log(r/0) O (€ v (/72 1)
1 1 _
< A= g (log(r/t))Po=1/ B0

Putting this into (3.13), we obtain (3.15) for |z —y| > t/C.x. O
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We will use the following Meyer’s construction [22] several times in this section.
Let A > 0 and define

TN(En) = 1(e_n<ny Jo(&n) and Ja(£,m) = Le_y>ay Jo(€,m).

One can remove the jumps of Y of size larger than A to obtain a new process
Y as follows. One starts with the process Y associated with jumping kernel J,
run it until the stopping time 77 := inf{t : |Y;— — Y| > A}, and at that time
restarts Y at the point Y7, _. One then repeats this procedure. Meyer [22] showed
that the resulting process Y is a process with jumping kernel J®. From this
construction, we see that Y*) can start from every point in RY \ A/ and that it
admits quasi-continuous transition density function ¢ (¢, z, ) defined on (0, 00) x
(RE\N) x (RE\ N).

It is easy to see that the Dirichlet form of Y on L2(R¢, dz) is (QN), D), where

W (ww) = [ [ (e = ol TV ) e

In fact, note that by (3.10), /

Ix(n,&)d¢ < ¢1(\) < 0o. Thus we have for v € D,
R

0< Q(v,v) — QW (v,v) < 4 /

R

o(@? ([ neman) ae < a0 [ ot
and so
1 A
(1 + 401()\)> Q1(v,v) < Qg )(v,v) < Q1(v,v) for every v € D.

By Proposition 3.1, for each b > 0, there exists a constant ¢ = ¢(b,d) > 0 such
that for every A > b,

(3.19) ¢V (t,z,y) < e ((qs;l(t))*d v t*d/Q) Vi € (0,00) and 2,y € R\ A,

Theorem 3.3. Suppose the jumping kernel satisfies (3.12) and with By < 1. Then
for every a,b > 0, there exist ¢, k =1,---,4, and C, € (0,1] such that for every
t>a and z,y € RT\ N with |z — y| > b,

t=2e=e2le=vl* )t yhen t > O, |z — y[2,

— — ﬁ -
o—cale—y[®0 when t < Cla — y|*~%;

q(t,z,y) < a {

o —y|? B
or, equivalently, q(t,z,y) < cst=V? 6*04( 7 Ale—yl 0)'

Proof. For A > 0 and function f on R, define

(3.20) BE = [ (0T 1) I €

and  Ax(f)* = [TA(F)lloo V ITA(=F)lloe-

For fixed z,y € RT\ WV, let f(&) := s (|¢ — 2| A |z — y|) for &€ € RY, where s > 0
is a constant to be chosen later. Note that |f(n) — f(£)| < s|€ —n|. We have by the
same argument as that for (3.16) that

A
(3.21) TA(f)(€) < 1 82 / U esu—au® gy, for every € € RY,
o ¢2(u)
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where 3 > 0 is the constant in (3.9). With s = y3A%~1/4, we have that for all
u <\
2su — y3ulo = 'yg)\ﬁo_lu/2 — yguPo = 'yguﬂo((u/)\)l_BO/Q -1 < —73UB0/27
which implies that
u

(3.22)  TA(f)(§) <Cs?, Whereczzcl/ooo P2 (u)

(Note that C < oo due to (3.11) and Sy > 0.) The same estimate holds for
Tx(=1)(&). Thus, with X\ := |z — y|

_ Bo
e~ 2 gy

1) = £+ A0 < soa Cts) = 2ot (a2 () ).
Set Cy :=2/(C~3). Then

(3.23) —If () — F(@)| + Ax(f)%t < —%)\5" if0 <t <A,

On the other hand, if ¢ > C 2P0 with s := z%”t = % < %)\50*17 we have

that for all u < A\
1
251 — y3u < %Aﬂrlu — y3ufo = —yzuf (—Q(u/)\)l_ﬁ0 + 1) < —vyzu /2.
Therefore, we have by (3.22) that for t > C A\2~P0,

2
(3.24) —|f(y) — f(@)| + AA(F)*t < s(—A+Cts) = g%s (_H ;) _ _%%

By [6, Corollary 3.28], [1, Theorems 3.1 and 3.2] and (3.19), there exists a con-
stant ca = c2(b) > 0, independent of A > b such that

(325) V(b2 e (EVP V) exp (<1f(y) — F@)]+ AN 1)
Thus applying our (3.23)—(3.24) with A = |z — y|, there exists a constant ¢z > 0
such that for every |z —y| > b,
(3.26) ¢N(t,z,y)

< ¢ (t*d/ﬁl Y t*d/2) emeslru/t when Culr —y% < t,

= 7 e—cslz—y|™ when C,|z —y|?>~Fo >t '

Note that by (3.9) and (3.10), there are constants c4,c5 > 0 such that for every
A>0,

C _ B,
||J)\HOO < Ad‘éﬂ:;e Y3C5A o.

It then follows from (3.26) and [3, Lemma 3.2] that for every ¢t > 0 and |x —y| > b,
we have by taking A\ = |x — y| that

qa(t,z,y) < ¢t a,y) +t sup [|Ia(E )]

EERY
(t—d/ﬂl y t—d/2) emealo—ylP/t Lt —crfe—yl
|z — y|4tFs
< when C,|z — y|>~ < ¢,
Cy
= (fd/ﬂl vfd/z) emeslo—ylfo |t erfey)
|l‘ _ yld-‘rﬂs

when C,|z —y|>~P >t



16 ZHEN-QING CHEN, PANKI KIM, AND TAKASHI KUMAGAI

Therefore, for every t > a > 0 and |z —y| > b > 0,

q(t,z,y) < cs t=Y2emeole=v '/ when Culw — y[2P0 <t < o — yf?,
YT eeolz—yl” when C, |z — y|>~P0 > ¢,

When t > a > 0 and t > |z — y|?, we have by Proposition 3.1 that
qt,z,y) < crot™? < epy ¢4/ colz—yl*/t,
This completes the proof of the theorem. O

The estimates for the following short time region require more sophisticated
choices of test functions in order to obtain the right polynomial exponents.

Theorem 3.4. Suppose the jumping kernel satisfies (3.12) and By > 0. Then for
every a > 0, there exist ¢1,co > 0 and C* € (0, 1] such that for every 0 <t < a and
z,y € RI\N with |z —y| > a/C*,

(3.27) q(t,x,y) < ol T
Suppose further By > 1. Then, for every 0 <t < a and |x — y| > a/C*
(3.28)  qlt,z,y)

< est (exp ezl — yl Gog(lz = yl/0)® /™) 4+ exp (~cale — yI™) ).

Proof. Fix z,y € R*\ N with |z — y| > a/C*, where C* > 0 is a constant to be
chosen later. Let A\ > a3 e g constant to be chosen later. Recall the definition

of Tx(f) and Ax(f)? fr(gr[fs(&%). Let r:= |z — y| and
1€ =3 (g—alnr)  forger?,

3

where s and g are two positive constants to be chosen later. Since |f(n) — f(£)] <

191¢ — p| for all £, n € RY, by the same argument as that for (3.16) that

A ueZgu/Sf’yguﬁU

& 5 2 25)/3 it
(3.29) AN = 5 (s +9) /0 b2 (u) e

We first establish (3.27). Taking g = y3A(P0=DA0 e have by (3.29) that

C 2 AVl Bo
LNE) = 3 (8+73>\(5°_1)A°) e2A/3 cl+02/ ue =330 By
1

< ﬁ (s + 73)\(/(30—1)/\())2 o25)/3
3
for every ¢ € R?, where the lower bound of (3.10) is used in the first inequality. The
constant C7 > 0 is independent of A > 0. The same estimate holds for I'y(—f)(¢).

Thus,
(3.30) —|f(y) = f(@)] + A(f)*t

A(Bo—1)A0 )
L st M (<1 Cr (54732 F700) (1))
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_ _6 T _ 2sA/3 __
Now take s = -5-(d + f5)log(7). Then for A = /3 =

(t/r)eélog% = y/t/r. Choose C* € (0, 1] such that

M -1 *< 1) <a58>(50—1)/\0< ‘ )
3 Ch <a C 0<bm}l<pc* Vv log + 73 8(d+ 53) 0<b1}l§pC* Vv

is less than 1/2 where Cy > 0 is the constant in (3.30). Then for 0 < t < g,
r>a/C* and A = r, we have by (3.30),

%r, we have (t/r)e

8(d+ﬂ )

(3.31) —[f(y) — fla)| + Ax(f)*t
s+ 73)\(50—1)/\0
- 3

_p 4 8d+Bs) 1 \f B3\ (go-1) 0\/?
x( 1+ 5 a " C*C; log( )-‘1-01’)/3( (dJr,Bg)) A "

S _|_ fyg)\(ﬁofl)/\o

r X

= 6 T
(Bo—1)A0
< ( + 1) log r_m (53> ’ p(BoAl)
- B3 5176 8(d + B3)
Let b := % and note that ¢7'(t) < c1¢5 () for t < 1 due to (3.12). By

(3.10) and (3.25), there exists a constant ¢; > 0, independent of A > b, such that

(3.32) gV (t,2,y) < et P exp (=] f(y) — f(z)] + Ax(f)* t)

forallt € (0,a], x,y € R4\ N. Thus by (3.31), for z,y € R\ N with |z —y| > a/C*
and t € (0, al], we have by taking A := mb —y| > b that

(3.33)  ¢WM(t,z,y)

4 4q
B
< o179/ Bs t ? o vac2le—y|PON /6 4 o—racale—y| 0N /6
< a o <cs :

Note that by (3.9) and (3.10), there are constants c4,c5 > 0 such that for every
A >0,

Cq

—yzcs APoNT < —(d+B3) ,—vscsAPont
o < )\d-s-ﬁ e < c4b e .

(3.34) [[ 7]l

It then follows from (3.33) and [3, Lemma 3.2] that

altz,y) < gN(ta,y) + 1 sup A€l < eqte Tl
EERE

This proves (3.27).
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We next show (3.28) holds. Let cy := (2/73)"/ (%=1, Then we have by (3.29)
that for every & € R?,

CA()(E)
1/(Bo—1)

¢ 2 2s)/3 /c+g U /OQ U B0 o
<< (s+g)°e” ef"du+c e 2y
3 (a+9) 0 P2 (u) ? cp gt/ Bo-1 P2(u)

¢ 2 2s)/3 (cqg!/(PomD)2 ey gP0/(Bo=1)
sz ltore da(cygl/Bo—D) © tes
S% (S +g)2 623)\/3657130/(50*1)/(403)7

where C5 and C5 are positive constants that are independent of g > 0. In the second
to the last inequality, (3.11) is used. The same estimate holds for T'y(—f)(§). Now

take g := C3 (log 7“)('6071)/60. Then for ¢ > 0,

(3:35)  —|f(y) = fF@)]+ ANt

s+g rN\ (Bo—1)/Bo 2sx/3 (T 1/4
< _ Z Z
< 3 < r+Cy <s+03<logt) e (t) t

(Bo—1)/Bo 3/4
s+9g (r (—1+C2 <s+C3 (logi) ) e2sA/3 (t) ))
3 t r

Next we take s := %(d + 33) log(7). Then for A = %T’

3/4 3/4 1
a [t 1 r t t\*
2sa/3 [ L _ 1 r v _(*t

Choose C, € (0, %] such that

6 1 (Bo—1)/Bo
Cy sup | —(d+ Bs) log(;) +Cs (log v) v/t < 1/2,

0<v<C, \ a3

where Cy > 0 is the constant in (3.35). Then for 0 < ¢ < a, r > a/C, and

A= %r, (3.35) is less than or equal to

s+g 6 r 7\ (Bo—1)/Bo £\ /4
1 = log (- log = °
. (r( +C (aﬁs(mﬂg) og(+) + C (log 7) -
s+g d r Cs 7\ (Bo—1)/Bo
<2179, <« _(Z = - )
< e TS (ﬁ3+1>logt 5 <logt) r

By this inequality, (3.32) and (3.35), we have for A = m\x —y| and t € (0,al,

el
t B3 Y (Bo—1)/Bo
336) ¢Mtay) < etV (— o—cs(log ) .
( ) q ( ) ay) = 1 C*‘Jj — y|
< o %e‘CS(IOg?)(ﬁOﬂ)/BO’ﬂ

|z — y|Ps
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It then follows from (3.34) and [3, Lemma 3.2] that for every ¢ € (0,a] and |z —y| >
a/C., we have with A = %\x —y| € (b, 00) that

q(t,z,y)

< q(/\)(taxay) +1¢ sup ||J/\(£7)||oo
£er?
_ 8

< 7692 le*Cs(log%)(ﬁo D/, - cat : —73CS(8<%353)|$—Z/‘) ’

jz—y|?s " (8(d+53)|x*y‘) +hs
< et (exp (—enle =yl (og(la — y1/0) ™ ™™) + exp (—enfa = yl?)).

This proves (3.28). O

Proof of the next theorem is an easy modification of the proof of [10, Theorem
2.3]. So we skip the proof.

Theorem 3.5. When By = oo, that is, when

1 1

1

K 1 T— <Jo r,y) < K1

U eyl a =gy st S oley) S mpg e

we have

)1{\w—y|s1}v

pt, z,y) < eyt~ %2 e—co(lz=yllog(lz—yl/DAle—y[*/t)  pont 5 1

We now summarize Theorems 3.2-3.5 and give the upper bound of Theorems
1.2 and 1.4.

Theorem 3.6. Suppose the jumping kernel Jo satisfies (3.12). In the estimates
below for the case of t € (0,1] and |x — y| < 1, we assume further that ¢1 = ¢Pa.
Then there are ¢, k=1,---,9 so that the following holds.

(a) When By € (0,1],

1 t
_ A when t € (0,1];
plt,z,y) < er (6 () lo —l(dav2) (ol — yl)
1—/2 p—es(lz—y|® Ale—y|* /1) when t > 1.

(b) When [y € (1,00),
1 A t
(@7 ) o —ylioi(jz —y])’

when t € (0,1] and |z —y| < 1;
(Bo—1)/PBo

(oo log =) ey
when t € (0,1] and |z —y| > 1;

4—d/2 ,~co (\w7y|(log @)(ﬁofl)/ﬁo/\lwi‘yp/t)

p(t,z,y) < cq

when t > 1.
(c) When By = oo, that is, when

1 1
—1
K Tije—yi<y < Jo(z,y) < Ky
U oyl a =gy sy S hley) S mpge

)1{\z—y|31}7
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we have
1 t
-1 d A d
o1 () [z —ylPdi(lz —yl)
when t € (0,1] and |z —y| < 1;
plt, 2, y) < er e—csle—y|log(lz—yl/¢)

when t € (0,1] and |z —y| > 1;
1=/ y—co(la—y| og(la—yl /) Alz—y* /1)

when t > 1.

Proof. Proof of (c) is a combination of Proposition 3.1, Theorem 3.5 and [11, Propo-
sition 2.2]. So we assume 0 < 3y < oco. The case ¢t > 1 is established in Theorems
3.2-3.3. In view of Theorem 3.4 with a = 1, we only need to consider the case when
t € (0,1] and |z — y| < 1/C* =: Ry. But by considering the bilinear form (£*,F)
with

ewe) = [ @ =) (JEmige e

K1
e g ez 41
this follows directly from [3, Lemma 3.2] and [11, Proposition 2.2]. O

4. NEAR DIAGONAL LOWER BOUND ESTIMATE AND PARABOLIC HARNACK
INEQUALITY

4.1. Large Time Near Diagonal Lower Bound Estimate. In this section, we
always assume [ € (0, 00) and will give the proof of the near diagonal lower bound
estimate of the heat kernel. Note that the case 8 = oo is proved in [10, Theorem
3.5].

Let o € (0,00) and M(o) be the set of all non-increasing function ¥ from [0, 1]
to [0,1] such that ¥(s) > ¥(1) =0 for every s € [0,1) and

(4.1) U(s+1((1—s)A2)) > o(s), s€(0,1).

We use N (o) to denote all the functions @ of the form c¥(|z|) for some ¥ € M(o)
having [, ®(x)dz = 1. For ® € N (o), define

Ug = /B(o,l) u(z)®(x)dx.

The following weighted Poincaré inequality is proved in [10]; For every d > 1, 0 <
a < 2 and o € (0,00), there exists a positive constant ¢; = ¢1(d, «, o) independent
of r > 1, such that for every ® € N(0) and u € L*(B(0,1), ®(x)dz),

/ (u(z) — up)?®(z)dx
B(0,1)

T2_a1 z—y|<1l/r
< o / (u() — u(y))? Y= (g2 A D(y)) dady.
B(0,1)xB(0,1) |z -y

Moreover, it is shown in [10] that the constant co stays bounded for oo € (0,2).
Thus by taking a — 0, we get the following (more appropriate) form of weighted
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Poincaré inequality; For every d > 1, there exists a positive constant co = c2(d, o)
independent of r > 1, such that for every u € L'(B(0,1), ®(x)dz),

/ (u(z) — ug)?®(x)dx
B(0,1)

2

u(xr) —u

< o[ () =Wy e (B() A B(y)) dady.
B(0,1)xB(0,1) |z —y|

For a non-negative function ¢ on (0,00) with ¢(0+) = 0, ¢(r) > 0 on (0,1] and
[llo0,0,1) := Sup,cpo,1) l¢(7)| < 00, we get from the above inequality that, for every
u € LY(B(0,1), ®(x)dz),

/ (u(z) — ug)2d(z)dx
B(0,1)

2
u(x) —u

<eur” [ (@) Zwl)y e (B() A B()) dedy
B(0,1)x B(0,1) |z -yl

2
<cor? - ||| oo / (u(z) — u(y)) 1, 2 (®(2) A ®(y)) dedy
2 [[elloc o B(0,1)xB(0,1) [T = yl%e(r|lz —yl) (la=vi<1/r) (2() (®))
(u(z) — u(y))?
<cor? ¢l oo / (z) A D(y)) dedy.
2 [[elloc o B0.1)xB(0,1) |7 — ylYp(r|lz — Z/|)( (@) 1 2(0))

Thus we have

Theorem 4.1. For every d > 1 and o € (0,00), there is a positive constant ¢ =
c(d, o) independent of r > 1, such that for every ® € N(o), u € L' (B(0,1), ®dx)
and a non-negative function ¢ on (0,00) with ¢(04+) = 0, ¢(r) > 0 on (0,1] and
”30”00,[0,1] < 00,

/ (u(z) — ug)*®(x)dx
B(0,1)

2
< er?. s / (u(z) — u(y)) P(x) AN P(y)) dedy.
[Ploci01 [ 01ymiony T — w0 " W)

Here ug := [y, ) u(z)®(z)dz.

Now let’s consider (Q, D) of (3.1) and assume the jump kernel Jo(z,y) for (€, F)
satisfies (3.12). Recall that ¢(¢,x,y) is the transition density function for the asso-
ciated Hunt process Y with respect to the Lebesgue measure on R,

Let Jo(z,y) be the function satisfying (3.9)—(3.12). For ¢ € (0, 1), set
1

Lilnvists
[z — y[2a(|z — y)ba(lz —y|) 1e7¥I<O

and define (£°, F%) in the same way as we defined (Q,D) in (3.1) but with J; in
place of Jy.

For ¢ € (0,1), let Y4 be the symmetric Markov process associated with (£°, F?).
By [20, Theorem 3.1], the process Y9 is conservative. Moreover, by Proposition
3.1, there is a properly £%-exceptional set s C R? and a positive symmetric kernel
¢’ (t,z,y) defined on [0, 00) x (R?\ Ns) x (R?\ Ns) such that for every x € R\ N
and s,t > 0,

B 100 = [ et @ttsan) = [ @0 s

R4

(42) j:;($7y) = Jo(x7y)1{\z—y|2§} + K1
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and for every x,y € R%\ N,
(4.3) Pt z,y) < cst™ 2.

Moreover, there is an %-nest {F?,k > 1} of compact subsets of R? so that N =
R4\ U, F{ and that for every t > 0 and y € R\ N, x +— ¢°(t,z,y) is continuous
on each FJ. For ball B(xzg,r) C R? let B0 (¢ x,y) denote the transition

density function of the subprocess Y3B@or) of V9 killed upon leaving the ball
B(zg, 7).
We consider the bilinear form (€™M0, F9) with

eV9(.0)i= [ [ (w0 = v T e, dnd,
where R
TS (&m) = 1(gemi<y Ts (€, m).

Let Y19 be the corresponding Hunt process associated with the regular Dirich-

let form (€19, F9). Since Y13 can be obtained from Y? by removing its jumps

of size larger than 1, Y18 can start from every point in R%\ 5. Moreover, y .

admits a quasi-continuous transition density function ¢(- (¢, &,1) on (0, 00) x (R%\
Ns) x (R¥\ N5) with respect to the Lebesgue measure that has the similar properties
as that for ¢°(¢,z,y). Let ¢/")%P(¢,€,n) be the transition density function of the
subprocess Y 192 of ¥ (16 killed upon leaving an open set D. It follows from [1,

Lemma 3.6] that for z,y € R?\ N,
(4.4)
C(tz,y) > e NleqM(t 2 y) and  ¢*P(t,z,y) > eIl gMOP (1 g y),
where Js(x) := /d f(;(x,y)lﬂw_ybl}dy. Since supse (1) | Tslloc < 00, using (4.4)
R

the next three results follow from [1, Proposition 4.3, Lemma 4.5, Lemma 4.6]
respectively.

Proposition 4.2. There is a constant ¢; = ¢1(6,7) > 0 such that for every t €
[r?/8, r?/4] and z,y € B(xo,7) \ N5,

@*BEN (tw,y) > er(r — |2))% (r — |y|)P2.
Let (£9, F%B(=0.1)) be the Dirichlet form for the killed process YoB@on),

Lemma 4.3. For everyt > 0 and yo € B(zo,)\N5, it holds that ¢ P07 (t, 2z, y,) €
]-‘573(330,7“).

Define
(4.5) ®,.(z) = (r* — |m|2)12/(27'64) 150, ().
Lemma 4.4. For every t > 0 and yo € B(xg,r) \ N3, it holds that
B,()/g" 07 t,2,0) € PO,
Let qf(xo’l)(t,:v,y) i= rdg®B@on) (2t rx ry) and z; € B(w, 1), and define

ur(tvx) = Qf(ajml)(taxaxl)a

1
G(t) / D4 (y) log u,(t, y)dy — 5/ Dy (x) log P (z)dx.
B(zo,1) B(zo,1)
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Using the above three results, the proof of the next result is the almost identical to
that of [1, Lemma 4.7]. So we skip the proof.

Lemma 4.5.

G'(t) = - (uT(t’ ) ujtl, '))

where

S(T)(u,u) = /Rd Rd(u(m) — u(y))2rd+2j§(m‘,ry)dxdy.
X

The idea of the proof of the following theorem is motivated by that of [1, Propo-
sition 4.9] and [10, Theorem 3.4].

Theorem 4.6. For each dg > 0, there exists ¢ = ¢(do, 3, 00) > 0, independent of
§ € (0,1) such that for every xo € RY,

(4.6) q‘s(t,x,y) > et~ ? for every t > 8o and x,y € RO\ N5 with |z —y|? < t.

Moreover, for each 69 > 0 and 0 < ¢ < M < oo, there exists ¢ = ¢(dg, e, M, 3, By) >
0, independent of § € (0,1) such that for every o € R, t > &y, s € [et, Mt] and
every 2,y € B(wo, 3F/4) \ N,

(4.7) PBE ) (5, 2,y) > et~

Proof. Fix § € (0,1) and, for simplicity, in this proof we sometimes drop the su-
perscript “6” from Y? and @ (t,z,y). Recall that for ball B, := B(0,r) C R¢,
qPr(t,z,y) is the transition density function of the subprocess YBr of Y killed
upon leaving the ball B,.. It follows from Lemmas 4.3 and 4.4 that for every ¢ > 0
and yo € B, ¢B (t,z,y0) € FPr and ©,(-)/qP" (t,z,y0) € FPr, where (£, FBr) is
the Dirichlet form for the killed process YB,

Note that the Dirichlet form of {r’lﬁzt, t> O} is (£, F), where

48)  £M(uu) = / (u(@) = u(y))*r* 2 Js (ra, ry)dzdy
R4 xR?
FOo= {u € LP(u,u) : £ (u,u) < oo} = WP/22(RY),
For u € L?(R?, dz), its Fourier transform @ is defined by 4(€) = (2m)~%2 [5, e Vu(y)dy.
Then
2

(49) &7 ww) < e ( Rixra [T —y|PHh e RdU(x) !

= o [ (" + Dl e

< o [ (P e QP = [ (Tl +ut)?) dr

R R
Define

(4.10) qB(t,x,y) == rigB (rt, ra, ry) for t > 0 and z,y € B\ N5.

Note that ¢Z(¢,,y) is the transition density function for process 7‘_1}?5;. The
latter is the subprocess of {r=1Y,2,,t > 0} killed upon leaving the unit ball B(0, 1),
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whose Dirichlet form will be denoted as (£, F("):B). Tt follows from Proposition
4.2 that there is a constant ¢4 = c4(d,7) > 0 such that

aP(t,y) = eas(1—[a))* (1—[y)*  for every t € [1/8, 1/4] and @,y € B(0,1)\Nj.

Let ®(x) := ¢5P1(x) where @4 is the function defined in (4.5) and ¢5 is a normalizing
constant so that [, ®(z)dz = 1. Let 29 € B(0,1) \ N5 and define

u(t,x) = qf(t,x,xo), u(t,z) = qf(t,x,xo)/q)(x)lﬂ,

/ B(y) log u(t, y)dy,
B(0,1)

=
~

=
I

G(t) = /B(O , D(y)logu(t,y)dy = H(t) — cg.

The remainder of the argument does not use the condition on jg, and in partic-
ular the constants can be taken to be independent of ¢ € (0, 1).

Let q.(t,x,y) := r%q(r®t,rz,ry), which is the transition density function with
respect to the Lebesgue measure on R? for the symmetric jump process ﬁ(r) =
r_l}/}rzt, whose jumping intensity function is r?+2.J(rz, ry). Let 2 € R4\ Ns. Using
Theorem 3.2 for ¢ > 1 and £y > 1

(4.11) P, (f’tm ¢ B(x, 1/4))
) / qu(r%’ e Ty = / Q(thm"x, z)dz
Blod/ar B(rz,r/4)¢
< C7/ e*CS‘WKIOg\w|/(r2t))([30—1)/[30 dw
{weRe:|w|>((r/4)V(r2t))}
r2t . 82
+09/ r=d4=4/2 exp (‘1(;) RSN
r/4 r2t
< 07/ 6*611\w| dw + 09/ exp (—C1ou2) W du.
{weRd:|w|>r/4} L avD)

Similarly, using Theorem 3.3, for 72t > 1 and 3y < 1,

(412) P, (17}’“) ¢ B(x, 1 /4))

< c19 / 67613‘w|0ﬂ dw + 614/ exp (—615U2) udildu.
{weR:|w|>r/4} 1/(4V%)

For each By > 0, using (4.11)—(4.12), we choose tg € (0,1/2) be small so that
P, (ﬁ(” ¢ B(x, 1/4)) <1/16+1/16=1/8  for every r > t5/? and 0 < t < t,.

By Lemma 3.8 of [1], we have for every r > tal/z,

(4.13) P, ( sup [V — v > 1/4) <1/4.
s€[0,to]
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Write J)(z,y) := r&t2J5(rz,ry) and ng)(x) = QIRd\B(O 1 JT) (z,y)dy for
x € B:= B(0,1). Then we have from (4.8) and Lemma 4.5,

= - [ [ D, 0)8(0) - @)ult, )T o) dy o

—/ (I)(:L‘)Hg) (z)dz.
B
The main step is to show that for all ¢ in (0,1] and r > tal/Q one has
(1.14) G'(0) = ~ea +ar [ (ogult,y) ~ HE)P2(0)dy
B

for positive constants c¢jg, c17. By [10, (3.13)] and the argument that follows it, we
have

[u(t, y) — u(t, )] (e
W[U(Wf@(y) ®(z)ult,y)]

<(@(@)'/? = 2(y) )% — /B (2)D(y) (logv(t, y) —logu(t, 2)).
Substituting in the formula for G'(t),
H'(t) =G'(t)

> —eist [ [ Qogulty) —logu(t.a)*EES)I . 0) do dy
> —eis+7* [ [ (ogo(t.9) ~logo(t.2)?(0(a) A 9(3) e dedy
where
o) (ko) Ls" when s < 6
Pls) = {ml(b(s) when s > 4.

Thus, using Theorem 4.1, for all ¢ in (0,1] and r > t61/2

H'(t) > 1 + 19 /B (log v(t,y) - G(1)*®(y) dy

> —coo + €21 /B(log u(t,y) — H(t))?®(y) dy,

which gives (4.14). Note that in the first inequality we used the fact that

// z)/? — )1/2)2J(T)(x,y)dxdy+/ @(I)ng)(x)dl’

B
g('r‘) @1/2 (1)1/2) < o0,

which follows from (4.9).
Now following the argument of the proof of [10, Theorem 3.4] (page 851-853),
we conclude that

Q(ta xay) Z qB(xO’\/Z) (tﬂl},y) Z 022t_d/2
for every t >ty ! and z,y € R\ N with |z — y|?> < ¢, and

qB(IO’ﬁ)(s,x,y) > co3t™¥? for ¢t > toh, x,y € B(z0,3Vt/4)\N; and s € [et, Mt].
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Next suppose that 6y < t5 ' and dy <t < ty'. Let ng = 1+ [2/v/%00], where [a]
is the largest integer which is no larger than a. By [1, Theorem 4.10] and our (4.4)
we have

(4.15)
)

qB @0 Vb0) (u,z,y) > coq, for every ;—0 <wu <2ty and x,y € B(zg,3v/60/4)\Ns,
no

where the constant cy4 is independent of § and zg € R?. Given z,y € B(zg,3v/1/4)\
Ns, let 21 - - - zp,—1 be equally spaced points on the line segment joining x and y such

that © € B(21,3v00/4) C B(z1,v/d) C B(z0,vt) and y € B(zn,-1,3V00/4) C
B(2n,-1,v30) C B(z,v/t). Using (4.15) and the semigroup property, we have

PV (s, 2,y)
= / / qB(IO"/E)(s/nO,%wl)...
B(z0,v%) B(zo,v%)
.. .qB(x“’\/z)(s/ng, Wno—1,Y)dwy ... dwn,_1

v

/ / qB(Zl’m)(s/no,x,wl)...
B(21,3v/50/4) B(2ng—1,3v30/4)

v qB(Zno’\/%) (S/nOa Wng—15 y)dwl e dwno—l
> Co5 = 62553/275_(1/2-

Similar argument gives (4.6) when &y < t;* and ¢ € [0o, 5 ']. O

For any ball B ¢ R, let (£%%, F%B) denote the Dirichlet form of the subprocess
V9B of Y9 killed upon leaving the ball B. It is easy to see that C(R?) is a
common core for (£°, F%) and (£, F), and that C}(B) C C1(R?) is a common core
for (£%B, F%B) and (£8,FB). Thus by [I, Theorems 2.3 and 2.4], we have the
following. (See [1, Definition 2.1] for the definition of Mosco convergence.)

Theorem 4.7. Let B be a ball in R?. Then (£°,F%) and (%8, FB) converge as
§ — 0 to (E,F) and (EB, FB), respectively, in the sense of Mosco.

The above theorem implies that the semigroup of Y9 and Y4B converge in L? to
that of Y and Y &, respectively. By the same proof as that for [1, Theorem 1.3], we
deduce from Theorem 4.6 the following lower bound estimate for the heat kernel of
Y and YB.

Recall that N is the properly exceptional set in Proposition 3.1.

Theorem 4.8. Suppose the Dirichlet form (Q, D) is given by (3.1) with the jumping
kernel satisfying (3.12). For each to > 0, there exists c1 = c1(to) > 0, such that for
every o € R?, t > tg,

q(t,z,y) > e t—Y? for every x,y € R\ N with |z — y|? < t.

Moreover, for each tg >0 and 0 < ¢ < M < oo, there exists co = ca(to,e, M) >0
such that for every o € R?, t > to,

(4.16) qB(zo’\/Z)(s, z,y) > co /2
for every s € [et, Mt] and q.e v,y € B(xo,3vVt/4) \ N.
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4.2. Parabolic Harnack Inequality. In this section, we always assume (3, €
0, 0o|.
( Wg first introduce a space-time process Z; := (V,Ys), where Vy = Vy — s. The
augmented filtration generated by Z will be denoted as {31:;, s > 0}. The law of
the space-time process s — Z starting from (¢, z) will be denoted as P ;).

For each A C [0,00) x R%, denote 04 :=inf{t > 0: Z;, € A} and 74 = 7(A) :=
inf{t > 0: Z, ¢ A}, and define U(t,z,7) = {t} x B(z,r). Recall that ugs is the
Lebesgue measure on R4+1,

Lemma 4.9. Suppose the Dirichlet form (Q, D) is given by (3.1) with the jumping
kernel Joy satisfying the condition (3.12). For every § € (0,1) and R, > 0, there
exist Co,C3 > 0 depending §, R, (8 and By such that the following are true;

(i) For allz € RE\ N, r > R,, t > dr% and any compact subset A C [t — 612t —
6r?2/2] x B(z,3r),

A
Py (0A < Ti—sr2 ) x Ba,r)) = 02%.

(ii) For every R > R., r € (0,R/2], xo € R\ N, t < 2R? and (t',z),(t,2) €
[t —30R2,t] x B(xo, R) witht' <t—5R?/2,

42
(4.17) Pit,2) (U@ 2y < Tlt—36R2,t]x B(z0,2R)) = ng'

Proof. (i) Let 7. := Tj4_s5p2 y)x B(a,r) and A = {y € R?: (s,y) € A}. Note that

Tr 5r2 Tr
Et,2) [/0 14(t— s,Ys)ds] = /0 Pt,2) (/0 14(t—s,Y;)ds > u) du

5r? Tr
< / P(t@) (/ 1a(t— S7Y3)d8 > 0) du < (STQIP(t_’z)(O'A < 7).
0 0

On the other hand,

Tr 5r?
E(t,z) [/ 1a(t —s, Ys)dS] = / P t,0) ((t — 5, Y00 A) ds
0 2

—1§5p2

&2 512
= / P, (Yf(‘”’” € At—s) ds :/ / PP (s, 2z, y)dyds.
2-15p2 2-15r2 JA,

From [10, Theorem 3.5] and our (4.16), we have for (s,y) € (271672, 6r?)x (B(z, 3r/4)\
N, pB@1) (s, 2, y) > cir~?. Thus

T, 5r?
T 1
Et,) [/ 14(t —s, Ys)ds] > cl/ / r~4dyds > cludH(A)T—d.
0 2- A,

1592

Combining the above two inequalities we obtain (i).

(i) Given (4.16), the proof is almost the same as that of [11, Lemma 2.6 (ii)], so
we omit it. g

Now we consider symmetric jump process Y whose jumping measure J is given
by (1.6). In this case, it follows from [11, Theorem 3.1] that ¥ admits jointly
continuous transition density function p(t¢, x,y) and that ¥ can be modified to start
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from every point in R? in view of Meyer’s construction (so the properly exceptional
set N of Y can be taken to be the empty set). Throughout the remainder of this
paper, we consider the space-time process Zs, = (Vy — s,Y;) where the jumping
kernel J of Y is given by (1.6) and satisfies UJS. We point that UJS is only used
in the next lemma.

Note that for @ := [a,b] x B, 7q =inf{s > 0: Z; ¢ Q} = 78 A (Vo —a) + Ly, <py-

Lemma 4.10. Let R, > 0, § > 0 and 0 < a < 1/3. For R > R., let Q; =
[to, to + 40 R?] x B(xg,3aR/2), Q2 = [to, to + 40R?] x B(x0,2aR) and define

Q_ = [to+O6R?, to+20R*| x B(xo, aR), Q4 = [to+30R?, to+45R?*x B(xg,aR).

Let h: [tg, 00) xR? — R be bounded and supported in [ty, 00) x B(xg,3aR)°. Then
there exists C1 = C1(0,a, R,) > 0 independent of R > R, such that the following
holds:

B,y [2(Zrg, )] < C1B(1y,y0) [1(Zrg,)]  for (t1,y1) € Q- and (t2,y2) € Q4.

Proof. Given (4.16), the proof is similar to that of [11, Lemma 5.3] (with R? in
place of ¢(R) there) except the following changes. In order to estimate fot ' I ds in
[11, page 1081] from above, we claim that

(4.18) pParsz(t; — s y1,2) < ;R4 for every z € Bs,g/2 and t; > s.
Note that

(4.19) aR./4 <aR/4<|y1 — 2| < 5aR/2 for every 2 € Bsur/2-

If ty — s <1, by Theorem 3.6 and (4.19)

Lo
ly1 — 2|4 — R
Ift; —s>1and |y; — z| > (t1 — s), then, by Theorem 3.6 and (4.19)

pPaersz(ty — s,y1,2) < p(ts — s,y1,2) < ca

pB3aR/2 (tl _ S,y172) < c4e—Cs\y1—Z|lAﬁ < C6R6_C7R1Aﬁ < %
If t; —s > 1 and |y; — 2|27V < (4 — ), then by (4.19), %& < |y; — 2| <
(t1 —s) @571 . Thus by Theorem 3.6

o lyi—=?
szaR/z (tl — 8, Y1, Z) < Cg(tl _ S)fd/Qe—cw tllis < Cll(aR/4)fd/2675cloaR/2 < %
Ift; —s > 1, 8 € (0,1 and |y; — 2/># > (t; —s) > |y1 — 2|, then, by (4.19)
aR/4 < |y; — z| < t; — s. Thus by Theorem 3.6 (a)

pB3aR/2 (tl _ S,y172) < 0136—614|y1—2|ﬂ < 6136—015Rﬁ < %
We have proved (4.18), which implies that fotl I, ds in [11, page 1081] is less than
or equal to the right hand side of [11, (5.4)]. Now using UJS, the remainder part

of proof is similar to that of [11, Lemma 5.3]. We omit the rest of the proof. O

We say that a non-negative Borel measurable function h(t,x) on [0,00) x R? is
parabolic (or caloric) on D = (a,b] x B(xg,r) if for every relatively compact open
subset Dy of D, h(t,x) = E(; 4)[(Zxy, )] for every (t,2) € DiN([0,00) x RY), where
Tp, =inf{s >0: Z; ¢ D;}.
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Theorem 4.11. For every é € (0,1), there exists ¢ = ¢(,d, 5, 8) > 0 such that for
every xg € RY, tg > 0, R > 0 and every non-negative function u on [0,00) x R%
that is parabolic on (to,to + 45(¢1(R) V R?)] x B(wo,4R),

sup  u(ti,y) <c inf  ults,ye)
(t1,y1)€EQ- (t2,y2)€Q+

where Q_ = (to + 6(¢1(R) V R?),to + 25(¢1(R) V R?)] x B(zo, R) and Q4 = [to +
35((;51(]“2) V RQ),to + 45((;51(]“2) V R2)} X B($(), R)

Proof. This result was already proved in [11, Theorem 5.2] and [13, Theorem 4.12]
for R < Ry. Given the above lemmas, one can prove for the case R > Ry similarly
to the proof in [11, Theorem 5.2] (see also [13, Theorem 4.12]) for 3 < oo, and the
proof in [10, Theorem 4.1] for § = cc. O

5. OFF-DIAGONAL LOWER BOUND ESTIMATES

For the remaining of this paper, (€, F) is the Dirichlet form given by (1.8) and
(1.10), with the jumping kernel J satisfying the conditions (1.1)—(1.4), (1.7) and
UJS, and Y is the associated Hunt process on R?. Recall that 3 > 0 is the exponent
in (1.2).

In this section, we give the proof of the off-diagonal lower bound for p(¢,z,y).
Using the result in previous sections, the proof of the off-diagonal lower bound for
the limiting case = oo (i.e. the case 11 (r) = oo for every r > 1) is identical to
the one in [10]. Thus in this section we only consider the case 0 < § < 0.

Lemma 5.1. (i) For every ro > 0, there exist c1,co € (0,1) such that for every
z€e€RY and 0 < r < r,

(51) Pa:(TB(w,T/2) < Cld)l(r)) < co.

(ii) There exists v € (0, 1) such that for every t > 1 and x € R,

P, (TB(Q:,'y*l/?tl/Z) < t) < -.

N[ —

Proof. Since the idea of the proof is similar, we only spell out details for the proof
of (ii) (see also [11, Lemma 2.5] for the proof of (i)).
Let z € R? and ¢ > 1. When 3 € (1, 00), by Theorem 3.6(b),

P, (Y ¢ B(z,r)) = / p(t, z, 2)dz

B(z,r)e

< 01/ te—cz\Z—w\(log|z_w‘/t)(ﬁ—1>/g &z
{ZE]Rd:‘z—z‘Z(TVt)}
— 2
+c1/ 472 oxp (_C3|Zl”|) s
{zeR4:t>|z—a|>r} t
' 382
< C5/ 6*04\w| dw + c5 1(0775] (r) / t*d/Z exp () gdflds
{weRe:|w|>(rVi)} i ;
o
< 05/ 6—64\u1| dw + ¢ 1(O,t] (’/‘) / exp (_Cguz) Ud_ldu.
{weRe:|w|>r} g

/ (V)
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When g € (0,1], using Theorem 3.6 (a),
Py (Y; ¢ B(x, 7))

Cealz—z|?
te=oslz==1" gz

2
472 oxp <_69|z—ffl> I

§C7/
{ZERd:\27w|Z(T\/t1/(2*5))}

+ 07/
{zERd:tl/(g_/’)Z\z—ﬂZr} t

_ B
§010/ e~ clwl” goy
{wGRd:|w\2(r\/t1/(2*5))}

/=0

+c10 10,41/ 2-27(T) /

T

2
cyS
t~%2 exp (_gt> s ds
o0

SCIO/ 6*011\w|5 dw + c12 1(07,51/(27,3)](7‘) / exp (—Cgu2) wtdu.
{weR:|w|>r} r/(Vt)

Thus for each 3 > 0, we can choose v > 0 small so that
(5.2) P, (Y: ¢ B(x,r)) <1/4 for every ¢t < yr?

for t > . Using (5.1), we see that (by changing ~ if necessary) (5.2) holds for all
t > 0. Thus, by [1, Lemma 3.8]), we obtain

1
P, (TB(1,27‘) < 772) =P, ( sup |Yu - YOl > T) < 57
u<yr?
for every 72y > 1, so the proof of (ii) is completed by considering t = 4yr2. O

Let v be the constant in Lemma 5.1(ii). Applying Lemma 5.1 and (1.11), we
can prove the following in the same way as [13, Proposition 4.11]. Thus we skip
the proof.

Proposition 5.2. (i) If (t,z,y) € [3,00) x R x R? with |z —y| > 3y~1/%Y/2, then
there exist constants c1,co > 0 such that

t1+d/26702|zfy|5

P (Yt € B(y, 3-2 1~ /241/2 ) > .
e ) 2 O et = D
(ii) For every to > 0, there exist constants ¢y > 2,¢o > 0 and c3 > 0 such that for
every x,y € R with |z —y| > c1¢71(t) and for every t € (0, o],
to~ (1)

|z — y|?p(cs|z — yl)

Now using Theorem 4.11, Lemma 5.1(i) and Proposition 5.2(ii), the proof of the
next Theorem is almost identical to that of [13, Lemma 4.13 and Theorem 1.2].

(For the case of |z — y| < ¢ for some small ¢ > 0, this has been proved in [11,
Theorem 2.4].) Thus we skip its proof.

(5-3) P, (Y; € By, c197' (1)) 2> c2

Theorem 5.3. Suppose tg € (0,00) . There exists ¢ = ¢(B,tg) > 0 such that for

every t < to,
p(tw,y)ZC( 71 2 A y ! )
(=1t |z —yl?d(ci|z —yl)
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Theorem 5.4. (i) For every C* > 0, there exist ¢1,co > 0 such that for every

t>1,

ol —y|?
t

(ii) There exist c1,co > 0 such that for every t > 1,

p(t,x,y) > et Y% exp ( > when C*|x — y| < t.

3
(5.4) p(t,z,y) > 1 te~elm=vl”  yhen |z —y| > gfy*l/ztl/z,

where vy is the constant in Lemma 5.1(11).
In particular, when 0 < # < 1, there exist c1,co,Cyx > 0 such that for every
t>1,

p(t,x,y) > 1 temele=vl” yhen lz —y|>~? >t/C..
Proof. (i) Fix C* > 0 and let R := |z — y|. By Theorem 4.8, we only need to
consider the case 1V (C*R) <t < R% Let [ be the smallest positive integer so

that t/1 > (R/1)?. Then 1 < R?/t <1< 1+ R?/t <2R?/t and so 2(R/1)? > t/l >
(R/1)2. Since t > C*R,

2 2
; > t t > 2,1 (t) > 271(0*)2'

1+R2Jt t+R:™ R

Let = zg, 21, ,x; = y be such that |x; — x;41| = R/l fori=1,--- ,l — 1, and
let B; := B(x;, R/l). Since (R/1)?> < t/l and t/l > 271(C*)?, by Theorem 4.8 and
semigroup property, we have

(5.5)  p(t/Lyi,yis1) = ea(t/1)~2,  for every (yi,yi+1) € Bi X Bija.

Using (5.5), we have

p(t,z,y) > // p(t/lx,yn) .. p(t/Lyi—1,y)dys ... dyi—1
B B;_1

Y

en(t/) P (ot (R/DT) 2 et/ (e

2
> eg(t/1) Y2 exp(—cal) > st~ exp (—wty') .

(ii) Since |z —y| > 3271y ~1/2(¢/3)Y/2 applying Proposition 5.2(i) with #/3 in
place of t, we have

t1+d/2efcg\zfy|5

Pﬁ?(}/t/i% € B(yv Cltl/Q)) 2 Pﬂc(}/t/?) € B(ya Ol(t/3)1/2)) 2> cr ‘l’ — y|d¢1(|(b — y‘)

where C; := 3271712 As p14(B(y, C1t*/?)) < cgt?/?, the above together with
Theorem 4.11 implies that

5
te*Cs\wny

p(t,x,y) > cio sup p(t/3,z,w) > cnn
Y weB(y, C1£1/2) |z =yl (Jz —yl)’

which is greater than cjote=“4*=¥l since |z — y| > @7’1/2. This completes the
proof. O
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Theorem 5.5. Suppose 3 > 1 and C, € (0,1). There exist ¢1,co > 0 depending
on Cy and (8 such that

‘x_y| (B-1)/B
56 stz e (—al—yl (0D 1) ),

for every t > 1 and |x —y| > t/C., and
s-1
(57) p(t,x’y) Z Clt ( —cal|z— y\(log I y‘) s + e—cz|w—y|ﬂ> ,

for every t € (0,1] and |z —y| > t/C\.

Proof. Let R := |z — y|. Note that exp(—cR(log(R/t))#=1/8) > exp(—cRP) is
equivalent to ¢t > Rexp(—R"). Since Rexp(—R?) < exp(—1) for all R > 0 and
B >1,t> Rexp(—R?) holds for t > 1. When t < Rexp(—R?) (which can only
occurs for some ¢ € (0,1]), (5.7) holds by Theorem 5.3. So it suffices to consider
the case C,R >t > Rexp(—R’). In this case we have R(log R/t)~*/% > 1. Let
I > 2 be a positive integer such that

R(log(R/t))il/B <i< R(log(R/t))il/ﬁ +1

and let © = xg, 1, -+ ,2; = y be such that |x; — x;41| < 2R/l fori=1,---,1—1.
(Here we used the fact that R is a geodesic space.) We observe that

t
- < (log(R/t))l/ﬁ < sup s t(logs)Y/P =ty < o0
I~ R s>1/C.,

and

25; (1- j)(log(R/t))l/ﬁ > = (IOg(C IWB o > 0,
Thus for all (y;,yi+1) € B(wi,ro) x B(xz+1,ro) . 3R/l > |yi — yis1| > R/l and
Oy — yir1l) = (R/1) > ¢(2rg) > (6(210)/to)(t/1). Now, by Theorem 5.3 with our
to, we have for all (i, yi+1) € B(xi,70) X B(Tit1,70)

l\’)\r—t

p(t/l,yiayiJrl) > Wl)dél(lu%/l) > c %(Z/R)d_1+52e—"/2(313/l)5
(58) > Cgﬁ(log(T/t))_(d—l-i-ﬁ’z)/ﬁ(%)7235 > C4(t/R)05

where ¢5 > 1. Let B; = B(x;,19). Using (5.8), we have
p(t,z,y) > / / p(t/lxy1) . Pt/ yi—1,y)dys - . dyi—1
B, Bi—1
ca(t/R)ILZ] (ca(t/R)™ - r§)
c7 exp (—05(R(log(R/t)) V8 4 1)log(cg ' R/t) )
Cg €Xp (—cloR(log(R/t))lfl/fj) .
If in addition ¢ € (0, 1], then

exp(—e1oR(og(R/)"1/?) > texp(—cioR(log(R/6)1Y/4).
We thus obtain (5.6) and (5.7). O

Y

v

v

Combining Theorems 5.3-5.5, we have the lower bounds in Theorem 1.2



GLOBAL HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES 33

6. APPLICATIONS OF HEAT KERNEL ESTIMATES

6.1. Green function estimates. We assume d > 3 and give two-sided sharp
estimates the Green function for G(x,y) of Y in R% where

G@w%:/,p@xwﬂt z,y € R%
0

Theorem 6.1. There exists ¢ = c(a,d) > 1 such that for x,y € R?,

(Bl LY <y <o (M Ly,

|z — y|d |z — y|i=2 |z — y|d |z — y|i=2

Proof. Note that for every T, M € [0, c0)

le—yl?
o L z—y|? 1 T -
(6.1) / tEe T gt = 7@2/ uT e Mudy,
T lz =yl 0
When |z —y| <1, by Theorem 1.2 and (6.1),
1|z —y)) /‘i”(‘”‘”')Al t
1 ——% < o dt < G(z,y
oyt =), e ylgtae g = GV
é1(lz—y)A1 ,
S 63/ dt
0 |z = yl?61(|z —yl)

+ /1 LI ]/mt‘% — el gy
Cq — Cs e t
#1(Jlz—y[)AL (07 1(t))d 1

o o1(Jz —y|) e o1(|lz —y) 00 /cg¢1(2k+1zy|) |z — yl|d
|z — y|d |z —y|d cosr @ lo—yl)  P1(lT =y (o7 ()
le—y* _
+C571 / u#eicﬁuﬁdu < cio (¢1(I ul) + L > 5
0

|z — y[d—2 |z — y|d |z — y|4—2

dt
k=0

where we used (1.3) in the last inequality. In fact,

0 cod1 (2F T [z —yl) |x _ y‘d o0
/ = ddt <c1 22_(d_62)k < 00.
o Jeapi @8 la—yl)  O1(lz —y) (o1 (1)) P

On the other hand, if |x — y| > 1 using Theorems 1.2 and 5.4(ii) and (6.1)

C12 ! d—4 o _d
iz gz ), " du = c12 | t2dt < G(z,y)

z—y|?
1 BAL |p—y[>~ A BAL
S Clg/ tefc14\w7y| dt+615/ t67015\$7y| dt
0 1
S 2
_d _cisle—yl
+cl7/ t”ze v dt
2= (D)
lz—y|?"!
_ . |1BA1 C21 d—4 _ C23
< cplx — yleczoleyl +ﬁ/ uz e du < .
|z —yl4=2 Jo |z =y

This completes the proof of the theorem. O
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6.2. Differentiability of spectral functions. In [24, 25], the differentiability of
spectral functions for symmetric stable processes are studied.

Let Z be a symmetric jump processes considered in this paper whose Dirichlet
form (Q, D) is given by (1.8)—(1.9) whose jumping intensity kernel J is given by (1.6)
and satisfies UJS. Let u be a signed measure in Kato class Ko (X) as introduced
in [9]. The associated spectral function C'(X) is defined to be

C(\) = —inf {Q(u, u) + A/Rd u(z)?u(dz) : u € D with /

Rd

u(z)?de = 1} .

It follows from [15] and Theorem 6.1 that the extended Dirichlet form (Q,D.)
is compactly embedded into L?(R?, |u|). Hence using the heat kernel estimates
established in this paper, by an almost the same argument as that in [24, 25], it
can be shown that if d < 4, then A — C()) is differentiable on R. But we will not
go into details about it here. See [15] for recent progress on the differentiability of
spectral functions.

Acknowledgment: The second named author thanks Martin Barlow for discus-
sions on UJS that led to Example 2.4.

REFERENCES

1. M.T. Barlow, R.F. Bass, Z.-Q. Chen and M. Kassmann. Non-local Dirichlet forms and sym-
metric jump processes. Trans. Amer. Math. Soc. 361 (2009), 1963-1999.

2. M.T. Barlow, R.F. Bass and T. Kumagai. Parabolic Harnack inequality and heat kernel esti-
mates for random walks with long range jumps. Math. Z. 261 (2009), 297-320.

3. M.T. Barlow, A. Grigor’yan and T. Kumagai. Heat kernel upper bounds for jump processes
and the first exit time. J. Reine Angew. Math. 626 (2009), 135-157.

4. R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans.
Amer. Math. Soc. 354 (2002), 2933-2953.

5. L. A. Caffarelli, S. Salsa and Luis Silvestre. Regularity estimates for the solution and the free
boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(1) (2008)
425-461.

6. E.A. Carlen, S. Kusuoka and D.W. Stroock. Upper bounds for symmetric Markov transition
functions. Ann. Inst. H. Poincaré—Probab. Statist. 23 (1987), 245-287.

7. R. Carmona, W. C. Masters and B. Simon. Relativistic Schrodinger operators: asymptotic
behavior of the eigenfunctions. J. Funct. Anal. 91(1) (1990), 117-142.

8. P. Carr, H. Geman, D. Madan and M. Yor. The Fine Structure of Asset Returns: An Empirical
Investigation, Journal of Business, 75(2) (2002), 305-332.

9. Z.-Q. Chen. Gaugeability and conditional gaugeability. Trans. Ameri. Math. Soc. 354 (2002),
4639-4679.

10. Z.-Q. Chen, P. Kim and T. Kumagai. Weighted Poincaré Inequality and Heat Kernel Estimates
for Finite Range Jump Processes. Math. Ann. 342(4) (2008), 833-883

11. Z.-Q. Chen, P. Kim and T. Kumagai. On heat kernel estimates and parabolic Harnack in-
equality for jump processes on metric measure spaces. Acta Math. Sin. (Engl. Ser.) 25
(2009), 1067-1086.

12. Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Sto-
chastic Process Appl. 108 (2003), 27-62.

13. Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on
metric measure spaces. Probab. Theory Relat. Fields, 140 (2008), 277-317.

14. Z.-Q. Chen and R. Song. Drift transforms and Green function estimates for discontinuous
processes. J. Funct. Anal. 201 (2003), 262-281.

15. Z.-Q. Chen and K. Tsuchida. Large deviation, compact embedding and differentiability of
spectral functions. In preparation.

16. M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes.
de Gruyter, Berlin, 1994.



17.

18.

19.

GLOBAL HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES 35

I. Koponen, Analytic approach to the problem of convergence of truncated Levy flights towards
the Gaussian stochastic process, Physical Review F, 52 (1995), 1197-1199.

E. H. Lieb and H.-T. Yau. The stability and instability of relativistic matter. Comm. Math.
Phys., 118(2) (1988), 177—-213.

R. N. Mantegna and H. E. Stanley. Stochastic processes with ultraslow convergence to a
Gassuan: the truncated Lévy flight. Phys. Rev. Letter 73 (1994), 2946-2949.

20. J. Masamune and T. Uemura. Conservation property of symmetric jump processes. Preprint
2008.

21. A. Matacz. Financial modeling and option theory with the truncated Lévy process. Int. J.
Theor. Appl. Finance 3(1) (2000), 143-160.

22. P.-A. Meyer. Renaissance, recollements, mélanges, ralentissement de processus de Markov.
Ann. Inst. Fourier, 25 (1975), 464-497.

23. J. Rosiniski. Tempering stable processes. Stochastic Process. Appl. 117(6) (2007), 677-707.

24. M. Takeda and K. Tsuchida. Differentiability of spectral functions for symmetric a-stable
processes. Trans. Amer. Math. Soc. 359 (2007), 4031-4054.

25. K. Tsuchida. Differentiability of spectral functions for relativistic a-stable processes with

application to large deviations. Potential Anal. 28 (2008), 17-33.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195, USA
E-mail address: zchen@math.washington.edu

DEPARTMENT OF MATHEMATICAL SCIENCE, SEOUL NATIONAL UNIVERSITY, SEOUL 151-747,

SouTH KOREA
E-mail address: pkim@snu.ac.kr

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KYOTO UNIVERSITY, KYOTO 606-8502,

JAPAN
E-mail address: kumagai@math.kyoto-u.ac. jp



