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Abstract

In this paper, we investigate symmetric jump-type processes on a class of metric measure
spaces with jumping intensities comparable to radially symmetric functions on the spaces. The
class of metric measure spaces includes the Alfors d-regular sets, which is a class of fractal sets
that contains geometrically self-similar sets. A typical example of our jump-type processes is

the symmetric jump process with jumping intensity
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where v is a probability measure on [ag, as] C (0,2), ¢(a,z,y) is a jointly measurable function
that is symmetric in (z,y) and is bounded between two positive constants, and co(z,y) is a
jointly measurable function that is symmetric in (z,y) and is bounded between v; and 72,
where either v9 > v1 > 0 or 74 = 72 = 0. This example contains mixed symmetric stable
processes on R™ as well as mixed relativistic symmetric stable processes on R". We establish

parabolic Harnack principle and derive sharp two-sided heat kernel estimate for such jump-type

processes.
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1 Introduction

Markov process with jumps or non-local Markovian operators has received much attention recently
due to its importance in theory as well as in applications. Two-sided heat kernel estimates and
parabolic inequalities have a long history in the theory of partial differential equations (PDEs).
There are many beautiful results in these areas, which played fundamental role in the study of
PDEs. On the contrary, their study for general stable-like processes (or fractional Laplacian-like
operators) in R? have only been studied very recently. In [18], Kolokoltsov obtained two-sided
heat kernel estimate for certain stable-like processes in R¢. Bass and Levin [6] used a completely
different approach to obtain a similar estimate and a parabolic Harnack inequality for discrete
time Markov chain on Z? where the conductance between z and y is comparable to |z — y|~(¢+®)
for 0 < @ < 2. In [11], a two-sided heat kernel estimate and a scale-invariant parabolic Harnack
inequality for symmetric a-stable-like operators (of fixed order) on d-sets are obtained in [11]. (See
[16] for some extensions.) So far the two-sided heat kernel estimate for non-local operators has
been restricted to fixed order only. See [1] for some result on parabolic Harnack inequality and
heat kernel estimate for non-local operators of variable order. See also [3, 4, 5, 7, 8, 21, 22] for
related Harnack inequalities, Holder continuity of harmonic functions and the Feller property for
non-local operators.

This paper is concerned with heat kernel estimates and a scale-invariant parabolic Harnack
inequality for a class of non-local symmetric operators of variable order on metric-measure spaces,

which in particular include Alfors d-regular sets in Euclidean spaces. A prototype of the model



consider in this paper when the state space is R” is the following. Let

EGD = [ (@ =10 Ty dedy
F {f € L*(R",dz): E(f,[) < oo},

where J(z,y) is a symmetric kernel given by

Ta,y) = oozl [7 BBy
Here v is a probability measure on [a1,as] C (0,2), c(a,z,y) is a jointly measurable function
that is symmetric in (z,y) and is bounded between two positive constants, and ¢y(z,y) is a jointly
measurable function that is symmetric in (x, ) and is either bounded between two positive constants
or is identically zero. It is not difficult to show that (£,F) is a regular Dirichlet form on R" and
so there is a Hunt process Y associated with it. The main result of this paper implies that Y has
a jointly continuous transition density function p(t,z,y) on (0,00) x R* x R™, and consequently
Y can be refined to start from every point in R®. Moreover, a two-sided heat kernel estimate for
p(t,z,y) and a parabolic Harnack inequality are obtained. Note that this example includes the

following particular cases:

(1) Y is the independent sum of isotropically symmetric ;-stable processes on R” with {aq, -, ax}

(0,2). This case corresponds to ¢(a, z,y) = ¢(a), co(z,y) =0 and v = %Z 0{ai}s
(ii) Y is a relativistic a-stable process on R", see Example 2.4 below;

(iii) Y is the independent sum of relativistic a;-stable processes on R” with {ay, -+ ,ax} C (0,2).

In fact, in this paper we will consider a more general metric-measure space F' rather than just
R™. In the following, if f and g are two functions defined on a set D, f =< g means that there exists
C > 0 such that C~1f(z) < g(z) < C f(z) for all z € D.

Let (F,p, ) be a locally compact separable metric space with metric p and a Radon measure
p having full support on F. For z € F and r > 0, let B(z,r) denote the open ball centered at z
with radius r. We assume that there is a point zg € F, a constant x € (0,1], and an increasing

sequence 1, — oo so that for every n > 1, 0 <r < 1, and = € B(zg,7,),
there is some ball B(y, kr) C B(z,r) N B(zg,)- (1.1)

The above condition is satisfied when F' is bounded since in this case we can take r, strictly larger

than the diameter of F' and take k = 1. The above condition is also satisfied when the metric p on



F' is geodesic in the sense that for every z,y € F, there is a is a continuous map v : [0,1] — F

with v(0) = z and (1) = y such that

p(v(s),7(t)) = It = slp(x,y)  for every ¢, s € [0,1].

(Such a path {y(¢) : 0 < ¢t < 1} is called a geodesic path connecting z and y.) This is because
when (F, p) is geodesic, fix some z¢ € F, then for every integer n > 1, € (0,1) and z € B(zg,n),
there is a geodesic 7y connecting z( to z. Let y be the point on 7 so that p(zg,y) =1 —r/2. Then
B(y,r/2) C B(z,7)NB(xg,n) and so condition (1.1) is satisfied with k = 1/2 and r,, = n. We point
out that a geodesic space (F, p) is pathwise connected while condition (1.1) allows for disconnected
space F'.

We also assume throughout this paper, unless otherwise specified, that u(F) = oo, every ball

B(z,r) is relatively compact in F' and the volume doubling property: there exists ¢ > 0 such that
u(B(z,2r)) < cu(B(z,r)) for every x € F and r > 0. (VD)

Let ¢ be a strictly increasing continuous function ¢ : Ry — Ry with ¢(0) = 0, and ¢(1) =1
such that there exist constants ¢ > 0 and 31 > 0 such that

#(R) _ R\
o(r) 20(—)

for every 0 <r < R < 00 (1.2)
T

and that

,
/ % _ds < oo for every r > 0. (1.3)
o ¢(s)

Let d be the diagonal of F' x F and J be a symmetric measurable function on F' x F'\ d such
that for every (z,y) € F x F \ d,

Cc1 C3

< J(z,y) < . 1.4
(B, ol 0))dleap(my)) =7 Y S (B ol ) blerp(a,v) (14)
When no confusion occurs, we will simply denote this as J(z,y) < MGIENE ;)) DR
For u € L%(F, i), define
E(u) = E(uyu) = /F (ula) = u(y))?J (@, ) d)u) (1.5)
X

and for 8 > 0,
Ep(u) = Eg(u,u) = E(u,u) + ﬂ/Fu(m)Q,u(da:).

Let C.(F) denote the space of continuous functions with compact support in F', equipped with the

uniform topology. Define
DE):={f € CAF): E(f) < o0}. (1.6)
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It will be shown in Proposition 2.2 below that (£, F) is a regular Dirichlet form on L?(F, 11), where
F = W&. So there is a Hunt process Y associated with it on F, starting from quasi-every point
in F (see [14]). We denote the exceptional set as Ny. Our goal is to derive two-sided estimate on
the transition density function of Y and to show that the process can be refined to start from every
point in F. To this end, instead of (VD), we need a uniform volume doubling assumption: there

exists strictly increasing function V : Ry — R, such that there is ¢ > 1 so that
V(0)=0 and V(2r) <cV(r) for every r > 0 (1.7)
and
u(B(z,r)) < V(r) for every x € F and r > 0. (1.8)

Under condition (1.8), condition (1.4) becomes

1
Vie(z,y))blp(x,y))

Note that (1.7) is equivalent to the following: there exists ¢ > 0 and d > 0 such that

J(z,y) < for every (z,y) € F x F'\ d. (1.9)

V(©0)=0 and

d
< c(ij) for all 0 < 7 < R. (1.10)

For most part of this paper, we assume the following stronger conditions than (1.2), (1.3) and

(1.10): there exist constants co > c¢1 > 0, 72 > v1 > 0 or 9 =1 =0, and d > dy > 0 such that

c1 (?)do < ‘(/((f)) < CQ(%)d for every 0 <7 < R < o0. (1.11)
and
d(r) = p1(r)(r) for r > 0, (1.12)

where 1) is an increasing function on [0,00) with ¢(r) =1 for 0 <7 <1 and
e < P(r) < coe™” for every 1 <7 < 00,

and ¢; is a strictly increasing function on [0,00) with ¢1(0) = 0, ¢1(1) = 1 and satisfies the
following: there exist constants co > ¢; > 0, ¢3 > 0, and B2 > 1 > 0 such that

R\ A1 $1(R) ate
1 (?) < (o) < CQ(?) for every 0 < r < R < 00, (1.13)
/” s r? : 0 (1.14)
s < c3—— or every r > 0. .
O A ’



Remark 1.1 Note that conditions (1.11) and (1.13) are equivalent to the existence of constants

c4,¢5 > 1 and Ly > 1 such that for every r > 0,

cadr(r) < d1(Lor) <csdr(r) and csV(r) < V(Lor) < c5V(r).

Assume further that there is a metric space X D F, and p(-,-) can be extended to be a metric

on X with dilation for F, i.e. there are constants cg > 1 such that for every =,y € F and § > 0,
612,071y € X with

cg 67 p(z,y) < p(67 1z, 67 y) < ¢ 07 p(w, y). (1.15)

Clearly the above condition is satisfied if F C R™ as we can take X to be R". See [16] for a

non-Euclidean example of F' satisfying the above condition.

The main result of this paper is the following heat kernel estimates. The inverse function of the

strictly increasing function ¢ — ¢(t) is denoted by ¢~ ().

Theorem 1.2 Assume that u(F) = oo and that the conditions (1.1), (1.8)-(1.9), (1.11)-(1.12)
and (1.15) hold. Then there is a conservative Feller process Y associated with (€,F) that starts
from every point in F. Moreover the process Y has a continuous transition density function on
(0,00) x F x F with respect to the measure p, which has the following estimates. There are positive
constants ¢y > 0, ca > 0 and C > 1 such that
1 t 1 t

o (v vomaE) <76o0 < (v Vaee)
for every t € (0,1] and =,y € F. Moreover, when vy =y, =0 in (1.12), then the above heat kernel

estimates hold for everyt >0 and z,y € F.

Remark 1.3 (i) Conservativeness of Y can be established under weaker assumptions (1.1)-(1.3)
and (1.7)-(1.9). In particular, we do not need assumptions (1.15) nor p(F) = oo for conser-

vativeness. See Theorem 4.7 below.

(ii) Concrete examples are given in Example 2.3 for which conditions (1.8)-(1.9), and (1.11)-(1.12)

are satisfied. In particular, they include mixtures of stable processes.

(iii) The existence of a continuous heat kernel for Y in Theorem 1.2 implies that we can refine the

process Y so that it starts from every point in F (cf. [14]).

(iv) We point out that the heat estimate given Theorem 1.2 is only true for small time ¢ in the
case of 75 > 741 > 0. This is illustrated by the example of relativistic 1-stable process on R%
given in Example 2.4 below, where the heat kernel behavior when ¢ — oo is quite different.

We will investigate the large time or global time heat kernel behavior in a separate paper.



The remainder of the paper is organized as follows. Section 2 presents several inequalities that
will be used in later sections as well as some examples. Nash’s inequality and on-diagonal upper
bound estimate is established in Section 3. The main results of this paper is proved in Section
4. To establish the off-diagonal heat kernel estimate for p(t, z,y) when p(z,y) > 1, we decompose
the Dirichlet form of Y into two parts: forms with jumping intensity kernels J(&, 7)1, <x}
and J(&,n)1 (p(e;m)>A}» Where A is carefully chosen, proportional to the distance between z and
y. The heat kernel p*(t,z,y) for the process Y* corresponding to the jumping intensity kernel
J ({,n)l{p(gm)g A} can be estimated from above by using a method from Carlen-Kusuoka-Stroock
[9]. Then the upper bound estimate for p(¢,z,y) can be obtained from that of p*(¢,z,y) due to
the Meyer’s construction of Y from Y and vice versa. To establish the off-diagonal heat kernel
estimate for p(t,z,y) when p(z,y) < 1 in the case of y; = 2 = 0, we use a scaling argument. The
heat kernel estimate for p(¢,z,y) in the case of 7, > 71 > 0 is then derived from the upper bound
estimate of p(¢,z,y) in the case of 71 = 75 = 0. We remark that as oppose to the approaches
in [6] and [11], the upper bound heat kernel estimate is obtained in this paper without having
to establish the parabolic Harnack inequality first. From the upper bound heat kernel estimate,
we can then derive certain hitting probability estimates (or tightness results) and prove parabolic
Harnack inequality. These results yield heat kernel lower bound estimate. The parabolic Harnack
inequality implies the generalized Holder continuity of p(t,z,y).

Throughout this paper, we will use ¢, with or without subscripts, to denote strictly positive
finite constants whose values are insignificant and may change from line to line. For r € [1, 00|, we

will use || f]| to denote the L"-norm in L"(F, y).

2 Preliminaries
The following Lemma will be needed later.

Lemma 2.1 Assume that conditions (VD) and (1.2)-(1.4) hold. There exist positive constants ci

and co such that

(i) Moy(r) := sup, fB(W)C J(n, &) u(de) < cr/d(r) for all v > 0.

(it) Mi(r) == supy [, - p(1,€)>T(10,8)p(d§) < c2 [§ zi5ds for allr > 0.

Proof. For simplicity, define V (z,r) := pu(B(z,7)).



(i) By (1.4) and (VD), we have

1
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where the lower bound in (1.2) is used in the second to the last inequality.

(ii) can be established similarly.
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Recall the definition of (£, D(£)) given by (1.5)-(1.6).

Proposition 2.2 Under the assumptions (VD), (1.2), (1.3) and (1.4), D(E) is dense in C.(F).
Moreover, if we define F := D(E)El, then (€,F) is a regular Dirichlet form on L*(F,p).

Proof. For each z # y € F, let r := p(z,y) and define

pe)=1-PEINT e p

T



Clearly ¢ € Cc(F), supp[y] C B(z,r) and [4(§) —(n)| < p(n.€)/r. So by Lemma 2.1,

W) = / / ($(E) — (n))2T (€, m)(de)u(dn)
B(z,r) J B(z,r)
2
w2 wag / o PPt

< 3 o o P e )+ 22(e) [ o))
< Tﬁ’")mB( 1) + 2Mo(r) (Bl 7)
< Q.

Thus ¢ € D(E). Since this holds for all z # y € F, using Stone-Weierstrass’ theorem we see that
D(E) is dense in C,(F). On the other hand, since F' is a locally compact separable metric space,
C.(F) is dense in L2(F, ). Thus, using Example 1.2.4 in [14] for instance, we can show that (£, F)
is a regular Dirichlet form on L?(F, u). O

Examples 2.3 We now give some examples such that condition (1.12) is satisfied.

(1) If there is 0 < aq < a2 < 2 and a probability measure v on [aq, ag] such that
#(r) = [ 1 vlda),
o7

then condition (1.12) is satisfied with 74 = 75 = 0. Clearly, ¢ is a continuous strictly
increasing function with ¢(0) = 0 and ¢(1) = 1. The condition (1.12) is satisfied with

v1 = 2 = 0 because

1
<2— for any r > 0.

Note that, in this case,

1
Vip(z,y)) [ plz,y)*v(da)’

J(z,y) =<

(ii) Similarly, condition (1.12) is satisfied with v; = v = 0 if

o= ([ v(do)) -

where v is a probability measure on [a, @] C (0,2). In this case,

as 1
I(@:y) = / Vol ol gy )

9




A particular case is when v is a discrete measure. When F = R", p(z,y) is the Euclidean
distance between z and y, and p is the Lebesgue measure on R?, Theorem 1.2 in particular
gives the heat kernel estimate for Lévy processes on R? which are linear combinations of
independent of independent symmetric a-stable processes. Of course, our theorem holds

much more generally, even in the case of ' = R".

(iii) ¢(r) = r*"), where 0 < a(r) < B < 2, a(r)logr is increasing and (a(2r) — a(r))logr is

bounded. a(r) =c— is a such an example for ¢ € (0,2). This case corresponds to the

¢
[r—1]+1

jumping density
1

V(p(x,y)p(, y) @)

(iv) In the above examples, condition (1.12) is still satisfied if one adds a multiplicative term

J(z,y) <

e where ¢y(r) is a symmetric function bounded between two positive constant y; and

V2- O

Examples 2.4 Let Y = {Y;,t > 0} be the relativistic a-stable processes on R¢ with mass m > 0.
That is, {Y;,¢ > 0} is a Lévy process on R? with

Efexp(i(¢, Yi))] = exp (¢ (m® — (¢[* +m?)*/2) ),
where m > 0, a € (0,2). It is shown in [12] that the corresponding jumping intensity satisfies

Y(mlz —yl)
J(z,y) X ———=,
( y) |.’L‘ _ y|d+a
where U(r) < e~ "(1 4 r(#2=1)/2) near r = oo, and ¥(r) = 1 + T/(0)r?/2 + o(r*) near r = 0.
So condition (1.12) is satisfied with 7y > 0 for the jumping intensity kernel for every relativistic
a-stable processes on R?.
When a = 1, the process is called a relativistic Hamiltonian process. In this case, the heat

kernel can be written as

p(t,z,y) = / eMe
( ) 2m)d\/|z — y|? + 12 Jra

see [15], also [19]. For simplicity, take m = 1. It can be shown (to appear somewhere else) that for

every t > 0 and (z,y) € R x RY,

~Vz=yP+2) (P +m?) g,

2
cit o\ oAt
(Jz —y| + t)d+1 (1 V(lz =yl +1) /2) e lo—y[2+¢2
< pt,z,y)
cot 42\ g
< (|~T—y|+t)d+1 (1V(|x—y\+t) )6 lz—y|2+t2

10



This in particular implies that for every fixed tg > 0, there exist ¢1,--- ,c4 > 0 which depend on
such that

_ t e lo _ t —ealz—
c1 (t d/\7|m—y|d+1>e 2=yl < p(t,z,y) < c3 (t d/\m>e calz—y|

for every t € (0,%] and z,y € R?. O

As mentioned previously, the above example shows that the estimate given Theorem 1.2 is only

true for small time ¢ in the case of 79 > 1 > 0. The heat kernel behavior when ¢ — oo is different.

3 Nash’s inequality and on-diagonal heat kernel upper bound es-

timate

Throughout this section, we will assume conditions (1.2)-(1.3), and (1.7)-(1.9). Recall the definition
of the regular Dirichlet form (£, F) on L?(F, u) given by (1.5)-(1.6).

Theorem 3.1 There are positive constants ci,co > 0, depending only on the multiplicative con-
stants in (1.7)-(1.9), such that for every u € F with ||ul|y =1, we have

Oul?) < e €y ), (3.1)

where O(r) := y and V1 is the inverse function of r — V (r).

I S—
o(V-1(err—1

Proof. For r > 0, define

up(z) == m /B(w’r) u(z)p(dz) for z € F.
We have
[urlloo < crllully/V () and  lur(ly < crlfulls
Thus

lurll3 < Hlurlloollurlls < eollull/V (r). (3:2)

11



So for u € F with ||ull; =1,

ol < 2l w3 + 2l
Collu 2
<af <m [ 0@ )Ty ¢(p<m,y>)v<p<w,y>>u(dy>> ) + 725
c —u 2 J(z T 2¢y
< ggeove [ ( JRCEREORY ,y)u(dy)> i) + 5225
< e (s + 55 ). 53)
To minimize the right hand side, let ¢(r9)€(u,u) = 1/V (rg); that is,
(Bro)V () = £ ). (3.4

Note that it follows from (1.2) and (1.7), 7 — (¢(r)V(r))~! is a strictly decreasing continuous
function with
lim (¢(r)V(r)) ! = +o0 and lim (¢(r)V(r)) "' =0

r—0+ r—00

and so (3.4) has a unique solution r9. So from (3.3), we see that ||u||3 < 2c5/V (ro), or equivalently,
ro <V7H(2e5 [lullz?).

Since ¢ is a continuous increasing function,

V(ro)¢(ro) < 2¢5 llully® oV~ (2e5 [lully®)) = ﬁf“g)

So by (3.4)

This proves the theorem. |

We know by Proposition 2.2 that (£, F) is a regular Dirichlet form on L?(F, 11). So there exists
Ny C F having zero capacity with respect to the Dirichlet form (€, F) and there is a Hunt process
(Y,P?) with state space F \ Ny such that for every f € L?(F,u) and t > 0, z — E®[f(X})] is
a quasi-continuous version of 7T;f, where {T},t > 0} is the semigroup associated with the closed
form (£,F). In fact, the exceptional set Ay can be chosen so that the Hunt process Y can start
from any point in F \ My and that once it starts from F \ Ny the process Y together with its left
hand limits takes values in F' \ Ay up to and strictly before its lifetime (. Such a set N is called

12



a properly exceptional set of Y (or, equivalently, of (£, F)) and it always has zero p-measure. For
simplicity, sometimes we just say that Y is a Hunt process associated with (€, F) starting from
quasi-everywhere in F. For more on terminologies and properties of Dirichlet forms, we refer the
reader to [14].

Let P(t,z,dy) be the transition probability for the Hunt process Y associated with (£, F). It
is well-known that the Nash’s type inequality (3.1) yields that for u-a.e. z € F, P(t,z,dy) has a
density function p(t,z,y) with respect to measure p and that an almost everywhere on-diagonal
heat kernel upper bound estimate holds for p(¢,z,y). Using the argument for the proof of Theorem
1.2 in [1] (see also [11]), we can show that in fact a quasi-continuous kernel p(¢,z,y) exists for

P(t,z,dy) and that the estimate holds quasi-everywhere.

Theorem 3.2 There is a properly exceptional set N D Ny of Y, a positive symmetric kernel
p(t, z,y) defined on (0,00) x (F\N) x (F\N), and positive constants ¢ and co, depending on the
multiplicative constants in (1.2)-(1.8) and(1.7)-(1.9), such that P(t,x,dy) = p(t, z,y)u(dy), and

C2

V(g (eit))

Moreover, for everyt >0 and y € F\ N, z — p(t,z,y) is quasi-continuous on F.

p(t,z,y) < for every z,y € F\ N and for every t > 0. (3.5)

Proof. For f > 0, define P, f(z) := E, [f(Y;)] for z € F \ Ny. Note that under the condition (1.2)
and (1.7)-(1.8), the function r — 1/6(r) is integrable at 7 = oo, where 6 is the function in Theorem
3.1. Thus according to [13, Proposition II.1], the Nash-type inequality (3.1) implies that

1P flloo < m(t) ] fl1 for every t > 0 and f € L'(F, p),

/ Gy

Using the explicit expression of 6 in Theorem 3.1,

[PV [t (V)
) = [ A Dy, [T ALy,

where m(t) is the inverse function of

z Yy
Observe that

cit™! (ﬁ(V*l 0 2 ’“clt )) 0
—k —1 —k—1 -1\ _ —1/09—k -1
/0 Y Z L e (2 et 2 e )—I;)qs(v @ et ),

By (1.7), there exists ¢ > 1 such that ¢V ~1(s) < V~1(2s) for all s > 0. Thus,

o0

Z(ZS(V*l(Z*kqt Z Yet™) < cadp(V et ™t ZC For < egp(V et ™)),

k=0 =0 k=0
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where (1.2) is used in the second inequality.
Thus h(t) < cap(V = (ert™h)) for every ¢ > 0. Taking the inverse function, we obtain m(t) <
c1/V(¢p~1(t/cs)) and so

1P flloo < m lF111 for every t > 0 and f € L' (F, p).

Now the conclusion of the theorem follows from a straightforward modification of the proof of
Theorem 1.2 in [1]. |

For simplicity, we call a symmetric kernel p(¢, z, y) having the properties in Theorem 3.2 except

the estimate (3.5) quasi-continuous.

4 Heat kernel estimates

In the first two subsections, we will prepare several estimates that will be used in the proof of
Theorem 1.2. We then prove the upper and lower bounds in §4.3-4.9 for z,y € F \ N for the
properly exceptional set N'. In §4.10, we use the Holder continuity and obtain the heat kernel
estimates for all z,y € F.

We will need to decompose the Dirichlet form (£, F) into two forms, a form with small jumps

and the other with large jumps. Then we apply the Meyer’s construction ([20]) as in [1, 2].

4.1 Meyer’s construction

The following construction of Meyer [20] for jump processes will be used in our approach. Suppose
we have jump intensity kernels J(z,y), Jo(z,y) on F' x F such that their corresponding pure jump
Dirichlet forms given in terms of (1.5) with F = m& are regular on F. Let Y = {Y;,t >
0, P,z € F\ N} and y© — {Y;(O),t > 0,P%,z € F\ Ny} be the processes corresponding to
the Dirichlet forms whose Lévy densities are J(z,y), Jo(z,y). Here N and Ny are the properly
exceptional sets of Y and Y (%), respectively. Suppose that Jo(z,y) < J(z,y) and

T(z) = /F (I (@) — o(,y))uldy) < c,

for all z € F. Let

Ji(z,y) = J(z,y) — Jo(z,y) and q(z,y) = (4.1)

Then we can construct a process Y corresponding to the jump kernel J from Y(© as follows. Let
S; be an exponential random variable of parameter 1 independent of Y9, let C; = fot J (YS(O)) ds,
and let Uy be the first time that C; exceeds Si. We let Y, = Y% for 0 < s < U).
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At time U; we introduce a jump from Yy, - to Z;, where Z; is chosen at random according to
the distribution ¢(Yy,—, y). We set Yy, = Zi, and repeat, using an independent exponential Sa,
etc. Since J(z) is bounded, only finitely many new jumps are introduced in any bounded time
interval. In [20] it is proved that the resulting process corresponds to the kernel J. See also [17].
Note that if Ny is the properly exceptional set corresponding to Y(9), then this construction gives
that the properly exceptional set ' for Y can be chosen to be a subset of Nj.

Conversely, we can also remove a finite number of jumps from a process Y to obtain a new
process Y (%), For simplicity, assume that Jo(z,y)Ji(z,y) = 0. Suppose one starts with the process
Y (associated with J), runs it until the stopping time S; = inf{t : J1(Y;—,Y:) > 0}, and at that
time restarts Y at the point Ys,_. Suppose one then repeats this procedure over and over. Meyer
[20] proves that the resulting process Y will correspond to the jump kernel Jy. In this case
No CN.

Assume that the processes Y and Y (?) have transition density functions p(¢, z, ) and p(O (¢, z,v),
respectively. Let {F;};>0 be the filtration generated by the process Y(%). The following lemma is

shown in [1, Lemma 2.4] and in [2, Lemma 3.2].
Lemma 4.1 (i) For any A € F,
i ({Ys =YO for all 0 < s <t} N A) > eIl po( 4).

(i) I | Jiloo < o0, then
p(t,,9) < O (t,2,9) + U151l

4.2 Scaling

We now return to the Dirichlet form (€, F) defined by (1.5), where the jumping intensity kernel is
specified by (1.4). Throughout the remaining of Section 4, with the exception of §4.6, we assume
that u(F) = oo and the conditions (1.1), (1.8)-(1.9), (1.11)-(1.12) and (1.15) hold. §4.6 deals
with the conservativeness of the jump process Y, which can be proved under weaker assumptions
(1.1)-(1.3) and (1.7)-(1.9). In particular, we do not need assumptions (1.15) nor p(F') = oo in §4.6.

To derive a sharp upper bound heat kernel estimate for (£, F), we will use a scaling technique.
This is where condition (1.15) is used.

For any § >0, let GO := §~'F = {§~'z : z € F}, and let v(¥) be the measure on G*) defined
by

p(0A)

VO)(A) = Vo) for every measurable A ¢ GO,
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When there is no confusion possible, the ball in G centered at z with radius r will still be
denoted by B(z,r). In this subsection, we will deal with processes and Dirichlet forms on G(). For
notational simplification, we will suppress § from G, v(9) ... etc, and denote them by G, v, ---.

To derive an upper bound estimate for the transition density function p(t,z,y) for the Hunt

process Y on F, for suitable § > 0, we look at the scaled process
[ _
Y =6 YWyu, >0

Clearly Y is a v-symmetric Hunt process on G and it starts from every point in G \ 67N, where

N is the properly exceptional set of Y on F in Theorem 3.2. Since

1 _
/A MO = 5 /5 B (o) (4.2)

for every measurable A C GG and every v-integrable function h on A, it is easy to check the following
(cf. [11]).

Lemma 4.2 The Dirichlet form (W,D(W)) of YO in L*(G,v) is given by

Wuu) = /G (0O = )T € mde)v(an),

DW) = Tu€Cu(G) with W(u,u) <oo} ',

where
TOE,n) = )V (0)J(5,6n)  for every 1 € G,
and Wi (u,u) := W (u,u) + [ u(z)?v(dz). The Dirichlet form (W,D(W)) is regular in L*(G,v).

In view of (1.9) and (1.15), there are constants ¢ > 1 independent of § > 0 such that

-1 ! < IO <c L

V(&) (elen) VOGO T

where

VO(r) =V (6r)/V(§) and ¢ (r) = ¢(6r)/p(6). (4.3)

We note that ¢(®) and V(9 satisfy the same condition (1.2), (1.3) and (1.7) by ¢ and V, respectively,
with the same multiplicative constants. Thus results proved in §2 and §3 hold for (W, D(W)) and
Y (©®) with the multiplicative constants independent of § > 0.

Note that the transition density function ¢(®(¢,z,y) of Y®) with respect to the measure v is
related to that of Y by the formula

dO(t,&,m) = V(8) p(¢(8)t,6¢,6m)  fort>0and &,n€ G\ 5 N. (4.4)
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4.3 Decomposition of quadratic forms

To derive heat kernel estimate, we need to decompose the Dirichlet form (W, D(W)) into two
quadratic forms, one with small jumps and the other with large jumps, and then use Meyer’s
construction.

Let A > 0 and consider the bilinear form (WY D(W)) on L?*(G,v) defined by

WON (v, v) / / 0 ()2 1gp(yex) 7O (€, 1) v(dn)(de). (4.5)

We denote

TJONE ) = L pemany TV (En) and J@(&Ji) = 1,emsa 7O (€ n)-

By Lemma 2.1(i), there is a constant ¢ > 0, independent of § > 0 and A > 0, such that

/(;J)(\J)(ﬁ,n)’/(d") < ¢(5)C()\) for every € € G.

Therefore we have for v € D(W),

0 < W(ow) - WO w0) <4 [ o ([ A0cnmwtan) ) viae) < s [ wterutae)
where ¢ > 0 is a constant independent of § > 0 and A > 0. Thus
<¢(6 ) + 1) 1Wl('u,v) < Wl(d’)‘)(v,v) < Wi(v,v) for every v € D(W). (4.6)

It follows then (W (%) D(W)) is a regular Dirichlet form on L?(G, v) and so there is a Hunt process
X (02 associated with it. For simplicity, we denote X(®*) by X. It follows from Theorem 3.1 and
(4.6) that X has quasi-continuous transition density function ¢{®" (¢,&,7) on (0,00) x G x G with

respect to the measure v.

For reader’s convenience, let us sumimarize some notations here.

D heat kernel for Y, corresponding Dirichlet form (€, D(E))

g heat kernel for Y0 corresponding Dirichlet form (W, D(W))
¢ heat kernel for X = X (V) corresponding Dirichlet form (W@ D(W))

4.4 Heat kernel upper bound for the case 7, =y, =0

In this subsection, we derive an upper estimate the heat kernel ¢(9) (t,&,n) for the case 71 = y2 = 0.
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(%2 can be constructed from Y by

We see from the second part of §4.1 that the process X
suppressing jumps of size larger than X and so ¢ (¢, ¢, n) is well-defined on (0, 00) x (G'\ 6~*N) x
(G\ 67'N). Note that there is a constant ¢; > 0, independent of § > 0 and A > 0, such that
C1

(9)
Iy oo < .

Thus by Lemma 4.1(ii), we have for every t > 0 and £,7 € G\ 67N,

(6) (6.\) (4) (6,0 t
a9 < 6 + I oo < VUGN + T oy (4.7)
We now derive an upper estimate for ¢V (t, ¢, 1) by using a result in [9].
Lemma 4.3 There exists a constant c; > 0, independent of § > 0 such that
V(§)p(d)t
¢ (tz,y) < o ©)¢(0) (4.8)

V(0p(z,y))p(dp(z,y))
for every § >0, 0<t <1, z,y € G\ 6~ N with p(z,y) > 1 and X\ = %p(x,y).

Proof. We will follow an idea in [2]. By (4.3), (4.6) and the X(®-version (that is, with W >V in

place of £) of Theorem 3.1, there are constants c1, co,c3 > 0, independent of § > 0 and A > %,
such that

0O ([l 12(5-15) < Wi (uyu) < csW M (uyu)  for u € DW) with [[ul| 1510 = 1,

where
T

PO (V@)= (err=1))
Note that (W D(W)) is the Dirichlet form for the 1-subprocess of X(*». By the proof of

Theorem 3.2, there are constants ¢4, c5 > 0, independent of § > 0 and A\ > ﬁ, such that

6 (r) ==

cs
VO ((¢))~(cat))

On the other hand, it follows from (1.2), (1.10) and (4.3) that there is a constant ¢ > 0, independent
of § > 0 and A > 0, such that

q(‘i’)‘)(t,x,y) < for z,y € G\ 6 'Nand 0 <t < 1.

Cs

VO (D)~ (cst))
This together with Theorem 3.25 of [9] implies that there exist constants C > 0 and ¢ > 0,
independent of A > 0 and § > 0 such that

<ct ¥P foro<t<1.

@OVt 2,y) < ctmP exp (<1p(y) — (@) + CT(¥)* 1) (4.9)
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for all t € (0,1], z,y € G\ "' A and every A > 0, and for some 1 satisfying I'(1)) < oo, where
L(%)? = [le **Tale"]lloo V [[€*¥TAle ]|,
where T'y is the density of WX determined by
L) = [ o T ), EcC (410)

Define
H(T)) := {’U :G—>R ‘ supI'\[v](€) < oo} )
{eq

A key observation is that H(T')) contains the cut-off distance function 1) given by

(&) == 3 (p(&,2) Ap(z,y))  for £ €@, (4.11)

OJICI:

where s > 0 is a number to be chosen later. Note that |1p(n) —¥(&)| < (s/3)p(n, &) for all &,n € G.
So

2D [e¥](¢) :/( . (1 — e¥m=()2 7O) (5, £ )0 (dn)
p(ME)<A

< / () — $(€))? 2PM=¥OL 7O (1. €)1 (d)
p(m&)<A

< (5)2 23 / o1, €)279) (1, €)v(dl)
3 p(m,€)<A

< cs2e25M/3 /)\ bt dt
- o ¢O(t)

AQ
< 632623)\/3

: ZOIPY

es)\

PN’

for every ¢ € F, where the ¢(®)-versions of Lemma 2.1(ii) and (1.14) are used in the third and
fourth inequalities. The same estimate holds for e2¥()T'y[e=¥](¢). Thus for z,y € G \ 6~ N with

<c

r:= p(z,y) > 1, the exponential part of (4.9) can be bounded from above by

sr esA
Now take C = (d-I—/J’ L A=Cr,and s = —1 g(¢( )(T)) Then, we can bound (4.12) as follows;
¢ 1/(3C) ¢ (r) + 1/(3C)
(o) < () e
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where (1.13) is used in the last inequality. Putting this into (4.9), we obtain for £,7 € G \ 67!\,

CN (8, z,y) < et 40 (1 A ct < (4.13)
o= $Om)) T POTEGO () = VO )@ (r) '

where in the last inequality, we used the fact » > 1, (1.11) and (1.13). This establishes (4.8). O

Proof of Theorem 1.2 (upper bound estimate for the case of 7 = v = 0).
Taking 0 = 1 and putting (4.8) into (4.7), we have, together with (3.5), that there is a constant
C > 0, independent of § > 0 such that for every ¢t < 1 and £,n € G\ 67N with r := p(&,n) > 1,

1 t
21069 < (g o) .

This in particular implies, by taking § = 1, that for every ¢t < 1 and z,y € F\N withr := p(z,y) >
L,

1 i
p(t) < () A ) (419)

Thanks to (3.5), (4.15) holds for t > ¢(p(z,y)) as well, if suffices to consider the case t < ¢(p(z,y))
with either 7 := p(z,y) < 1 or t > 1. In either case, take § > 0 so that c5 < 6~!r < 2c5, where
c5 > 1 is the constant in (1.15). Then p(6 'z, 6 1y) > 1 and t/#(6) < t/#(r) < 1. Thus by (4.4)
and (4.14), for every ¢ > 0,

ptz,y) = V(8) ¢ (t/4(8), 67,671y

B 1 t/$(9)
VO (i T T G )

IN

- (vt ! ! ) |
V(g~t(t)  dlp(z,y) Vip(z,y))
where in the last inequality we used (4.3) and assumptions (1.11)-(1.12) and (1.15), which ensures
that the new constant C' > 0 in the last inequality is independent of ¢ > 0 and z,y € F \ N. This

establishes the heat kernel upper bound estimate in Theorem 1.2 for the case of 71 =y =0. O

Remark 4.4 We used the scaling argument in the above proof of Theorem 1.2 for the case of
71 = 72 = 0 to circumvent the restriction that the conclusion of Lemma 4.3 holds for p(z,y) > 1.
As we noted above, the condition p(z,y) > 1 of Lemma 4.3 is only used in the last inequality in
(4.13). When dy = d and B; = 2, that last inequality holds for every r := p(z,y) > 0. Moreover,
in this case, the Nash’s inequality implies that the upper bound in (3.5) is ct= 4B for every t > 0
and so (4.9) holds for every ¢ > 0. Thus in the case of dy = d and 1 = [, taking § = 1, we
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have (4.8) holds for every ¢ > 0, 6 = 1, and every pair of z,y € F \ N having p(z,y) > 0 and
A= 3(01/171,31) p(z,y). This together with (4.7) of § = 1 and (3.5) establishes the upper bound estimate
in Theorem 1.2, without using the scaling argument. Thus in the case of dy = d and 1 = B2, we do
not need to assume (1.15) and the heat kernel estimate in [11, 16] can be obtained without using

a scaling argument.

4.5 Heat kernel upper bound for the cases 75, > v, >0

In this subsection, we will obtain the upper estimate the heat kernel p(t,z,y) of Y for the case
v2 > v1 > 0. Let ¢1 be the function in Remark 1.1 related to ¢. Let Y and Y* be the Hunt process
associated with the Dirichlet form in Section 2 corresponding to the jumping intensity kernels

B c(z,y) an z.,y) = c(@,y)
e ) B A T e FA PTERTI)

respectively. Here c¢(z,y) is a symmetric function bounded between two positive constants. Clearly,
J(‘Ta y) S J* (‘(Ba y) and

J(z) = /F(J*(w,y) — J(z,y))p(dy) < c3 for all x € F.

We know from Section 3 that there are quasi-continuous transition density functions p(¢,z,y) and
p*(t,z,y) on (0,00) x F x F for Y and Y*, respectively. By the first part of §4.1, process Y* can be
obtained from Y by adding more jumps and so p*(t, z, y) is well-defined on (0, 00) x (F\N) x (F\N),
where N is the properly exceptional set of Y in Theorem 3.2.

Lemma 4.5 For every ty > 0, there is a constant C = C(ty) > 0 such that

1 i
p(t,z,y) <C <V(¢_1(t)) A V(p(z,y)) (P(ﬂf,y))> ’

for every t € (0,t9] and every z,y € F\ N, where qﬁfl s a inverse function of ¢1.

Proof. Using Lemma 4.1(i), we have for q.e. € F' and every positive Borel measurable function
fonF,

E, [f(Yy)] < el B, [£(V3); Y = Yy for all 0 < s < 8] < el B, [£(¥7)].

This implies that
p(t,z,y) < lllTlleo p*(t,z,y) for q.e. z,y € F.

Note that for ¢ € (0,0), ¢ *(t) =~ ¢; '(t). The conclusion of this lemma now follows from upper
bound estimate in Theorem 1.2 for p*(¢,z,y) (of the case y1 = 2 = 0), which is proved in the last

subsection. 0O
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By this lemma, we see that the upper bound of Theorem 1.2 holds for r := p(z,y) < 1 when
¥o > 1 > 0. In the remaining of this subsection, we assume v, > 1 > 0 and p(z,y) > 1. Recall
the notation of ¢{®» from §4.3.

Lemma 4.6 There exist c1,co > 0 such that

(1)) _ bt (e
gV (t,z,y) < T © p (—coyi7) (4.16)

for all t € (0,1], z,y € F\ N with r := p(z,y) >0, and A = s(diilﬂl)r'

Proof. In view of Lemma 4.5, it suffices to prove the Lemma for r > rg, where rg > 1 is a constant
to be chosen later.

The idea of the proof is similar to that for Lemma 4.3, but some modification is needed in order
to optimize (4.9). Let 'y be as in the proof Lemma 4.3 but with § = 1. Take the cut-off function
1) to be

WO = T (06 ) Aplwy)  for € F, (417

where 71 is in (1.12) and s > 0 is a constant to be chosen later. Note that |¢(n)—1(§)| < H’%p(n, €)
for all £, € F. So, using the fact v; > 0, we have

e 2OT, [¥](6) = / (1 = e"D=YO)2 1 (n, ) p(dn)
p(n,€) <A

< / (1) — (€))? 2PV 1 (1, €)(dm)
p(nE)<A

IN

s+tm 2 25)/3 2,2m1p(n:€)/3
e p(n,&)’e J(n, &) p(dn)
p(m,E) <A

3
X ge2mt/3

s+ 2625)\/3/

AREA S S0
A

(s +7)% *M? (61 + 62/ 6_0371tdt)
1

(S _+_,71)2 625)‘/3,

IN
wl o

<

WO wlo

<

for every ¢ € F, where the third inequality can be proved by straightforwardly modifying the proof
of Lemma 2.1(ii), and the lower bound of (1.12) is used in the second to the last inequality. The
same estimate holds for e?¥(©)T'y[e ¥](¢). Thus the exponential part of (4.9) can be bounded from
above by

8271 (—r+ct(s+71)625’\/3) : (4.18)

Now take C = /371, A =Cr, and s = 72~ log(%). Here a € (0,1] is a constant such that
8(d+51) icr t

3 1
oae sup vslog = + Vacy; < 1/2,
4C o<s<1 s
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where ¢ > 0 is the constant in (4.18). Take 79 = 1/a. Then for r > r9 and ¢ € (0, 1],

st (—T + ct(s + '71)e% log %)

_ o stm 1/2
= 3 (T+C(S+’)’1)(&Tt) )

s+ 3ac |t ar 1/2 t\1/2
= —r+ S [ log = hd
3 < T 4C V ar 8 t ta c’ylr(r)
< —r(s+m)/6
d+p1, ar ™)
= — log — — ——.
B 8 6

Putting this into (4.9), we obtain

t\Ea T at
(LA) (¢ < et~ Wh _ — ct 4B - < 1 —comr
¢ tmy) <c exp (=r(s +m)/6) = ¢ ar ¢ = V(T)¢1(T)e ’

where in the last inequality, we used the fact r > ro > 1. This proves (4.16). O

Proof of Theorem 1.2 (upper bound estimate for the case of v2 > v; > 0). Note that by
(1.4) and (1.7)-(1.8), there are constants c;,co > 0 such that for every A > 0 and £ € F,

1

||1P(f,')>)\J(f, )Hoo < W

It then follows from (4.16) and (4.7) with § = 1 that for every t € (0,1] and z,y € F \ N (taking
A= S(diilﬂl)p(x, y) and noting the doubling property (1.7) of V'), we have

Cgt
Vip(z, y))¢(cap(z,y))

This together with (4.14) yields the desired upper bound estimate for p(t,z,y) for ¢ € (0,1] and
z,y € F\N. 0

p(ta z, y) < q(l’)‘) (ta z, y) +1 zlelg ||1p(§,-)>)\‘](§a ) Hoo <

4.6 Conservativeness

Let Y be the Hunt process associated with the regular Dirichlet form (&, F) defined by (1.5), where
the jumping intensity kernel is specified by (1.9). As mentioned in the first paragraph of §4.2, only
conditions (1.1)-(1.3) and (1.7)-(1.9) are assumed in this subsection. In particular, we do not need

the condition (1.15) nor assumption yu(F) = oo in this subsection.

Theorem 4.7 The process Y is conservative; that is, Y has infinite lifetime.
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Proof. Let Y be the Hunt process associated with the Dirichlet form on F given by (1.5) but with

jumping kernel Jo(z,y) := J(Z,y)1{4q@y)<1} in place of J there and with F = D(E)El. Clearly

.y
Jo(z,y) < J(z,y) and by Lemma 2.1(i),

T(z) = / (I(@,y) - Jola, y))u(dy) = / J@,y)u(dy) <co  for every z € F.
F {yeF:d(z,y)>1}

Thus it suffices to show that Y is conservative. This is because the process Y can be obtained from
Y through Meyer’s construction as discussed in the first paragraph of Section 4.1, and therefore
the conservativeness of Y follows immediately from that of Y.

To show that Y is conservative, we look at reflected jump processes with jumping kernel Jy in
big balls. Let zg, x and 7, > 100 be as in condition (1.1). Define B, = B(z¢,r,) and

EM(f.f) = / / (@) — £(9) o, y)u(de)u(dy),

(n)
FW = (FeCBa):EM(f,f) <o} |

where an) (u,u) := EM (u, u)+ [ u(z)?p(dz). Clearly (£, F(M) is a regular symmetric Dirichlet
form on L?(B,, 11). Let Y (") be the Hunt process on B,, associated with (£, F(™). Since constant
function 1 € F™ with £M™(1,1) = 0, Y™ is recurrent and so Y™ is conservative. We claim that

there is a constant ¢y > 0 such that
0(||ul2) < co (E™(u,u) + |ull?),  for all u € F™ with |Jul; =1, (4.19)

where 0(r) = m as in Theorem 3.1 with constant ¢; > 0 independent of n > 1. Here
and in the remaining proof of this theorem, positive constants ¢;’s, unless otherwise specified, are
independent of n > 1. Indeed, in view of the condition (1.1) and (1.7)-(1.8), there are universal

constants cs3, ¢4, c5 > 0 such that foreveryn > 1,z € B, and 0 < r <1,
csV(r) > p(B(z,r) N By) > caV(kr) > sV (r).

Thus by the same argument as that leads to (3.3), we have

lull3 < s (¢(7~)5‘”)(u,u) + %) < g (gb(r) (£, w) + [[ul) + ﬁ) .

Note that 7 + (¢(r)V(r)) ! is a strictly decreasing function on (0,1] with lim, o (¢(r)V (r))~! =

oco. If there exists ro < 1 such that

(¢(ro)V (r0) " = ™ (u,u) + |lull3,

then we obtain (4.19) by the same argument as in the proof of Theorem 3.1. Otherwise we have
L := (¢(1)V (1))~ > ||ul|3. On the other hand, by definition of 8, we know 6(z) < ¢z for z < L, so
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(4.19) holds in this case as well. Observe that (El(n),}" (")) is the Dirichlet form of the 1-subprocess
of Y(®). Thus by (4.19), Theorem 3.2 and [13], there is a properly exceptional set N, of Y () a
positive symmetric kernel p{™ (¢, z,y) defined on (0, 00) x (By, \WNy) X (B, \ Ny) such that for every
x € By \ Ny, Y (") has infinite lifetime P*-a.s., IP’:”(Yt(n) e dy) = p™(t, z,y)p(dy) on B, and

(644 et

V(g at))

Moreover, for every t > 0 and y € B, \ Ny,  — p™(t, z,y) is £™-quasi-continuous on B,. Then,

p(™) (t,z,y) < for every n > 1, z,y € B, \ NV,, and for every t > 0. (4.20)

the similar proof as that of Lemma 4.3 up to (4.12) (with s =§ = A = 1) gives
P (4,2, y) < cgt P exp(—cop(z,y)) for every z,y € B, \ N,, and for every t € (0,2]. (4.21)

(Note that only conditions (1.2)-(1.3) and (1.7)-(1.9) are needed for the proof of the above inequal-
ity.) So for z € B, \ Ny, t € [1,2] and r € (0,7,),

P® (p(Yt("),a:)zr) = /B - )p(”)(t,x,y)u(dy)

cs / e—Cgp(m,y)H(dy)
B, \B(z,r)

< cpe” M, (4.22)

INA

where we used the fact Y (™) that is conservative in the first equality and (4.21) in the first inequality.
Let I, := cipe”“"'" and define o, := inf{t > 0 : p(Y;(n),YO(n)) > r}. Then by the conservativeness
of Y(™), (4.22) and the strong Markov property of Y (™), for every z € B, \ N,, and r € (0,7y,),

P* (sup p(Y M), Yo(n)) > r) P* (o, < 1)

u<l

IN

P (ar <1 and p(YQ(n),:L') < r/2) +P* (p(Y2("),ac) > 7‘/2)
P (0, < 1 and p(Y;", Y{) > r/2) + I,
(n) n n
[1{T::ar<1}]PYT (p(YQ(_%“ayz)( )) > T/2>] + Ir/2
sup sup PY (p(Yz(fL,y) >r/ 2) + 1,0
y€(Bn\B(z,r))\Ng u<l
21,5 = 2c10e” 1 "/2, (4.23)

A IA A
&

IN

Note that u(N,) = 0 and for z € B,, 1 \ Ny, Y™ has the same distribution as that of Y before
Y (™) leaves the ball B, _1. For every ro > 0, take K to be an integer that is larger than 2r¢ + 1.

We have in particular from the above display that for u-a.e. z € B,,

P (sup p(Yu(”), YO(")) < r) > 1 — 2ci9e117/2 for every n with r, > K and for r < r, — 1.
u<l

25



Let {P;,t > 0} denote the transition semigroup of Y. Thus we have for y-a.e. x € By,

P* (Z > 1 and supp(Yy,Yo) < r) > 1 — 2cy9e 117/2 for every r > 0.
u<l

It follows then for y-a.e. x € By,
IPw(?l S F) =1.

Let 7y increase to infinity through an increasing sequence of positive integers. We have
P*'(Y,;€F)=1 for y-a.e. z € F
and consequently, by the Markov property of Y, we have for p-a.e. z € F,
P*(Y,eF)=1 for every rational ¢ > 0.

Since for each rational t > 0, P;1 is finely continuous and P;1 = 1 p-a.e. on F, we must have
P;1 =1 qe. on F. Let ¢ denote the lifetime of Y. The above says that P*(¢ = oo) = 1 for q.e.
z € F. By Meyer’s construction of Y from Y, we have proved that the process Y is conservative.
a

4.7 Tightness and some lower bound estimate

We first give a well-known formula on Lévy system of Y. The Hunt process Y on F'\ N has a Lévy
system, which is closely related to the jumping measure J(&,n)u(d€)u(dn) (cf. [14]). The following

result corresponds to Lemma 4.7 in [11]. See Appendix A below for more details.

Lemma 4.8 Let f be a non-negative measurable function on Ry X F' X F that vanishes along the
diagonal. Then for every t > 0, z € F\ N and stopping time T (with respect to the filtration of
Y),

& |3 f(s, v, ¥)| =B [/OT ([ e venatamtan) as).

s<T

For AC F,let 74 :=inf{t > 0:Y; ¢ A}. The following proposition corresponds to Proposition
4.1 in [11], which, together with the parabolic Harnack inequality, will be used to get the lower
bound heat kernel estimate for p(¢, z, y).

Proposition 4.9 For each A > 0 and 0 < B < 1, there exists v = v(A, B) € (0, 1/2) such that
for every r € (0, 1] (resp. 7 >0 when y1 =2 =0) and z € F\ N,

P® (TB(CE, Ar) < 7¢(T)) <B.
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Proof. Let x € F\ N. By the upper bound estimate in Theorem 1.2, for every s > 0 and ¢t < 1
(resp. for every ¢ > 0 in the case of y; = 5 = 0)

P (p(¥yz) > 8) = /B o D) P < (4.24)
ct
< /B@,S)c Vo n)dep@ )W
ct
—qﬁ(cls) , (4.25)

where we used the conservativeness of Y in the first equality, and Lemma 2.1(i) in the last inequality.

Let I, ; := ﬁfs) and define o := inf{t > 0: p(Y};,Yy) > s}. Then by (4.25) and the strong Markov

property of Y, we can compute similarly to (4.23) and obtain

ct
P Yy, Yo) > <21 = 4.26
(s3> ) <20 = 5 29
for every t < 1/2 and s > 0. Recall that ¢ is an increasing function with ¢(0) = 0 and ¢(1) = 1.
The above implies that for every z € F\ N and r € (0,1] (resp. for every r > 0 in the case of

7 =7 =0),

P ( sup p(Yy,z) > rs) < _eglr)t for every s > 0 and t < 1/2. (4.27)

u<a(r)t ~ ¢(eirs/2)
For A > 2/c¢; and B € (0, 1), by (1.2) we can choose ty < 1/2 so that

ch(r)to cto

m S A <B for every r > 0. (428)

Thus we have by (4.27),
P* ( sup p(Ys,z) > AT) <B for every r € (0,1] (resp. r > 0 when y; = 2 = 0).
s<é(r) to

This proves the Proposition with v =ty for A > 2/c; and B € (0, 1).
Now for A € (0,2/c1) and B € (0, 1), let £y be as in (4.28) corresponding to A = 2/¢; and B.

As we can write Ar = %cl—f’" with % < 7, we have from the above

p* sup p(Ys,z) > Ar | <B for every r € (0,1] (resp. r > 0 when v; = 9 = 0).
s<¢(c1Ar/2) to

We have from (1.12) and (1.13) that there is a constant co > 0 such that
d(c1Ar/2) > co(r) for every r € (0,1] (resp. r > 0 when v; =2 = 0).
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It follows then

p* ( sup p(Ys,z) > AT) <B for every r € (0,1] (resp. 7 > 0 when 7, =y = 0).
sgcqu('r)?g

This proves the Proposition with y = min {cto, 1/3} for A € (0,2/c;1) and B € (0, 1). 0

Remark 4.10 (1) There is a gap in [11, 16] in the proof corresponding to that of this proposition.
The conservativeness of Y is not addressed in [11, 16]. Without the conservativeness of Y,
just as in (4.24) above, there should be an P*(¢ < t) term in [11, (4.14)] and in [16, (4.18)].
Theorem 4.7 of this paper has fixed this gap.

(2) We point out that, in the case of the metric measure space F' being a Euclidean closed subset,
using the fact that Y is conservative and the theory of reflected Dirichlet forms (cf. [10]), it
can be shown that the domain F of the Dirichlet form of Y defined in Proposition 2.2 is in
fact equal to

F={ue L*F,p):E(u,u) < co}.

However since this result is not needed in this paper, we omit its proof. O

In the following, we will denote «y(1/2,1/2) in Proposition 4.9 by .

Proposition 4.11 There exist constants ¢c1 > 2,co > 0 and c3 > 0 such that the following holds
for every £,m € F\ N with p(¢,m) > c1¢71(t) and for every t € (0,1] (resp. for every t > 0 in the
case of y1 =2 =0),

tV(s (1)
Vip(n,€))¢(csp(n, £))
Proof. By Proposition 4.9, starting at z € B(y, ¢ '(t)), with probability at least 1/2 the process

Y does not move more than ¢~!(y~1%)/2 by time ¢. By (1.12) and (1.13), there is a constant cy > 0
such that

PE(Y; € B(n,c1¢™ (1)) > 2 (4.29)

%qb_l('y_lt) < cop™ (t) for every t € (0,1] (resp. for every ¢t > 0 when vy; =y, = 0).

Thus, it is sufficient to show for some constant ¢4 > 0,

P* (Y hits ball B(y,$ *(t)) before t) > CQV(d’_l(t)) . ¢ (4.30)

V(p(n,8)  é(cap(n,§))
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for all p(z,y) > 3co¢p~'(t) and t € (0,1] (resp. ¢t > 0 when 7; = v, = 0). Now with B,
B(z, cop™'(t)), By := By, co¢~'(t)) and 7, := 7p,, it follows from Proposition 4.9,

B [t A g] > YEPT (15 > yt) > 1/2, (4.31)
for each ¢t <1 (resp. t > 0 when 7y = 79 = 0). Thus, from Lemma 4.8,

P* (Y hits ball B(y, ¢~'(t)) by time )

> P*(Yipr, € B(y,# 1(t)) and t A 7, is a jumping time )
tATz
> du)ds
> =\ [ ], vom e
1

> E'[tAT du
2 BT Ve
5 @t p(By,cop” (1))
2 V(p(z,y))d(csp(z,y))
N V(671 (1)
Z Cs .

V(p(z,y))p(cap(z,y))

Here in the fourth inequality, (4.31) is used. This establishes (4.30). O

4.8 Parabolic Harnack inequality

In [11], the parabolic Harnack inequality (Proposition 4.3 in [11]) is proved in order to obtain the
upper and lower heat kernel estimates. Here we will introduce the parabolic Harnack inequality
and will use it to obtain the heat kernel lower bound. Note that the heat kernel upper bound is
already proved without the parabolic Harnack inequality.

We first introduce a space-time process Z; := (Vs,Y;), where Vi = Vi + s. The filtration
generated by Z satisfying the usual condition will be denoted as {ﬁs; s > 0}. The law of the
space-time process s — Z; starting from (¢, z) will be denoted as Pte),

We say that a non-negative Borel measurable function h(t,z) on [0,00) x G is parabolic in
a relatively open subset D of [0,00) X G if for every relatively compact open subset Dy of D,
h(t,z) = E&) [W(Z7p,, )] for every (t,z) € D1, where Z; = (V5,Y;) is the space-time process with
Vs=Vo+sand 7p, =inf{s >0: Z; ¢ D1}.

For each r,t > 0, we define

Q(t,z,7) :==[t,t +v¢(r)] x B(z, 7).
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Theorem 4.12 For every 0 < § <y, there exists c; > 0 such that for every z € F, R € (0,1]

(resp. R > 0 when 1 = y2 = 0) and every non-negative function h on [0,00) X G that is parabolic
and bounded on [0,v$(2R)] x B(z,2R),

sup h(t,y) <e1 inf h(0,y).

(h9)eQUA(R),-R) veB(z,R)

In particular, the following holds for t <1 (resp. t > 0 when y1 =2 =0).

sup p(s,T,y) <c inf  p((1+7)t z,y). 4.3
(sw)EQ(-t2,6 1 (1) (80 € g P62 (4.32)

The proof is basically the same as that of Proposition 4.3 in [11]. See Appendix for details.

4.9 Heat kernel lower bound

In this subsection, we prove the lower bound of Theorem 1.2 for z,y € F \ N.

We first derive a near diagonal estimate.

Lemma 4.13 There exist c1, co > 0 such that

1
p(t,T,y) > a1 W

for all t € (0,1] (resp. t >0 when y1 = y2 =0) and z,y € F\ N with p(z,y) < co ™1 (t).

Proof. In this proof, we will use (1.12) and (1.13) several times without specific mentioning. By

Proposition 4.9, there exists c3 > 1 such that for every ¢ € (0, 1] (resp. for ¢ > 0 when v; = v, = 0),

pe (suppm,x) > cgqsl(t)) <172
s<t

On the other hand, using the upper bound in Theorem 1.2, there exists 0 < ¢4 < c3/2 such that
PO(Y; € B(z, i (1)) < 1/4

for every t € (0,1] (resp. for t > 0 when y; = 5 = 0). Thus, if we define E(t) := B(z,c3¢ () \
B(z,cs¢1(t)), then P*(Y; € E) > 1/4. Define t, = (1 — )t. Applying the above with %, in place
of t yields p(t,x,z) > c5/V (¢~ (ts)) for some z € E(t,), since u(E(ts)) < c6V (¢~ (t4)). Now by
Theorem 4.12, by selecting ¢ > 0 sufficiently small, we have that for all y with p(y, ) < cod 1(2),

p(t,z,y) > inf  p(t,z,w) > sup pt— s,z,w). (4.33)
weB(z,c2¢71(1)) (s,w)EQ(t, x,c291(1))

If ¢ > c3, the right hand side of (4.33) is greater than or equal to cg/V (¢ *(t)) and the result
holds. If ¢o < c3, by applying Theorem 4.12 iteratively, we can obtain the result similarly. O
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Proof of Theorem 1.2 (Lower bound). As before, let ¢ € (0, 1] (resp. ¢t > 0 when y; = 2 = 0). Due
to Lemma 4.13, it is enough to prove the theorem for p(z,y) > co ¢~ 1(¢). Applying Proposition
4.11 with t, = (1 — )t in place of ¢, we have

tV (¢~ (t))

As p(B(y, c1¢ (ts))) < eaV (¢! (ti)), the above implies p(ts,z,2) > c5t/(V(p(z,y))¢(cap(,y)))
for some z € B(y, c1¢ '(t.)). By applying (4.32) as before, we obtain the desired result. |

P*(Y;, € Bly, c1™ " ())) > ez

4.10 Holder continuity

So far, we have proved Theorem 1.2 for z,y € F \ N. Now we can prove the following Holder
continuity of the heat kernel by applying the estimates obtained above. As a result, we obtain

Theorem 1.2 for every z,y € F.

Proposition 4.14 For every Ry € (0,1] (resp. Ry > 0 when 1 = 2 = 0), there are constants
¢ =c(Rp) > 0 and k > 0 such that for every 0 < R < Ry and every bounded parabolic function h
in Q(07 Zo, 2R)7

(s, z) = h(t,y)| < c|[hlloor BT (7|t = s[) + p(z,9))" (4.34)

holds for (s,z), (t,y) € Q(0,z¢, R), where [|h|loo,r := SUP(yy)cio, vp2r))xF [P Y)|- In particular,
for the transition density function p(t,z,y) of Y, for any ty € (0,1) (resp. any T > 0 and any
to € (0,T) when v1 = o = 0), there are constants ¢ = c(tg) > 0 and k > 0 such that for any
t, s € [to, 1] (resp. t,s € [to,T]) and (z;,y;) € F x F withi=1,2,

Ip(s,z1,9y1) — p(t, z2,y2)| < ¢ V((/ﬁ_l(to)l)qb_l(to)“ (</>*l(|t —s|) + p(z1,22) + p(yl,yg))n. (4.35)

The proof is an easy modification of that of Theorem 4.14 in [11], so we will omit it.

5 Appendix A: Lévy system

Any Hunt process X on E has a Lévy system (N, H). That is, N(x,dy) is a kernel on (Ey, B(Ej))
where Ey = EU{A} and H is a PCAF H of X in the strict sense with bounded 1-potential such
that for any nonnegative Borel function f on E X E4 that vanishes on the diagonal and is extended

to be zero elsewhere,

1
E; Zf(XS—aXS) =E, [A . f(Xs, y) N (X, dy)dH; (5.1)

s<t
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for every z € E and t > 0.

We claim that ¢ in (5.1) can be replaced by any stopping time 7' with respect to the minimal
filtration {F;,t > 0} generated by X.

This is because for any nonnegative bounded Borel function f on E X Eg and n > 1, t — C}! :=
Dos<t f(Xs—, X6)1ip(x,_ ,x,)>1/n} 1S @ non-decreasing function locally integrable functional and so

it admits a dual predictable projection A}. That is, for every bounded non-negative predictable

o [[acy] - [ ma]
0 0

For any stopping time 7' of {F},% > 0}, taking Hy, = 1g,<1}(s) in the above identity yields

process H,

Er | Y F(Xe, Xo)lip(x,_ x0)>1/n} | = o [A7]. (5.2)

s<T

Since X is quasi-continuous on [0, 00), A" is a PCAF of X. According to (5.1) and (5.2),

t
Ea [ /0 X))o g 1m N (Xs,dy)st] —E, [A"]  for every z € E.
el

In particular, we have for every non-negative excessive function h of X,

1 t 1 .
g [ e | [ [ 105050/ N daE, | i) = i [ o) (471 m()

It follows from the Revuz identity,
[ 1@ [ F et o m N Ko dpan(do) = [ by (da),
9

where p4n is the Revuz measure of A™. Hence

(/l; f(XSay)l{p(Xs,y)>1/n}N(Xsady)) :uH(dx) = HAn (d.’L‘),
e]

which is equivalent to
t
A? = / / f(Xsay)l{p(Xs,y)>1/n}N(XSady)st for every t>0.
0 JEj

So (5.2) can be rewritten as

T
E; Zf(XsfaXs)]-{p(Xs_,XS)>1/n} =E; [/0 ; F(Xs,¥)1p0x, )>1/n) NV (Xs, dy)dHss
9

s<T

32



for any stopping time T'. Passing n — oo, we conclude that
T
By | Y f(Xem, Xo) | =By [ / F(Xs,y)N (X, dy)dH (5.3)
s<T" 0 JE,

holds for every bounded f > 0 that vanishes along the diagonal and for every stopping time T.
Another truncation argument shows that (5.3) holds for every f > 0 that vanishes along the

diagonal and for every stopping time T'.

Note that in some literature, the Lévy system is simply defined as follows: there is (N, H) such

that for every bounded non-negative function that vanishes along the diagonal

t
£ / (X, y)N(X,, dy)dH,
o JE,

is the dual predictable projection of t — >, f(X;—, X;). (In fact, one needs to impose additional
condition on f so the local integrability cond_ition t = > oy f(Xs—, X;) holds. But this can always
be circumvented by first working on f (x,y)l{p(z,y)%} ana then letting ¢ — 0, as is done above.)
Then (5.3) follows easily from this. But as we see from above that this definition is equivalent to

the seemly weaker version (5.1).

6 Appendix B: Proof of Parabolic Harnack Inequality

In this appendix, we will prove Theorem 4.12 for R < 1. The extension to R > 0 when y; =y =0

is straightforward. For the proof, we need the following three lemmas.

Lemma 6.1 There ezists C1 > 0 such that for every z € F, r € (0,1], y € B(z,r/3) and a

bounded nonnegative function h on [0,00) X F that is supported in [0,00) X B(z,2r)¢,
E®®) [h(ry, Yr,)] < CiEOY [(7:, Y, )], (6.1)
where T, = TQ(0,z,r)-

Proof. Note that under P(%%) 7. := inf{t > 0: Y; ¢ B(z,r)} Ayé(r) = TB(z,;r) N 7P(r). Recall
that v := +(1/2,1/2). Since h is supported on (0,00) x B(z,2r)¢, for any z € B(z, r/3)

E®?) [h(ry,Yy,)] = EO9) [h(r, Yr,); Yr o # V7).
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So, by Lemma 4.8 with T' = 7, and by the fact r <1,

E®) [h(r,, Yr,)
_ R0 / /M (5, 0)J(Ys, u) 1 (du)d]
< w7 Izrcv/ngsil;? ) “(d“)dsl

et (s,u) P02 (s < 7,) ) ds
- /B(Wv ) o, w) M) o

On the other hand, by Proposition 4.9, for all s < y¢(r) and z € B(z,7/3),

1/2 <P*(s < Tp(ppo) <POI(s < 7)) < 1L

This implies that the values of the function z — E? [h(7,,Y,)] are all comparable with each other

with a universal constant multiple for any z € B(z,r), and therefore proves the lemma. O
For each A C [0,00) x F, denote 04 :=inf{t > 0:Z; € A} and A;:={y € F: (s,y) € A}

Lemma 6.2 There exists Co > 0 such that for all z € F, r € (0,1] and any compact subset
'A C Q(O’x7lr)7

m @ p(A)

V(r)e(r)’

where T, = TQ(0,z,r) and M® p is a product measure of the Lebesgue measure m on Ry and p on F.

p(0:2) (ca<m) >0y

Proof. The conclusion of the lemma clearly holds if P*(c4 < 7,) > 1/4. So we will assume
P*(oa < 717) <1/4. Let T =04 A 7p. Then

POD (04 < 1) = POT((T,Y7) € A) > POP((T, V) € 4; Yy # Yr).

Applying Lemma 4.8 with f(s,z,y) = 1{;2,11a(s,y) and T = 04 A 7, we have, with #o := y¢(r)

and r € (0,1],
P00 <) 2 B0 [ [ ' (/, RS Ao yHan) a5
> o EO®) [/to & ;(mr) p(du)ds; oa A1 > to]
> A (O'A NTp > to)

() (7")
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Here in the first inequality, we used the fact that p(u,y) < 2r for y € B(z,r) and u € A; C B(z,r),
and we used (1.12)-(1.13) in the last inequality. By Proposition 4.9,

PO (1, < tg) < P*(Tp(yr2) < Y6(r)) < 1/2,

and so
POD (gq Ay > t0) 21— PO (0y < 1) = POD (1, < 1) > 1/4,

which proves the lemma. m|

Define U(t,z,r) = {t} x B(z,r).

Corollary 6.3 For every 0 < 6 <y, there ezxists C3 > 0 such that for every R € (0,1], r € (0, R/4]
and (t,z) € Q(0,z, R/3) with t > d¢(r),

PO (00(t,00) < TQo2B) > C3
Proof. Let Q' := [t — dé(r), t] x B(z,r/2) C Q(0,2, R/2). By Lemma 6.2,

P2 (0g1 < Tg,2,m)) > €16V (r)d(r)/(V (R)$(R)).

Starting from any point in @', by Proposition 4.9 there is a probability at least 1/2 that the process
Y stays in B(z,r/2) for at least y¢(r) amount of time. Thus, by the strong Markov property, with
probability at least § V(r)p(r)/(2V(R)¢(R)), the process hits Q' before exiting Q(0, z, R) and
stays within B(z,r) for an additional y¢(r) amount of time, and hence hits U(t, z, ) before exiting
Q(0, z, R). O

Recall that Z; = (V;,Y;) is the space-time process of Y, where V; = V + s. The following is a
standard fact proved in Lemma 4.13 in [11].

Lemma 6.4 (Lemma 4.13 in [11]) For any bounded Borel measurable function q(t,z) that is
parabolic in an open subset D of Ry X F, s — q(Zsnry,) is right continuous Pt2) _q.s. for every
(t,z) € D. Here Tp = inf{s > 0: Z; ¢ D}.

Proof of Proposition 4.12. Let R € (0,1]. By Lemma 6.1 and its proof, we see that inf,cp(, g
h(0,y) > 0 unless h is identically zero. Taking a constant multiple of A if needed, we may assume
that

inf  h(0,y) = 1/2.
yoonf 0,y) =1/
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Let v € B(z, R) be such that h(0,v) < 1. It is enough to show that h(¢,z) is bounded from above
in Q(d¢(R), z, R) by a constant that is independent of the function A.

By Lemma 6.2, there exists ¢; € (0,1/2) such that if r < R/2 and D C Q(¢,z,r) having
m® u(D)/m ® u(Q(t,z,r)) > 2/3, then

PO (op < 1) > e, (6.2)
where 7, := Tg(1,z,)- Define :
c _
n=- and £=3A(Cr'n), (6.3)

where C is the constant in Lemma 6.1. We claim that there is a universal constant K = K(d) to
be determined later, which is independent of R and function h, such that » < K on Q(d¢(R), z, R).
We are going to prove this by contradiction. Suppose this is not true. Then there is some point
(to, z0) € Q(04(R), 2, R) such that h(tg,zo) > K. We will show that there is a constant 8 > 0 and
there is a sequence of points {(tx,zk)} in @(O,z,R) = [0,7¢(2R)] x B(z,2R) so that h(tx,zx) >
(1 + B)*K, which contradicts to the assumption that h is bounded on @(0, z, R).

Let 7 > 0 to be the smallest r such that

m Q u(Q(0, zg, 7)) S 3 and V(r)p(r) > 2
V(R)p(R)  — CoéK’ V(R)$(R) ~ C3¢K’

(6.4)

where Co and C3 are the constants in Lemma 6.2 and Corollary 6.3 respectively. With K being
sufficiently large, such r exists and can be made to be less than R/4. This is because by using
(1.11)-(1.12) and the fact that 0 < 7 < R <1 in the case of 2 > 71 > 0, we see that there exists

C > 0 such that
V(r)é(r) S (r )d+,32 .

ZVRHR) ~ \R

C

e 7 (6.5)
Thus r < C'RK~1/(@+52) S0 we can take K > 1 large enough such that C'K~1/(4+52) < 1/4 and
let

r:= C'RK ~Y/(d+52) (6.6)

Let U = {to} x B(zg,7). Were function h > (K on U, we would have by Corollary 6.3 that for
v € B(zo,1),

C3V (r)g(r)

1> h(0,v) = E®) [h(Z, VRER)

vnro)] = EKPOY) (o < 1) > €K

where @ := Q(0,zg, R), which contradicts to our choice of r in (6.4). Thus,

there must be at least one point in U on which & takes a value less than ¢K. (6.7)
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We next claim that
Effo-%o) [h(72,Y7,) : Yr, & B(xo,2r)] < 1K, (6.8)

where 7, 1= Tg(4) 4o,r)- If nOt, then by Lemma 6.1, we would have for every y € B(zo,7),
B h(r,,Yr,) : Yy, ¢ B(o,2r)]

Cr I w0) (7, Yy, ) : Yy, ¢ B(zo,2r)]
> Cfl'f]K > fKa

h’(tO, y)

v

Y

a contradiction to (6.7). So (6.8) holds.
Let A be any compact subset of

A= {(s,9) € Q(to,xo,7) : h(s,y) > EK}.

By Lemma 6.2
12 h(0,20) > BO(Z,,) 04 < 70] 2 PO (01 < rq) > ¢K LS.
So by (6.4),
m ®T:(g(lzéﬁo,r)) = CueK - 7‘; gﬁéﬁ,wo,m = % - (6.9)

Since (6.9) holds for every compact subset A of A, it holds for A in place of A.
Let D = Q(to,zo,7) \ A and M = SUD (5 4)€Q(to,z0,2r) P(S, ¥)- We write
h(to, 7o) = EW2)[h(op,Y,,):0p < 7] +E02R(r,. Y, ) : 7 <op,Ys, ¢ B(zo,2r)]
+E(to%0) [h(1y,Y7,) s 70 < oD, Y, € B(xg,2r)].
The first term on the right is bounded by ¢ K P(0:20) (g ; < 7,.) in view of Lemma, 6.4, the second term

is bounded by nK according to (6.8), and the third term is clearly bounded by MP(o-20)(7,. < 5p).
Recall that h(tg,zo) > K. Therefore,

K <K Plo™) (g < 1) + 9K + M P10 (g > 7).
It follows from (6.9) and (6.2)-(6.3)

1_n_§P(to,wo)(gD<7—r) S 1—77—E+£: l1-n—¢ca > 1 —(2¢1)/3 =148

IP’(thmO)(o'D > T’I‘) - 1—-q l1—¢ - l1—¢

M/K >

where § = 3(1%:1) In other words, M > (1+ 8)K. As M = SUP(s 4)eQ(

a point (t1,21) € Q(to, 7o, 2r) C Q(0, 2, R) such that h(ty,z1) > (14 B)K =: K;.

h(s,y), there exists

to,w0,2r)
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We now iterate the above procedure to obtain a sequence of points {(tx,zx)} in the following
way. Using the above argument (with (¢1,21) and K; in place of (t9,z¢) and K), there exists
(t2,x2) € Q(t1,x1,2r1) such that

- C’RKfl/(‘”ﬂ?) C'(1 + p)~V/(@+52) g=1/(d+52)
and h(to,z2) > (1+ B)K; = (1 + B)2K =: Ko. We continue this procedure to obtain a sequence of
points {(tx,zx)} such that with
T = CIRKk—l/(d-I-ﬁ2) ( +8)” k/(d+B2) gr—1/(d+B2) R,
(tk—|—11~77k—|—1) € Q(tk,.’bk, 2‘)"k) and h(tk+1,£6k+1) (1 +B)k+1K t K1 As O <ty —tx < 7¢(2T’k)
and p(zgi1,2k) < 21, by (6.5), we can take K large enough (independent of R and h) so that
(tg,xK) € Q(O 2, R) for all k. This is a contradiction because h(ty, zx) > (14 B)¥K goes to infinity

as k — oo while h is bounded on Q(O, z, R). We conclude that h is bounded by K in Q(d¢(R), 2z, R),
which completes the proof of the proposition. O

Acknowledgement. The authors are grateful to Martin Barlow and Alexander Grigor’yan for

valuable comments and suggestions.

References

[1] M. T. Barlow, R. F. Bass, Z.-Q. Chen and M. Kassmann, Non-local Dirichlet forms and

symmetric jump processes. Preprint 2006.

[2] M. T. Barlow, A. Grigor’yan and T. Kumagai, Heat kernel upper bounds for jump processes.

In preparation.

[3] R.F. Bass and M. Kassmann, Harnack inequalities for non operators of variable order. Trans.
Amer. Math. Soc., 357 (2005), 837-850.

[4] R. F. Bass and M. Kassmann. Holder continuity of harmonic functions with respect to oper-
ators of variable orders. Comm. Part. Diff. Eq., 30 (2005), 1249-1259.

[5] R. F. Bass and D. A. Levin, Harnack inequalities for jump processes. Potential Anal., 17
(2002), 375-388.

[6] R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes. Trans.
Amer. Math. Soc., 354 (2002), 2933-2953.

38



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. Bogdan, A. Stés, and P. Sztonyk, Potential theory for Lévy stable processes. Bull. Polish
Acad. Sci. Math., 50 (2002), 361-372.

K. Bogdan and P. Sztonyk. Harnack’s inequality for stable Lévy processes. Potential Anal.,
22 (2005), 133-150.

E. A. Carlen and S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov tran-
sition functions. Ann. Inst. Heri. Poincaré-Probab. Statist., 23 (1987), 245-287.

Z.-Q. Chen, On reflected Dirichlet spaces, Probab. Theory Relat. Fields, 94 (1992), 135-162.

Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets. Stochastic
Process Appl., 108 (2003), 27-62.

Z.-Q. Chen and R. Song, Drift transforms and Green function estimates for discontinuous
processes. J. Funct. Anal., 201 (2003), 262-281.

T. Coulhon, Ultracontractivity and Nash type inequalities. J. Funct. Anal., 141 (1996), 510-
539.

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes.
de Gruyter, Berlin, 1994.

I. W. Herbst and D. Sloan, Perturbation of translation invariant positive preserving semigroups
on L?(RN). Trans. Amer. Math. Soc., 236 (1978), 325-360.

J. Hu and T. Kumagai, Nash-type inequalities and heat kernels for non-local Dirichlet forms.
Kyushu J. Math., 60 (2006), 245-265.

N. Tkeda, N. Nagasawa, and S. Watanabe, A construction of Markov processes by piecing out.
Proc. Japan Acad., 42 (1966), 370-375.

V. Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions. Proc. London Math.
Soc. 80 (2000), 725-768.

K. Kuwae and M. Takahashi, Kato class functions of Markov processes under ultracontractivity.
To appear Adv. Studies Pure Math., Math. Soc. Japan.

P.-A. Meyer. Renaissance, recollements, mélanges, ralentissement de processus de Markov.
Ann. Inst. Fourier, 25 (1975), 464-497.

39



[21] R. Schilling and T. Uemura, Dirichlet forms generated by pseudo differential operators: on
the Feller property of the associated stochastic process. Preprint 2005.

[22] R. Song and Z. Vondracek, Harnack inequality for some classes of Markov processes. Math.
Z., 246 (2004), 177-202.

Zhen-Qing Chen
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

E-mail: zchen@math.washington.edu

Takashi Kumagai
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail: kumagai@kurims.kyoto-u.ac.jp

40



