Asymptotics for the spectral and walk dimension
as fractals approach Euclidean space
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Abstract

We discuss the behaviour of the dynamic dimension exponents for fam-
ilies of fractals based on the Sierpinski gasket and carpet. As the length
scale factor for the family tends to infinity the lattice approximations to
the fractals look more like the tetrahedral or cubic lattice in Euclidean
space and the fractal dimension converges to that of the embedding space.
However, in the Sierpinski gasket case, the spectral dimension converges
to two for all dimensions. In two dimensions we prove a conjecture made
in the physics literature concerning the rate of convergence. On the other
hand, for natural families of Sierpinski carpets, the spectral dimension
converges to the dimension of the embedding Euclidean space. In gen-
eral we demonstrate that for both cases of finitely and infinitely ramified
fractals, a variety of asymptotic values for the spectral dimension can be

achieved.

1 Introduction

In [10] a numerical study was made of the behaviour of the spectral dimension
on a particular subclass of Sierpinski gaskets. By considering the gaskets as a
parameterized family of fractal lattices that converges to the triangular lattice
in two dimensions, they were interested in seeing how the fractal properties
behave at the crossover from fractal lattice to regular lattice behaviour. In
that paper the spectral dimension was calculated for several hundred parameter
values leading to the conjecture that, asymptotically, the spectral dimension

converges to two with a particular logarithmic error.
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In this paper we will consider the behaviour of the dimension exponents for
this family of Sierpinski gaskets in all dimensions and give a rigorous proof of
the conjecture. We will show that the finite ramification persists in that, for the
gaskets and other nested fractals, the spectral dimension cannot exceed 2 what-
ever the dimension of the space in which the fractals are embedded. In contrast
we consider families of Sierpinski carpets which converge to the Euclidean space
in which they are embedded and discuss the asymptotic behaviour of their di-
mension exponents. In this infinitely ramified case there is typically convergence
to the spectral dimension of the embedding space in all dimensions.

As the fractals that we consider are either nested fractals or Sierpinski car-
pets, they are self-similar sets and their fractal dimension is easily calculated.
The family of fractals F; C R will be parameterized by their length scale factor
l. Throughout the paper, we assume that each Fj is connected and defined as the
fixed point of a family of similitudes {¢; = %{*";i =1,..., N}, ¢; : R? - R
where Ng; is the number of maps of contraction factor [ —1 required to generate

the fractal. Thus
Na,

F = U ¢1(ﬂ)7
=1

and, under the open set condition (which holds for all our fractals), all notions
of fractal dimension have common value d¢(d,l) = log Nq,/logl.

We give general definitions for the dynamic exponents, the spectral and walk
dimensions, and note that these can be made precise in our setting. Firstly the
walk dimension determines the time to distance scaling in the fractal and can
be defined using the mean square displacement of a diffusion. Let {X};t € R}
be a Brownian motion on the fractal, F; and denote by E® the expectation for
the Brownian motion started at the point x € Fj. If the set is isotropic, in that
the behaviour of the Brownian motion will be independent of its starting point,

we define the walk dimension

4 1. logE®|X}!—z|?
1_ 1 t
d(d ) =g ==

(This could also be defined through the long time mean square displacement of
a random walker on the corresponding fractal lattice.)

The spectral (or fracton) dimension describes the asymptotic scaling in the
eigenvalue counting function. It is well known, [7], that the Laplace operator

associated with a nested fractal exists and is unique. It also has a discrete



spectrum consisting of eigenvalues with its only accumulation point at infinity.
Let Cj(\) denote the number of eigenvalues of the Laplace operator on F; that
are less than A. The spectral dimension is defined to be
dy(d,1) = 2 lim 128G,
A—oo  log A

It has been shown that for p.c.f. self-similar sets, which include nested fractals,
and also for Sierpinski carpets, that these exponents are related by ds = 2ds/d,,.

Our aim is to study the asymptotic behaviour of d,(d,1), d(d,l) as I — oo
for families of finite and infinitely ramified fractals. The results show that for
natural families of Sierpinski gaskets and Vicsek sets embedded in Euclidean
space R? for d > 2, the spectral dimension ds(d,!) will converge to 2, for all
d. In this case the walk dimension d,(d,l) will converge to d, the dimension
of the embedding space. For the Sierpinski carpet, we will see that typically
the exponents converge to those of the embedding space, in that ds(d,l) — d
and d,,(d,1) — 2. However we will show that there are constructions which give
various limits for d(d,[) between 1 and d where d = lim;_, . ds(d,1).

We begin by working on the Sierpinski gasket and establish a rigorous version
of the result conjectured in [10]. In the final Section we will consider the other
families of fractals and discuss the possible limits of the spectral dimension as

the families approach the Euclidean space.

2 Asymptotics for Sierpinski gaskets

Let I > 2 be a natural number. We divide the sides of the unit equilateral
triangle in R? evenly into [ and remove all the downward pointing triangles.
Iterating this procedure indefinitely, we have a Sierpinski gasket which we will
denote by SG(2,1) (see Figure 1 for level 4 for | = 2 and level 2 for | = 4).
This family of fractals was used to generate random fractals in [5, 6] in order to
determine the effect of randomization on the analytic properties of fractals. We
can follow the same procedure to construct a family of gaskets SG(d,!) in RY,
starting from the unit equilateral d-dimensional tetrahedron. Denote by Ng;
the number of small upward pointing triangles obtained at the first step of the
iteration; No; =1(1+1)/2, N3;=1(1+1)(201+1)/6 and N4, can be calculated



recursively using
1

Nd,l = ZNd_l?j = ld. (21)
j=1

Here and in the following, we will write a, < b, ({an}, {bn} are positive se-
quences) if there exist positive constants ¢, cg such that ¢; < a, /b, < co. Note
that the Hausdorff dimension of SG(d,!) is log Ny /log!.

Figure 1: =2 l=14

Now, let V) be the set of vertices of the unit equilateral d-dimensional tetra-
hedron and let V7 be the set of vertices of the small tetrahedra obtained at the
first step of the iteration. We denote by E,, (m = 0,1) the set of edges of
length [~™ which are a subset of SG(d,!) and connect the vertices of V,,,. We
can regard (V,,, Ey,) as an electrical network by putting a unit resistor on each
edge in F,,. For each potential f on V,, (i.e. f € S(V;,) = {h: h is a function
on V,,}), the energy of the network can then be defined as

Ba(if)=5 Y (@)~ f@)*
(:::)ee‘g"m

We can then easily show that there exists a resistance scale factor pg; > 1 so
that

pa,-inf{Bi(f, f): f € S(V1), flv, = v} = Bo(v,v) for all v e S(Vh). (2.2)

Note that [ corresponds to b and ps; corresponds to Ry in [10]. Using these

scaling constants, the following formula is known.



Proposition 2.1 (Theorem 8.18, [1])
2log N, log(Ng,; -
au(a )= N g (g gy = BN Par)
log(Na, - pa,i) log!
We now state our main theorem concerning the asymptotic behaviour of pg ;.
Theorem 2.2 p2,1 <logl. Ford >3, pg; =< 1.

Using Proposition 2.1 and (2.1), we have the following corollary of the theorem.

Corollary 2.3 For d > 2, we have the following as | — oo.

9 _ loglogl L O() 4 _ 9
ds(d,1) = { ol el ’ (2.3)
2 - 2 d>2,
loglogl o1
duan) = { 2T CheE R 4= (2.4)
U L d+ Y d>2 '
+ Tog1 > 2.

(2.3) for d = 2 proves (2b) in [10].

3 Proof of Theorem 2.2

The key to proving the results in this paper are the shorting and cutting laws
for electrical networks. They are originally due to Rayleigh and some discussion
can be found in [3] Section 6.2.
The shorting law: Shorting sets of vertices in a graph can only decrease the
effective resistance between two given nodes in the graph.
The cutting law: Cutting certain edges of the graph can only increase the
effective resistance between two given nodes in the graph.

For the proof of Theorem 2.2 we will first concentrate on the 2-dimensional
case. Note that by taking v(a) = 0,v(b) =v(c) =1 in (2.2),

pay = (inf{B1(f, f) : f € S(V1), f(a) = 0,f(b) = f(c) =1}) 7",

where a,b, c are the vertices of V; labelled as in Figure 2, (which corresponds
to the case [ = 3). By shorting the vertices that belong to each horizontal line
(the thick lines in Figure 2), we see from the shorting law that po; is bigger
than (or equal to) the effective resistance between a and b in a linear network

of the type shown on the right hand side of Figure 2.
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Figure 2: Shorting the gasket

Therefore,
>1+1+1+ ! 1lol
PL=95T1"% 2~ 2 %"

Here a,, ~ b, ({an},{bn} are positive sequences) means lim, o an/b, = 1.
Thus the lower bound is obtained.

The proof of the upper bound is divided into several steps. First, define
Ri(=Ry;) = (nf{Bi(f,f):f€SW), f(a)=0,f(b)=1}""
Ri(=R3;) = (nf{Bi(f,f): feS(V),f(a)=0,f(2) =1 Vzebec})™".

Then Rl1 is the effective resistances between a and b, while R12 is the effective re-
sistance between a and bc. Note that in general, the effective resistance R(A, B)
between two disjoint sets A and B (0 # A, B C Vi, AN B = ) can be defined

as
R(A, B) = (inf{Bi(f,f) : f € S(V1), f(z) =0 Yz € A, f(y) =1 Vye B})™".
By definition, the following is clear

R} > pa; > R}. (3.1)
We now prove the key lemma.
Lemma 3.1 R? < logl.

PROOF. We first prepare two electrical networks and consider two effective

resistances as in Figure 3. One is the effective resistance between a and L; (the
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Figure 3:  Triangular lattice Regular lattice

thick lines) on the triangular lattice with unit resistors, which we denote by
R;. The other is the effective resistance between a and Ly (the thick lines) on
the regular lattice with unit resistors, which we denote by R;. Using shorting
and cutting law arguments, we see that Rl = R;. Further, we can embed 6
SG(2,1)s into the triangular lattice as indicated by the broken lines in Figure
3. Using this fact and the symmetry of the triangle, it is easy to see R? =< Ri.
Thus, it is enough to prove R; < logl, but this is a well-known fact. Indeed, let
Gi(a,z) be the Green function of the electrical network corresponding to the
regular lattice (in terms of probability, it is the expected number of visit to x
for the corresponding Markov chain starting from a before arriving at Ls). For
the 2-dimensional regular lattice, it is a standard fact that G;(a,a) < log!l. Let
gi(a,z) = 4Gi(a, z)/{p=Gi(a, a)} where p, is the number of bonds that connect
to z. Then g;(a,a) =1 and g;(a,y) = 0 for all y € Ly. As gi(a,-) is harmonic
inside LoU{a}, this function attains the infimum in the definition of the effective

resistance so that

(R)) ' = B(gi(a,), gi(a, ")) = 4/Gi(a,a) < (logl) *,

where B(:,-) is the energy of the network on the regular lattice and we have
used the reproducing kernel property of u(z) = Gi(a, z)/p. (i-e., B(u, f) = f(a)
for all f such that f(z) =0 on z € Ly) in the second equality. This completes
the proof. ]

We next define another graph (V{, E}) as in Figure 4, i.e. we add vertices on

the perpendicular bisector L of ab. When an edge is divided into two edges by



b C
Figure 4: (V1, Eq) (V{, EY)
L, we put a 1/2 resistor on each small edge. This allows us to regard (V{, E7)

as an electrical network whose energy we denote by Bj(-,-). Define R'}, R’ in

the same way as R}, R? by changing Bi,V; to By, V/.
Lemma 3.2 Fori=1,2, Ri = R|.

PrOOF. Take an edge {z,y} € E; such that its middle point 2’ is in V' \ V3.
Clearly,

(f(z) = f()) < 2A(f(2) = £(=")* + (£ (") = ()"},

so that (Ri)™! < (R’})™. On the other hand, by taking (f(z) + f(v))/2 as

f(z"), we have

(f@) = fw)* = (@) - =)+ (5 )%

which guarantees (R})~! = (Rli)_l- '

Lemma 3.3 Rl1 < 2R12 for alll > 2.

PROOF.  We first note that the potential f € S(V]) which attains the
infimum in the definition of R’ ll enjoys the property that f(z) = 1/2 for all
z € LN V] by the symmetry of the gasket. Thus, when we short the network
(V{, EY) so that all the vertices below L (the vertices in the right-angled triangle

bL) are the same voltage 1 and the voltage of a is 0, the corresponding effective



resistance between a and L is R’ ll /2. To see this note that the effective resistance

from a to L is

R(a, L)_1 =inf{Ber(f, f): f(a) =0, flL =1},

where B, (.,.) is the energy form restricted to the triangle aL. Let g be the
function that attains the infimum. By symmetry B(2f,2f) = 2B,1(g,9) and
hence

R(a,L) ! = Bur(g,9) = 2B(f, f) = 2(R'}) .

By the shorting law, we have
2 1
R > R} /2.
Using Lemma 3.2, we obtain the result. ]

Combining (3.1), Lemma 3.1 and Lemma 3.3, we obtain Theorem 2.2 for d = 2.

We now give a proof of Theorem 2.2 for d > 3. Note firstly that pg; > 1 for
all d,1 > 2. The fact that this holds for the class of nested fractals introduced in
[9] can be found in [1] Corollary 6.28. Further, {pq;}4,; is non-increasing w.r.t.
d (this is easily proved by cutting arguments). Thus pg; < p3;. Therefore we
only need to prove that p3; is bounded from above. The proof goes though
in essentially the same way as that for d = 2 by replacing the 2-dimensional
arguments with suitable 3-dimensional ones. The statement of the key Lemma
3.1 should be replaced by R? =< 1. Again it is a standard fact that for the
3-dimensional regular lattice, Gj(a,a) — 1 =< 1/l so that B(gi(a,-),qi(a,")) =
6/G@a,a) < 1.

4 Other fractals

In this section, we give a discussion of other families of fractals based on cubes.
There are very natural classes of Sierpinski carpets and Vicsek sets whose lattice
approximations converge to the cubic lattice as the length scale is refined. We
will establish results for these families which show the difference between finite
and infinite ramification.

Note that for nested fractals we have pg; > 1 and hence there are the

following bounds on their spectral and walk dimensions,

ds(d, 1) <2, dy(d,1) >ds(d,l).



4.1 Vicsek sets

Firstly we mention another class of finitely ramified fractals, the Vicsek sets.
These are fractals constructed as (2n+1) x (2n+1) checkerboards, level 2 of the
n = 3 case is shown in Figure 5, and we can follow the same procedures to study

the asymptotics of their spectral dimension. Firstly we compute the asymptotic

Figure 5: The 7 x 7 grid-like Sierpinski carpet and Vicsek set

behaviour of the fractal dimension. Let [ = 2n + 1. A simple induction formula
shows that if Ng; denotes the number of maps for the d-dimensional Vicsek set
with side length [, then

Nd,l = Ndfl,l + n(2n =+ l)d_l

Thus we have n(2n +1)¢! < Ng; < dn(2n + 1)¢~! and

log Nd,l
logl

For the the spectral dimension we observe that as they are nested fractals

d¢(d,l) = —d, as | — oo.

we have immediately that pg; > 1, for all [,d. In two dimensions we can use
an argument from the shorting law to produce a similar network to that on the

right hand side of Figure 2, to get

1 1 1 1 1 1 1
Pz gt ot ettt T T2 1)
gy 1
375 m—1 " 22n+1)
~ 1 1
- ;22 2@n+1) " 208k

For the upper bound on the resistance we are already on the cubic lattice and

hence the usual cutting argument for the cubic lattice gives (with a little work)
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that in two dimensions pp; < logl, while in higher dimensions pg; < p3; <
1. Putting these results together with the dimension formulae give the same
asymptotics as in Corollary 2.3 for ds(d,l) and d,(d,l) as | — oo. Hence the
behaviour is similar to that of the Sierpinski gasket as opposed to the Sierpinski
carpet that we consider next.

Note that, if we consider the Vicsek set in which the checkerboard pattern
has enough centre cubes removed to leave only a strip two cubes wide around
each face, we will be able to prove that ds(d,l) — 1 as I — oo using the same
arguments. (In this case, df(d,l) — 1 so that the fractal dimension does not

converge to the dimension of the embedding space.)

4.2 Grid-like Sierpinski carpets

We construct a family of Sierpinski carpets which have a grid like structure.
Consider the d-dimensional unit cube and divide the sides in [ = 2n + 1. Now
remove n? cubes to form a grid consisting of n + 1 full slabs of cubes alternating
with n slabs with the (d — 1)-dimensional pattern. We iterate this process of
removing n¢ cubes from each remaining cube to form a sequence of closed sets
F,, converging to a Sierpinski carpet. The pattern is shown to level 2 in Figure 5
for the case n = 3 in two dimensions. We write L, for the hyperplane x; = z.
The fractal dimension of this family of Sierpinski carpets is easily seen to be
ds(d,1) =log ((2n + 1)? — n)/log (2n + 1) and as n — oo we have d;(d,1) — d.
In order to determine the spectral dimension we need to find the scaling in the
resistance. To define the resistance scale factor we consider the scaling in the

resistance between opposite faces of the carpet. Let
R = inf{/ V£ Pdz : flog = 0, flom = 1}.
ImF,

In [2] it has been shown that there is a constant pg such that for further con-
stants c1,c2 > 0, c1p7 < Ry < cop. Note that the scale factor pp cannot be
expressed as the solution to a simple variational problem over one step, unlike
the finitely ramified case, (2.2).

The key to understanding the resistance scaling is the shorting and cutting
argument of [2] Section 5, where it is shown in (5.4) and (5.5) that the resistance

scale factor is controlled as follows

1
l
< op< 4.1
i=Z1 % =PF= |disjoint paths of length [ across F|’ (41)

11



where a; is the number of cells in the cross section at z; = i/l.
For our grid-like carpets we can easily see that there exist constants cs, ¢4,
such that
C3l2_d <pr < C412_d.

Using this in the dimension formulae we obtain for d > 2,

0(1 0O(1
dy(d,1) = —ké} dﬂ¢0_2+ké}

for large [. Thus, for this family of Sierpinski carpets, we have convergence of

the exponents to those of the embedding space in all dimensions.

4.3 SC(l,b,d)

We can also consider the sets SC(l, b, d) as defined in [2] Remark 5.4. These are
formed by removing a central block of b¢ cubes from the unit square subdivided
into [ cubes of side [~!. The estimates, derived from (4.1) and given in [2] (5.9),

are
l—b b <
jd—1 + [di—1 _pd—1 = PF < Jd—1 _ pd—1-

Thus if we fix the size of b or let it grow as a proportion strictly less than one
of I we find that, as before pr < 12~¢ and the dimension results are the same as
in the previous carpet. However, if we let b =1 — 2, in that we remove all but
the boundary cells, we see that pr < [3~%. Thus for the family of ‘thin strip’

carpets we have, as | — oo,

0(1)
= + = 1
d¢(d,l)=d—1 Toal’ ds(d,l) =d

o)
logl

)
 du(d) =2+ -7

4.4 Climbing frames

We can obtain even lower integer values for the spectral dimension by removing
more of the borders of the fractals in the family. For example in d = 3 we can
take a ‘climbing frame’, where we remove all the cubes except for the cubes
which touch at least two faces of the unit cube. Using the same shorting and
cutting arguments as before we have that ds(3,1) — 1 as | — oc.

This idea can be extended to d-dimensions to produce families which have
as limits for their fractal and spectral dimension all integer values between 1
and d. Consider the unit cube in d-dimensions and remove all the cubes that

touch at most k faces (where 0 < k < d — 2). The case k = 0 corresponds to

12



the SC(l,l — 2,d) case, at k = d — 2 we have a climbing frame. The number of
remaining cells is seen to be Ny ; < [9-1=F.

In order to estimate the resistance scale factor we use (4.1). For the upper
bound we consider the disjoint crossings of the cube. With careful thought we
see that there are of order [4~27F cubes in the front face which connect by a
length [ path to the back.

For the lower bound we consider one edge and take d — 1 dimensional cross-

d=1-k cubes in the face, while

sections of the cube. At the two ends there are [
in the middle we see that there are [9~2~%. Putting the two estimates into (4.1)

we have
21k+1—d+ (l _ 2)lk+2—d < pF < C5llk+2_d.

Thus pp =< [¥+3~¢ and we have that as [ — oo,

o(1) 0(1) 0(1)
e — 1 —_ R — = — 1 — —_ - 2 )
dy(d,l) =d bt Jogr de(dD) =d k= ogpy GoldD) =2+ 7

4.5 Possible limits

Our results so far have the spectral and fractal dimensions of the families con-
verging to the same limit. We now show that this does not necessary occur.
Consider the following family of carpets, one member of which is shown on the
left side of Figure 6. The only connections between faces are around the edges of
the carpet and each internal square is connected to the frame only at the centre
of each face. Thus, by using the shorting and cutting arguments again, the resis-
tance scales linearly with [ as [ — co. However due to the internal structure we
see that the fractal dimension of the set will converge to 2 as [ — oo and hence

we see that ds(2,1) — 4/3 and d,,(2,1) — 3 as | — oco. If we take sequences of

Figure 6: Sierpinski carpets with low spectral dimension
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different structures on each face we can make families of carpets which, in the
limit, take various (at least a countable infinity) fractal dimensions between 1
and 2. For instance, if we take [ = 3-3™ 4+ 2 and place a 3™ x 3" approximation
of the standard 3 x 3 Sierpinski carpet in the centre of each face, we get a family
of fractals which will converge to an object with the same fractal dimension
log 8/log3 as the standard 3 x 3 Sierpinski carpet. The n = 2 case is shown
on the right hand side of Figure 6. Now, by the construction, the resistance
will scale linearly with the length scale factor giving ds — 2log8/log24 and
dy — log24/log3.

It is not difficult to extend this type of construction to higher dimensions. Let
the carpets be obtained by removing all hypercubes which do not intersect with
any face of the unit cube (i.e. the (I — 2)¢ subcube in the middle) and now, in
the centre of each of the 2¢ faces of dimension d— 1 place a hypercubic structure,
connected by a single hypercube, which does not intersect any hypercubes from
the other faces. This gives a family of fractals with ds(d,l) — d. Now observe
that the resistance scaling is the same as the case of SC(I, b, d), so that pp < 379,
Thus the spectral dimension dg(d,!) — 2d/3 as | — oc.

In order to push the spectral dimension further down we work with the k-
climbing frame. On the centre of each of the faces of dimension k£ + 1 place a
‘fat’ structure of dimension d, connected by a single hypercube, which does not
intersect any of the other ‘fat’ structures from the other faces. Thus the carpet
will have full dimension but these ‘fat’ structures will not affect the resistance
scaling. In this case we will have pp =< [¥*3~¢ and hence d,(d,1) — 2d/(k + 3).
Thus at the maximum value of k = d — 2, we get a lower bound for the spectral
dimension of 2dy/(ds + 1).

Note that the following relationship holds between d; and d,, with respect
to the Euclidean metric (see [1] Theorem 3.20; where the results are given with

respect to the shortest path metric),
2<dy <ds+d.. (4.2)

Here d. > 1 is called the chemical exponent. For the class of symmetric fractals
we consider (i.e., nested fractals and Sierpinski carpets), d. relates the Eu-
clidean metric || - || to the shortest path (geodesic) metric d(-,-) on the fractal,
ie. d(z,y) < ||z — y||% (see [4],[8]). For the examples we have introduced,
d. = 1. Using (4.2), we immediately have the following bounds on the spectral

14



dimension,

2ds(d,1)
— - T KL < .
L@+ d, S ds(d,l) <ds(d,l)

The above construction shows that the lower limit is obtainable in two dimen-
sions when d, = 1.

In order to obtain the worst possible behaviour in two dimensions for the
case when the asymptotic fractal dimension is 2, we construct a family of carpets
using a space filling curve. The generator for a member of such a family is shown

in Figure 7. In this way we have Ny ; < [ and pg,; < [ and hence df(2,1) — 2

Figure 7: A member of a family which achieves the two dimensional worst case

while ds(2,1) — 1 and d,,(2,1) — 4.

We conclude with the following question concerning the possible limits of

the dimensional exponents for such families of fractals.
Question: Let F; be a sequence of fractals in R?, indexed by their length
scale factor ! and chemical exponent d., with spectral dimension ds(d,!). Let
dy (d) = lim;_ o ds(d, 1) if the limit exists. Do there exist families of fractals
such that ds(d,1) — d while all possible limits of the spectral dimension are
attainable i.e. the full closed interval [1,2] in the finitely ramified case and [1, d]
in the infinitely ramified case?

We note that we can answer this question if we are allowed to use homo-
geneous random fractals, [5]. In that setting such a construction is relatively
straightforward as we just select with appropriate probability between a worst
case space filling curve fractal (Figure 7) and a grid-like fractal (LHS of Fig-
ure 5) and use the continuity of the scale factors with respect to the probability.
However, if we can only take exactly self-similar fractals, the answer is not

known.
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