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Abstract. In this paper, we survey recent work on heat kernel estimates

for general symmetric pure jump processes on metric measure space (M,ρ, µ)

generated by the following type of non-local Dirichlet forms

E(f, g) =

∫
M×M

(f(x)− f(y))(g(x)− g(y)) J(dx, dy),

where J(dx, dy) is a symmetric Radon measure on M×M \diag that may have

different growth behaviors for small and large jumps. Under general volume
doubling condition on (M,ρ, µ) and some mild quantitative assumptions on

J(dx, dy) that are allowed to have light tails of polynomial decay at infinity,

we present stability results for two-sided heat kernel estimates and heat kernel
upper bounds as well as the corresponding parabolic Harnack inequalities.

The results extend considerably those for mixture of symmetric stable-like

jump processes in metric measure spaces, and more interestingly, they have
connections to these for symmetric diffusions with jumps.

1. Preliminaries

In this section, we first recall the history on heat kernel estimates for mixture
of symmetric stable-like processes on metric measure space, and then present an
interesting example, which is not of mixture of stable-like type and exhibits some
new phenomena. In particular, this example will lead us to consider general sym-
metric pure jump Markov processes whose jumping kernel can have light tails at
infinity, which is (a spacial but important case of) the subject of this paper.

1.1. Mixture of symmetric stable-like processes. Two-sided heat kernel
estimates and parabolic Harnack inequalities have a long history in the theory of
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partial differential equations and diffusion processes (which are strong Markov pro-
cesses with continuous sample paths). There are many beautiful results including
the De Giorgi-Nash-Moser theory and Aronson’s Gaussian estimates in these ar-
eas. Studies of transition density functions for Markov processes with discontinuous
sample paths, or equivalently, heat kernels for non-local operators, are relatively
recent.

We start with a (rotationally) symmetric α-stable process Z = {Zt, t ≥ 0;Px, x ∈
Rd} on Rd with α ∈ (0, 2), which is a Lévy process such that

Exei〈Zt−x,ξ〉 = e−t|ξ|
α

for every x, ξ ∈ Rd.
The infinitesimal generator of a symmetric α-stable process Z on Rd is the fractional
Laplacian ∆α/2 := −(−∆)α/2, which is a prototype of non-local operators. The
fractional Laplacian can be written in the form

∆α/2u(x) = c lim
ε→0

∫
{|x−y|>ε}

u(y)− u(x)

|y − x|d+α
dy

for some constant c = c(d, α) > 0. It is well-known (see e.g. [BG]) that the transi-
tion density function p(t, x, y) of the symmetric α-stable process has the following
two sided estimates:

p(t, x, y) ' t−d/α ∧ t

|x− y|d+α
, x, y ∈ Rd, t > 0.

In this paper, we write f ' g, if there exist constants c1, c2 > 0 such that c1g(x) ≤
f(x) ≤ c2g(x) for some range of x. For a, b ∈ R, set a ∨ b := max{a, b} and
a∧b := min{a, b}. Note that, in contrast to the standard Gaussian tail for Brownian
motions, heat kernel of symmetric α-stable processes has polynomial decay when
the distance |x − y| → ∞. This is called the heavy tail phenomenon for stable
processes. Due to this property, many systems in physics and economies can and
have been modeled by non-Gaussian stable processes.

Let (M,ρ, µ) be an Ahlfors d-regular set; that is, µ(Bρ(x, r)) ' rd for all r > 0
and x ∈ M , where Bρ(x, r) := {y ∈ M : ρ(x, y) < r}. Let J(x, y) be a positive
symmetric function on M ×M such that

J(x, y) ' ρ(x, y)−(d+α), x, y ∈M (1.1)

for some 0 < α < 2. Consider a non-local regular Dirichlet form (E ,F) on L2(M ;µ)
given by

E(f, g) =

∫
M×M\diag

(f(x)− f(y)(g(x)− g(y))J(x, y)µ(dx)µ(dy), f, g ∈ F ,

where diag denotes the diagonal set {(x, x) : x ∈ M}. The reader is referred to
[CF, FOT] for terminology and theory of symmetric Dirichlet forms and their asso-
ciated symmetric Markov processes. It was established in Chen and Kumagai [CK]
that the symmetric strong Markov process X associated with (E ,F) on L2(M ;µ)
has infinite lifetime, and has a jointly Hölder continuous transition density func-
tion p(t, x, y) with respect to the measure µ, which enjoys the following two-sided
estimates

p(t, x, y) ' t−d/α ∧ t

ρ(x, y)d+α
for any (t, x, y) ∈ (0,∞)×M ×M. (1.2)

We call the above Hunt process X a symmetric α-stable-like process on M . Note
that when M = Rd and J(x, y) = c(x, y)|x − y|−(d+α) with 0 < c1 ≤ c(x, y) ≤
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c2 < ∞ for some constants α ∈ (0, 2) and c1, c2 > 0, X is a symmetric α-stable-
like process on Rd, and the associated infinitesimal generator can be viewed as
the analog to a divergence form operator for fractional Laplacians. Since J(x, y)
is the weak limit of p(t, x, y)/t as t → 0, heat kernel estimate (1.2) implies (1.1).
Therefore, the results from [CK] give a stable characterization for α-stable-like heat
kernel estimates when α ∈ (0, 2) and the metric measure space (M,ρ, µ) is a d-set
for some constant d > 0. This result has later been extended in [CK2] to mixture
of stable-like processes on more general metric measure spaces, under some growth
condition on the weighted function φ such as∫ r

0

s

φ(s)
ds ≤ c r2

φ(r)
for r > 0. (1.3)

For α-stable-like processes where φ(r) = rα, condition (1.3) corresponds exactly to
0 < α < 2. Some of the key methods used in [CK] were inspired by a previous
work [BL] on symmetric random walks with stable-like long range jumps on integer
lattice Zd. See [BBK2, MS1] for related works on long range random walks on
graphs.

The notion of d-set arises in the theory of function spaces and in fractal ge-
ometry. Geometrically, self-similar sets are typical examples of d-sets. There are
many self-similar fractals on which there exist sub-diffusive processes with walk di-
mension dw > 2 (that is, diffusion processes with scaling relation time ≈ spacedw).
For example, the walk dimension of Brownian motions on the Sierpinski gasket
in Rn (n ≥ 2) is log(n + 3)/ log 2; see [B]. A direct calculation shows that the
β-subordination of the sub-diffusive processes on these fractals are jump processes
whose Dirichlet forms (E ,F) are of the form given above with α = βdw in (1.1),
and their transition density functions have two-sided estimates (1.2). Note that as
β ∈ (0, 1), α ∈ (0, dw) so α can be larger than 2. When α > 2, the approach in
[CK] ceases to work as it is hopeless to construct good cut-off functions a priori in
this case. A long standing open problem in the field was whether the estimate (1.2)
holds for generic symmetric jump processes having jumping kernel of the form (1.1)
for any α ∈ (0, dw). A related open question was to characterize the heat kernel
estimate (1.2) by conditions that are stable under “rough isometries”.

These open problems have recently been solved affirmatively in [CKW1]. Ac-
tually, in [CKW1] we obtained stability of two-sided heat kernel estimates for
mixture of symmetric stable-like jump processes on general metric measure spaces
that satisfy the volume doubling condition and the reverse volume doubling condi-
tion.

In details, let (M,ρ, µ) be a locally compact separable metric space, and µ a
positive Radon measure on M with full support. In what follows, we will refer to
such a triple (M,ρ, µ) as a metric measure space. We assume µ(M) =∞. Denote
the open ball centered at x with radius r by B(x, r) and µ(B(x, r)) by V (x, r).

Definition 1.1. (i) We say that (M,ρ, µ) satisfies the volume doubling property
(VD), if there exists a constant Cµ ≥ 1 such that

V (x, 2r) ≤ CµV (x, r) for all x ∈M and r > 0.

(ii) We say that (M,ρ, µ) satisfies the reverse volume doubling property (RVD),
if there exist constants lµ, cµ > 1 such that

V (x, lµr) ≥ cµV (x, r) for all x ∈M and r > 0.
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We remark that under RVD, µ(M) =∞ if and only if M has infinite diameter.
We also note that when M is connected and unbounded, VD implies RVD.

We consider the following regular non-local Dirichlet form (E ,F) on L2(M ;µ):

E(f, g) =

∫
M×M\diag

(f(x)− f(y)(g(x)− g(y)) J(dx, dy), f, g ∈ F , (1.4)

where J(dx, dy) is a symmetric Radon measure on M × M \ diag. Associated
with the regular Dirichlet form (E ,F) on L2(M ;µ) is a µ-symmetric Hunt process
X = {Xt, t ≥ 0; Px, x ∈ M \ N}. Here N ⊂ M is a properly exceptional set for
(E ,F) in the sense that N is nearly Borel, µ(N ) = 0 and M∂ \ N is X-invariant.
This Hunt process is unique up to a properly exceptional set; see [FOT, Theorem
4.2.8]. Since (E ,F) only has non-local part, the associated Hunt process X is of
the pure jump type. We fix X and N , and write M0 = M \ N . Let {Pt}t≥0

be the transition semigroup of the Markov process X (or of the Dirichlet form
(E ,F) on L2(M ;µ)). The transition density function for the Markov process X is
a measurable function p(t, x, y) : M0 ×M0 → (0,∞) for every t > 0, such that

Ex[f(Xt)] = Ptf(x) =

∫
p(t, x, y)f(y)µ(dy) for all x ∈M0, f ∈ L∞(M ;µ),

(1.5)

p(t, x, y) = p(t, y, x) for all t > 0, x, y ∈M0,

p(s+ t, x, z) =

∫
p(s, x, y)p(t, y, z)µ(dy) for all s, t > 0, x, z ∈M0.

In literature, p(t, x, y) is also called the heat kernel of the process X or of the
Dirichlet form (E ,F) on L2(M ;µ).

Let R+ := [0,∞), and φ : R+ → R+ be a strictly increasing continuous function
with φ(0) = 0 and φ(1) = 1 so that that there exist constants c1, c2 > 0 and
β2 ≥ β1 > 0 such that

c1

(R
r

)β1

≤ φ(R)

φ(r)
≤ c2

(R
r

)β2

for all 0 < r ≤ R.

In [CKW1, Theorem 1.13], the following are shown to be equivalent under the VD
and RVD condition:

(i) there exists a heat kernel p(t, x, y) associated with (E ,F), which has the
following estimates for all t > 0 and all x, y ∈M ,

p(t, x, y) ' 1

V (x, φ−1(t))
∧ t

V (x, ρ(x, y))φ(ρ(x, y))
. (1.6)

Here and in what follows, φ−1(t) is the inverse function of the strictly
increasing function t 7→ φ(t).

(ii) Jφ and a cut-off Sobolev inequality CSJ(φ) hold, where Jφ means that
there exists a non-negative symmetric function J(x, y) so that for µ× µ-
almost all x, y ∈M ,

J(dx, dy) = J(x, y)µ(dx)µ(dy), (1.7)

and

J(x, y) ' 1

V (x, ρ(x, y))φ(ρ(x, y))
. (1.8)

See Definition 2.3 below for the definition of CSJ(φ).
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(iii) Jφ and Eφ hold, where Eφ means that

ExτB(x,r) ' φ(r) for all x ∈M0 and r > 0, (1.9)

where τA = inf{t > 0 : Xt /∈ A}.
We emphasize that in the above result from [CKW1, Theorem 1.13], the underlying
metric measure space (M,ρ, µ) is only assumed to satisfy the general VD and RVD.
Neither uniform VD nor uniform RVD property is assumed. We do not assume M
to be connected nor (M,ρ) to be geodesic. See related works for symmetric stable-
like processes with metric measure spaces satisfying Ahlfors d-set condition [GHH],
and for random walks with α-stable-like long range jumps on connected locally finite
infinite graphs satisfying global Ahlfors d-set condition [MS2].

We point out that, for symmetric jump processes associated with non-local
Dirichlet forms (E ,F) above, parabolic Harnack inequalities are strictly weaker
than the two-sided heat kernel estimates. It is established in [CKW2, Corollary
1.21] that the parabolic Harnack inequalities together with a suitable lower bound
for the jumping kernel is equivalent to the two-sided heat kernel estimates. (See
[BBK2, Theorem 1.4] for the corresponding result for random walks with α-stable-
like long range jumps with 0 < α < 2 on graphs satisfying the global Ahlfors d-set
condition.) This is in contrast to symmetric diffusion processes, where parabolic
Harnack inequalities are equivalent to two-sided heat kernel estimates. The reader
is referred to [CKW2] for the stability results of parabolic Harnack inequalities for
symmetric pure jump Dirichlet forms, and to [CKW3] for various characterizations
of elliptic Harnack inequalities for symmetric pure jump processes.

1.2. Motivating example: beyond mixture of stable-like processes.
Consider the following example.

Example 1.2. Let (M,ρ, µ) be a metric measure space such that the volume
doubling (VD) condition holds. Suppose X := {Xt, t ≥ 0;Px, x ∈M} is a con-
servative symmetric diffusion process on M that has a transition density function
q(t, x, y) with respect to µ such that

q(t, x, y) � 1

V (x, t1/β)
exp

(
−c
(
ρ(x, y)β

t

)1/(1−β)
)
, t > 0, x, y ∈M (1.10)

for some β ≥ 2. Here and in what follows, for two positive functions f(t, z) and
g(t, z), notation f � g means that there exist positive constants ci (i = 1, · · · , 4)
such that

c1f(c2t, z) ≤ g(t, z) ≤ c3f(c4t, z).

For example, a celebrate result due to Aronson [Ar] says that a symmetric d-
iffusion process X on Rd associated with the uniformly elliptic operator L =∑d
i,j=1

∂
∂xi

(
aij(x) ∂

∂xj

)
has the two-sided estimates (1.10) with β = 2, V (x, r) ' rd

and ρ(x, y) = |x−y| being the Euclidean metric. This is also the case for Brownian
motions on the Sierpinski gasket with β = log(n + 3)/ log 2 in (1.10), or on the
Sierpinski carpet in Rn (n ≥ 2) with β > 2 in (1.10); see [B, Ku].

Let S := (St)t≥0 be a subordinator with S0 = 0 that is independent of X and
has the Laplace exponent

f(r) =

∫ ∞
0

(1− e−rs)ν(s) ds, r > 0,
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where

ν(s) =
1

s1+γ1
1{0<s≤1} +

1

s1+γ2
1{s>1}

with γ1 ∈ (0, 1) and γ2 ∈ (1,∞). Let Y := (Yt)t≥0 be the subordinate process
defined by Yt := XSt for all t > 0. For a set A ⊂ M , define the exit time τYA =
inf{t > 0 : Yt /∈ A}. The subordinate process Y has the following properties which
are established in [CKW5, Example 1.1].

Assertion 1. The subordinated process Y is a symmetric jump process such
that

(i) its jumping kernel J(dx, dy) has a density with respect to the product
measure µ× µ on M ×M \ diag given by

J(x, y) '

{
1

V (x,ρ(x,y))ρ(x,y)α1
, ρ(x, y) ≤ 1,

1
V (x,ρ(x,y))ρ(x,y)α2

, ρ(x, y) > 1,
(1.11)

where α1 = γ1β and α2 = γ2β, and diag stands for the diagonal of M×M .
(ii) for any x0 ∈M and r > 0,

Ex
[
τYB(x0,r)

]
' rα1 ∨ rβ . (1.12)

Assertion 2. The process Y has a jointly continuous transition density func-
tion p(t, x, y) with respect to the measure µ on M so that

p(t, x, y) ' 1

V (x, t1/α1)
∧ (tJ(x, y)) for t ≤ 1

and

c1

(
1

V (x, t1/β)
1{ρ(x,y)≤t1/β} +

t

V (x, ρ(x, y))ρ(x, y)α2
1{ρ(x,y)>t1/β}

)
≤ p(t, x, y) ≤ c2

(
1

V (x, t1/β)
∧ (tJ(x, y) + q(c3t, x, y))

)
for t > 1,

where q(t, x, y) is the transition density function for the diffusion process X of the
form (1.10). If, in addition, (M,ρ, µ) is connected and satisfies the chain condition,
then

p(t, x, y) �

{
1

V (x,t1/α1 )
∧ (tJ(x, y)), t ≤ 1,

1
V (x,t1/β)

∧ (tJ(x, y) + q(t, x, y)) , t > 1.
(1.13)

The first property of Assertion 1 says that the scaling function of jumping kernel
for the process Y is φj(r) := rα1 ∨rα2 with α1 < β < α2, while the second property
of Assertion 1 indicates that the scaling function of the process Y is rα1 ∨ rβ . The
scaling function of the process Y is different from the associated jumping kernel
at large scale (that is, when r > 1). Thus, comparing (1.11)-(1.12) with (1.8)-
(1.9), we can see that the behavior of the symmetric jump process Y in Example
1.2 is different from that of symmetric α1-stable-like or mixed stable-like processes
studied in [CK, CKW1], where the scale functions for large jumps are all assumed
to be less than that for the diffusion processes if there is one (for example, r 7→ r2

in the Euclidean space case). Due to these differences, the process Y above has
two-sided heat kernel estimates (1.13), which is of a different shape from (1.6). In
particular, this may appear surprising at the first glance that in (1.13) there is the
diffusive scaling φc(r) := rβ when r > 1 involved. But it becomes quite reasonable
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if one thinks more about it as the jumping kernel J(dx, dy) of Y has finite second
moment in the case of β = 2. Note that in this example, φj(r) ≥ φc(r) for all r > 0.

The purpose of this article is to summarize our recent work in [CKW1, CKW2,
CKW5] on stable characterizations of heat kernel estimates and parabolic Harnack
inequalities for general symmetric pure jump Dirichlet forms, which include a large
class of symmetric pure jump Dirichlet forms that have light jumping kernel at
infinity and thus possibly exhibit diffusive behaviors.

2. Heat kernel for symmetric pure jump processes

In this section, we survey some recent developments on heat kernel estimates
for general symmetric pure jump processes. The reader is referred to [CKW5] for
further details.

2.1. Two scaling functions. Let (M,ρ, µ) be a metric measure space. We
assume that all balls are relatively compact and assume for simplicity that µ(M) =
∞. We do not assume M to be connected nor (M,ρ) to be geodesic. Throughout
this paper, we always assume that VD holds, and occasionally we also assume RVD
holds. We are concerned with regular non-local Dirichlet forms (E ,F) on L2(M ;µ)
given by (1.4). Let X = {Xt, t ≥ 0; Px, x ∈M \N} be the associated Hunt process.

In order to consider heat kernel estimates for the Dirichlet form (E ,F) above,
that may have light jumping kernel at infinity, we need to introduce two different
scaling functions. Set R+ := [0,∞). Let φj : R+ → R+ and φc : [1,∞) → R+ be
strictly increasing continuous functions with φj(0) = φc(0) = 0, φj(1) = φc(1) = 1
and satisfying that there exist constants c1,φj , c2,φj , c1,φc , c2,φc > 0, β2,φj ≥ β1,φj >
0 and β2,φc ≥ β1,φc > 1 such that

c1,φj

(R
r

)β1,φj ≤ φj(R)

φj(r)
≤ c2,φj

(R
r

)β2,φj

for all 0 < r ≤ R,

c1,φc

(R
r

)β1,φc

≤ φc(R)

φc(r)
≤ c2,φc

(R
r

)β2,φc

for all 0 < r ≤ R.
(2.1)

Since β1,φc > 1, we know from [BGT, Definition, p. 65; Definition, p. 66; Theorem
2.2.4 and its remark, p. 73] that there exists a strictly increasing function φ̄c : R+ →
R+ such that there is a constant c1 ≥ 1 with

c−1
1 φc(r)/r ≤ φ̄c(r) ≤ c1φc(r)/r for all r > 0. (2.2)

Clearly, by (2.1) and (2.2), there exist constants c1,φ̄c , c2,φ̄c > 0 such that

c1,φ̄c

(R
r

)β1,φc−1

≤ φ̄c(R)

φ̄c(r)
≤ c2,φ̄c

(R
r

)β2,φc−1

for all 0 < r ≤ R.

Define

β∗ := sup

{
β > 0 : there is a constant c∗ > 0 so that φj(R)/φj(r) ≥ c∗(R/r)β

for 0 < r < R ≤ 1

}
,
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and

β∗ := sup

{
β > 0 : there is a contant c∗ > 0 so that φj(R)/φj(r) ≥ c∗(R/r)β

for all R > r ≥ 1

}
.

Throughout this paper, we assume that there is a constant c0 ≥ 1 so that

φc(r) ≤ c0φj(r) on [0, 1] if β∗ > 1 and φc(r) ≤ c0φj(r) on (1,∞) if β∗ > 1. (2.3)

We point out that, by (2.1) with β1,φc > 1, φc is not comparable to φj on [0, 1]
when β∗ ≤ 1, and φc is not comparable to φj on [1,∞) when β∗ ≤ 1.

Roughly speaking, the function φj plays the role of the scaling function in the
jumping kernel; while φc is a scale function that should be intrinsically determined
by φj and the metric measure space (M,ρ, µ) which will possibly appear in the
expression of heat kernel estimates. However, we do not have a universal formula
for φc. For example, when the state space M (such as Rd or a nice fractal) has a
nice diffusion process, φc can be the scaling function of the diffusion in some cases
but can also be a different scale function in some other cases; see Examples 1.2 and
4.1. In some cases, φc can just be φj on a part or the whole of [0,∞). To cover a
wide spectrum of scenarios, in the formulation and characterization we allow φc to
be any function that satisfies conditions (2.1) and (2.3).

Given φc and φj as above, we set

φ(r) :=

{
φj(r)1{β∗≤1} + φc(r)1{β∗>1} for 0 < r ≤ 1,

φj(r)1{β∗≤1} + φc(r)1{β∗>1} for r > 1.
(2.4)

In view of the assumptions above, φ is strictly increasing on R+ such that φ(0) = 0,
φ(1) = 1 and there exist constants c1,φ, c2,φ > 0 so that

c1,φ

(R
r

)β1,φ

≤ φ(R)

φ(r)
≤ c2,φ

(R
r

)β2,φ

for all 0 < r ≤ R,

where β1,φ = β1,φc ∧ β1,φj and β2,φ = β2,φc ∨ β2,φj . Clearly, we have by (2.3) that

φ(r) ≤ c0φj(r) for every r ≥ 0.

Denote by φ−1
j (t), φ−1

c (t) and φ̄−1
c (t) the inverse functions of the strictly increasing

functions t 7→ φj(t), t 7→ φc(t) and t 7→ φ̄c(t), respectively. Then the inverse
function φ−1 of φ is given by

φ−1(r) :=

{
φ−1
j (r)1{β∗≤1} + φ−1

c (r)1{β∗>1} for 0 < r ≤ 1,

φ−1
j (r)1{β∗≤1} + φ−1

c (r)1{β∗>1} for r > 1.

Throughout this paper, we will fix the notations for these functions φc, φj , φ and
φ̄c. In particular, as we will see from the results below, φ is the “true” scaling
function for the process X. For example, φ(r) = rα1 ∨ rβ for the process Y in
Example 1.2, and the scaling function for its jumping kernel is φj(r) = rα1 ∨ rα2 ,
where α1 < β < α2.
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2.2. Formulas for heat kernel estimates. In this subsection, we present
formulas of heat kernel estimates for general symmetric pure jump processes. As
we will see, the processes will enjoy heat kernel estimates with different t forms
that the scaling functions φc, φj and φ̄c are fully or partly involved, according to
different ranges of the indexes β∗ and β∗.

Recall that the function φ̄c(r) is a strictly increasing function satisfying (2.2).
For any t > 0 and x, y ∈M0, set

p(j)(t, x, y) :=
1

V (x, φ−1
j (t))

∧ t

V (x, ρ(x, y))φj(ρ(x, y))
(2.5)

and

p(c)(t, x, y) :=
1

V (x, φ−1
c (t))

exp

(
− ρ(x, y)

φ̄−1
c (t/ρ(x, y))

)
. (2.6)

Here, p(j)(t, x, y) follows from two-sided heat kernel estimates for mixture of sym-
metric stable-like processes on metric measure space; see (1.6); while p(c)(t, x, y)
is partly motivated by two-sided heat kernel estimates for strongly local Dirichlet
forms, see [GT, HK].

Definition 2.1. (i) We say that HK(φj , φc) holds if there exists a heat
kernel p(t, x, y) of the semigroup {Pt} associated with (E ,F), which has
the following estimates for all x, y ∈M0,

p(t, x, y) �



{
p(j)(t, x, y) if β∗ ≤ 1

1
V (x,φ−1

c (t))
∧
(
p(c)(t, x, y) + p(j)(t, x, y)

))
if β∗ > 1

for t ≤ 1,{
p(j)(t, x, y) if β∗ ≤ 1

1
V (x,φ−1

c (t))
∧
(
p(c)(t, x, y) + p(j)(t, x, y)

))
if β∗ > 1

for t > 1.

(2.7)
(ii) We say HK−(φj , φc) holds if the upper bound in (2.7) holds but the lower

bound is replaced by the following statement: there are constants c1, c2 >
0 so that

p(t, x, y) ≥ c1

{
1

V (x,φ−1(t)) , ρ(x, y) ≤ c2φ−1(t),
t

V (x,ρ(x,y))φj(ρ(x,y)) , ρ(x, y) > c2φ
−1(t).

(iii) We say UHK(φj , φc) holds if the upper bound in (2.7) holds.

The scale function φc plays a role in the definitions of HK(φj , φc) and HK−(φj , φc)
only for t ≤ 1 when β∗ > 1 and for t > 1 when β∗ > 1. The cut-off time 1 here
is not important – it can be replaced by any fixed constant T > 0. Further-
more, it follows from Theorem 3.3 below that HK−(φj , φc) (and so HK(φj , φc)) is
stronger than PHI(φ), which in turn yields the Hölder regularity of parabolic func-
tions; see the proof of [CKW4, Theorem 1.17]. In particular, this implies that if
HK−(φj , φc) (respectively, HK(φj , φc)) holds, then it can be strengthened to hold
for all x, y ∈M , and consequently the Hunt process X can be refined to start from
every point in M .

We note that the expression of HK(φj , φc) takes different form depending on
whether β∗ ≤ 1 (respectively, β∗ ≤ 1) or not. This is because when β∗ > 1
(respectively, β∗ > 1), the heat kernel estimate may involve another function φc
that is intrinsically determined by φj but we do not have a generic formula for



10 ZHEN-QING CHEN, TAKASHI KUMAGAI, AND JIAN WANG

it under our general setting. However it does not necessarily mean that the heat
kernel estimates for p(t, x, y) has a phase transition exactly at β∗ = 1 or β∗ = 1.
For example, suppose (M,ρ, µ) is a connected metric measure space satisfying the
chain condition on which there is a symmetric diffusion process enjoying the heat
kernel estimate (1.10) with β > 1 as in Example 1.2. Consider a symmetric pure
jump process Y on this space whose jumping density has bounds (1.11) with α1 < β
and α2 > 0. Clearly, β∗ = α1 and β∗ = α2. When α2 < β, the transition density
function p(t, x, y) of Y has estimates (2.5) with φj(r) = rα11{0<r≤1} + rα21{r>1}
as in [CKW1], whereas for α2 > β, p(t, x, y) satisfies (1.13) as in Example 1.2.
Hence for this example, phase transition for the expression of heat kernel estimates
for p(t, x, y) occurs at α2 = β.

2.3. Jumping kernel and functional inequalities. To state our stable
characterizations of heat kernel estimates for general symmetric pure jump pro-
cesses, we need four definitions.

Definition 2.2. Let ψ : R+ → R+. We say Jψ holds, if there exists a non-
negative symmetric function J(x, y) so that (1.7) is satisfied, and (1.8) holds with
ψ in place of φ for all x, y ∈M ; that is,

c1
V (x, ρ(x, y))ψ(ρ(x, y))

≤ J(x, y) ≤ c2
V (x, ρ(x, y))ψ(ρ(x, y))

. (2.8)

We say that Jψ,≤ (resp. Jψ,≥) if (1.7) holds and the upper bound (resp. lower
bound) in (2.8) holds.

Note that, since φ(r) ≤ c0φj(r) for all r > 0, Jφj ,≤ implies Jφ,≤; that is, Jφ,≤
is weaker than Jφj ,≤.

Let U ⊂ V be open sets of M with U ⊂ U ⊂ V . We say a non-negative
bounded measurable function ϕ is a cut-off function for U ⊂ V , if ϕ = 1 on U ,
ϕ = 0 on V c and 0 ≤ ϕ ≤ 1 on M . For f, g ∈ F , we define the carré du-Champ
operator Γ(f, g) for the symmetric pure jump Dirichlet form (E ,F) by

Γ(f, g)(dx) =

∫
y∈M

(f(x)− f(y))(g(x)− g(y)) J(dx, dy).

Clearly E(f, g) = Γ(f, g)(M). We now introduce the following cut-off Sobolev
inequality CSJ(φ) that controls the energy of cut-off functions.

Definition 2.3. Let Fb = F∩L∞(M,µ). We say that condition CSJ(φ) holds,
if there exist constants C0 ∈ (0, 1] and C1, C2 > 0 such that for every 0 < r ≤ R,
almost all x0 ∈ M and any f ∈ F , there exists a cut-off function ϕ ∈ Fb for
B(x0, R) ⊂ B(x0, R+ r) such that∫

B(x0,R+(1+C0)r)

f2 dΓ(ϕ,ϕ)

≤ C1

∫
U×U∗

(f(x)− f(y))2 J(dx, dy) +
C2

φ(r)

∫
B(x0,R+(1+C0)r)

f2 dµ,

(2.9)

where U = B(x0, R+r)\B(x0, R) and U∗ = B(x0, R+(1+C0)r)\B(x0, R−C0r).

Remark 2.4. (i) CSJ(φ) for symmetric pure jump Dirichlet forms is first
introduced in [CKW1] as a counterpart of CSA(φ) for strongly local
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Dirichlet forms (see [AB, BB, BBK1]). A similar condition is called con-
dition (AB) in [GHH] for the case φ(r) = rα. As pointed out in [CKW1,
Remark 1.6(ii)], the main difference between CSJ(φ) and CSA(φ) is that
the integrals in the left hand side and in the second term of the right hand
side of the inequality (2.9) are over B(x0, R + (1 + C0)r) instead of over
B(x0, R + r) in [AB]. Note that the integral over B(x0, R + r)c is zero
in the left hand side of (2.9) for the case of strongly local Dirichlet forms.
As we see from the approach of [CKW1] in the study of stability of heat
kernel estimates for symmetric mixed stable-like processes, it is important
to enlarge the ball B(x0, R + r) and integrate over B(x0, R + (1 + C0)r)
rather than over B(x0, R+ r).

(ii) Denote by Floc the space of functions locally in F ; that is, f ∈ Floc if and
only if for any relatively compact open set U ⊂M there exists g ∈ F such
that f = g µ-a.e. on U . Since each ball is relatively compact and (2.9)
uses the property of f on B(x0, R+ (1 +C0)r) only, CSJ(φ) also holds for
any f ∈ Floc.

We next introduce the Faber-Krahn inequality and the (weak) Poincaré in-
equality.

Definition 2.5. We say the MMD space (M,ρ, µ, E) satisfies the Faber-Krahn
inequality FK(φ) if there exist positive constants C and p such that for any ball
B(x, r) and any open set D ⊂ B(x, r),

λ1(D) ≥ C

φ(r)
(V (x, r)/µ(D))p,

where λ1(D) = inf {E(f, f) : f ∈ FD with ‖f‖2 = 1} and FD is defined to be the√
E(·, ·) + ‖ · ‖22-closure in F of F ∩ Cc(D).

Definition 2.6. We say that the (weak) Poincaré inequality PI(φ) holds if
there exist constants C > 0 and κ ≥ 1 such that for any ball Br = B(x, r) with
x ∈M and for any f ∈ Fb,∫

Br

(f − fBr )
2 dµ ≤ Cφ(r)

∫
Bκr×Bκr

(f(y)− f(x))2 J(dx, dy),

where fBr = 1
µ(Br)

∫
Br
f dµ is the average value of f on Br.

2.4. Stable characterizations of two-sided heat kernel estimates. With
the notations above, we can now state the following stable characterizations of two-
sided heat kernel estimates and upper bounds of heat kernel for general symmetric
pure jump process from [CKW5].

Theorem 2.7. Assume that the metric measure space (M,ρ, µ) satisfies VD
and RVD, and the functions φc and φj satisfy (2.1) and (2.3). Let φ(r) be defined
by (2.4). The following are equivalent.

(1) HK−(φj , φc).
(2) PI(φ), Jφj and CSJ(φ).

If, in additional, (M,ρ, µ) is connected and satisfies the chain condition, then each
assertion above is equivalent to

(3) HK(φj , φc).
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We refer the reader to [CKW5, Theorem 1.11] for more equivalent characteri-
zations of HK−(φj , φc) and HK(φj , φc). We emphasize again that the connectedness
and the chain condition of the underlying metric measure space (M,ρ, µ) are only
used to derive optimal lower bounds off-diagonal estimates for heat kernel when
the time is small (i.e., from HK−(φj , φc) to HK(φj , φc)), while for the equivalence
between (1) and (2) in the result above, the metric measure space (M,ρ, µ) is only
assumed to satisfy the general VD and RVD; that is, we do not assume M to be
connected nor (M,ρ) to be geodesic. (In fact, (2) =⇒ (1) in Theorem 2.7 holds true
under VD and (2.1), without assuming RVD). Furthermore, we do not assume the
uniform comparability of volume of balls; that is, we do not assume the existence
of a non-decreasing function V on [0,∞) with V (0) = 0 so that µ(B(x, r)) � V (r)
for all x ∈M and r > 0.

We also have the following characterizations for UHK(φj , φc) (see [CKW5,
Theorem 1.12] for more equivalent characterizations). In the following, we say
(E ,F) on L2(M ;µ) is conservative if its associated Hunt process X has infinite
lifetime. This is equivalent to Pt1 = 1 on M0 for every t > 0. It follows from
[CKW1, Proposition 3.1] that any equivalent statement of Theorem 2.7 implies
that the process X is conservative. We also point out that UHK(φj , φc) alone does
not imply the conservativeness of the associated Dirichlet form (E ,F) (see [CKW1,
Proposition 3.1 and Remark 3.2] for more details).

Theorem 2.8. Assume that the metric measure space (M,ρ, µ) satisfies VD
and RVD, and that the functions φc and φj satisfy (2.1) and (2.3). Let φ(r) be
defined by (2.4). Then the following are equivalent:

(1) UHK(φj , φc) and (E ,F) on L2(M ;µ) is conservative.

(2) FK(φ), Jφj ,≤ and CSJ(φ).

We emphasize that the above two theorems are equivalent characterizations
and stability results. It is possible that none of the statements hold with a bad
selection of φc.

2.5. Further remarks on Theorems 2.7 and 2.8. In this subsection, we
make further comments on the formulations of HK−(φj , φc) and HK(φj , φc), and
discuss relations of the main results above (Theorems 2.7 and 2.8) to those in the
literature. Recall that the function φ is defined by (2.4) and p(j)(t, x, y), p(c)(t, x, y)
are defined as in (2.5) and (2.6).

Remark 2.9. (i) By simple calculations, we have

p(c)(t, x, y) � 1

V (x, φ−1
c (t))

∧ t

V (x, ρ(x, y))φc(ρ(x, y))
on (0,∞)×M0 ×M0,

where f � g means that there exists a constant c > 0 such that f(x) ≤
cg(x) for the specified range of x. Hence, when β∗ > 1 and φc = φj on
[1,∞), it holds that

p(c)(t, x, y) � 1

V (x, φ−1
j (t))

∧ t

V (x, ρ(x, y))φj(ρ(x, y))
on (1,∞)×M0 ×M0.

Consequently, in this case we have,

1

V (x, φ−1
c (t))

∧
(
p(c)(t, x, y) + p(j)(t, x, y)

)
� p(j)(t, x, y) on (1,∞)×M0 ×M0.
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Similarly, one can check that in the case of β∗ > 1 and φc = φj on [0, 1],

1

V (x, φ−1
c (t))

∧
(
p(c)(t, x, y) + p(j)(t, x, y)

)
� p(j)(t, x, y) on (0, 1]×M0 ×M0.

Therefore, when φ = φj on [0,∞) (that is, when φc = φj on [0, 1]
if β∗ > 1 and φc = φj on (1,∞) if β∗ > 1), HK(φj , φc) is just the heat

kernel estimate p(j)(t, x, y). Thus, in this case, Theorems 2.7 and 2.8 are
essentially the main results (Theorems 1.13 and 1.15) of [CKW1]. We
note that by the proof of [CKW1, Lemma 4.1], Jφj ,≥ implies PI(φj) so
in the case of φ = φj on [0,∞), we can drop condition PI(φ) from the
statement of Theorem 2.7.

(ii) When φ(r) = φc(r) on [0,∞) (that is, when β∗ ∧ β∗ > 1, and φc(r) is a
strictly increasing function satisfying (2.1) and (2.3)), HK−(φj , φc) and
HK(φj , φc) are just HK(Φ, ψ) and SHK(Φ, ψ) in [BKKL2, Definition 2.8]
with

ψ = φj and Φ = φc.

In this case, our Theorems 2.7 and 2.8 have also been independently ob-
tained in [BKKL2, Theorem 2.14, Corollary 2.15, Theorem 2.17 and
Corollary 2.18].

(iii) When φ(r) = φc(r)1[0,1] + φj(r)1(1,∞) (that is, when β∗ > 1 and either
β∗ ≤ 1 or β∗ > 1 with φc(r) = φj(r) for all r ∈ [1,∞)), HK(φj , φc) is
reduced into

p(t, x, y) �

{
1

V (x,φ−1
c (t))

∧
(
p(c)(t, x, y) + p(j)(t, x, y)

))
, 0 < t ≤ 1,

p(j)(t, x, y), t > 1.
(2.10)

In this case HK(φj , φc) is of the same form as that of HK(φc, φj) in
[CKW4] for symmetric diffusions with jumps, or equivalent, for sym-
metric Dirichlet forms that contain both the strongly local part and the
pure jump part; see [CKW4, Definition 1.11 and Remark 1.12] for detail-
s. However, there are differences between them. In [CKW4] the function
φc in HK(φc, φj) is the scaling function of the diffusion (i.e. the strongly
local part of Dirichlet forms), while in the present paper the function φc in
HK(φj , φc) is determined by φj and the underlying metric measure space
(M,ρ, µ).

In Remark 2.9, we have discussed the form of HK(φj , φc) for the cases of φ(r) =
φj(r) on [0,∞), φ(r) = φc(r) on [0,∞), and φ(r) = φc(r)1[0,1] + φj(r)1(1,∞),
respectively. We now discuss the remaining case of φ(r).

Remark 2.10. This remark is concerned with the case that φ(r) = φj(r)1[0,1]+
φc(r)1(1,∞). It consists of two subcases of β∗ > 1 where either β∗ ≤ 1 or β∗ > 1
with φc(r) = φj(r) for all r ∈ (0, 1].

(i) In this case, we can rewrite the expression of HK(φj , φc) in the following
way. For 0 < t ≤ 1,

p(t, x, y) ' p(j)(t, x, y) '


1

V (x,φ−1
j (t))

, ρ(x, y) ≤ c1φ−1
j (t),

t
V (x,ρ(x,y))φj(ρ(x,y)) , ρ(x, y) > c1φ

−1
j (t).
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1

1

Figure 1. Dominant term in the heat kernel estimates HK(φj , φc)
for p(t, x, y) for the case in Remark 2.10.

For t > 1,

p(t, x, y) � 1

V (x, φ−1
c (t))

∧
(
p(c)(t, x, y) + p(j)(t, x, y)

)
�


1

V (x,φ−1
c (t))

, ρ(x, y) ≤ c2φ−1
c (t),

t
V (x,ρ(x,y))φj(ρ(x,y)) + 1

V (x,φ−1
c (t))

exp
(
− ρ(x,y)

φ̄−1
c (t/ρ(x,y))

)
, ρ(x, y) > c2φ

−1
c (t).

In particular, for t ∈ (0, 1], the heat kernel estimates HK(φj , φc) are com-
pletely dominated by the jumping kernel for the associated Dirichlet form
(E ,F). For t > 1, we have the following more explicit expression of
HK(φj , φc):

p(t, x, y) �


1

V (x,φ−1
c (t))

, ρ(x, y) ≤ c2φ−1
c (t),

1
V (x,φ−1

c (t))
exp

(
− ρ(x,y)

φ̄−1
c (t/ρ(x,y))

)
, c2φ

−1
c (t) < ρ(x, y) < t∗,

t
V (x,ρ(x,y))φj(ρ(x,y)) , ρ(x, y) ≥ t∗,

where t∗ satisfies

c3φ
−1
c (t) log(β1,φc−1)/β2,φc (φ−1

c (t)/φ−1
j (t)) ≤ t∗

≤ c4φ−1
c (t) log(β2,φc−1)/β1,φc (φ−1

c (t)/φ−1
j (t)),

and β1,φc and β2,φc are given in (2.1). In this case, one can check that
only the information of φc on [1,∞) is actually needed for the expression
of HK(φj , φc) because t/ρ(x, y) ≥ c3 > 0 holds when t > 1 and c2φ

−1
c (t) ≤

ρ(x, y) ≤ t∗. Figure 1 indicates in this case which term is the dominant
one for the estimate of p(t, x, y) in each region.

(ii) The definition of HK(φj , φc) in this case is different from HK(φc, φj) in
[CKW4] for symmetric diffusions with jumps. Denote by the heat ker-
nel by p̄(t, x, y) in the case of symmetric diffusion with jumps. We say
HK(φc, φj) holds if (2.10) holds. Thus the expressions for HK(φj , φc) for
symmetric jump processes with lighter jumping tails and HK(φc, φj) for
symmetric diffusions with jumps are exactly switched over the time in-
terval (0, 1] and (1,∞). The reason for this difference is as follows. For
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diffusions with jumps, due to the heavy tail property of jumps, the be-
haviors of the processes for large time are dominated by the pure jump
part, and the behaviors for small time enjoy the continuous nature from
diffusions as well as some interactions with jumps. For symmetric pure
jump processes with lighter tails considered in this case, the small time
behavior of the processes are controlled by the jumping kernels; however,
since large jumps of the associated process is so light (as a typical exam-
ple, one can consider symmetric jump processes on Rd whose associated
jumping measure has finite second moments), it yields similar long time
estimates as those for diffusions.

(iii) The lower bound in HK−(φj , φc) can be expressed more explicitly; namely,
there are constants c1, c2 > 0 so that

p(t, x, y) ≥ c1


p(j)(t, x, y), 0 < t ≤ 1,

1
V (x,φ−1

c (t))
, t > 1, ρ(x, y) ≤ c2φ−1

c (t),

t
V (x,ρ(x,y))φj(ρ(x,y)) , t > 1, ρ(x, y) > c2φ

−1
c (t).

The next remark is on the formulation and proofs of Theorems 2.7 and 2.8.

Remark 2.11. Motivated by Example 1.2, we start with two scaling functions
φj and φc, which is quite natural. This allows us to treat the cases of 0 < r ≤ 1
and r > 1 separably with possibly different scaling indices. It also allows us to
incorporate the heat kernel formulation considered in [BKKL1, BKKL2]. The
significance of this viewpoint is further illustrated by Example 4.1, where the local
lower scaling index of the scale function φj on (1,∞) is strictly larger than 1, while
the local lower scaling index of the scale function φj on (0, 1) can take any value
in (0, 2). Both Example 1.2 and Example 4.1 are outside the main settings of
[BKKL1, BKKL2].

The most difficult case in the proof of Theorems 2.7 and 2.8 is when φ(r) =
φj(r)1[0,1] + φc(r)1(1,∞); that is, the case discussed in Remark 2.10. On the other
hand, as mentioned in Remark 2.10(ii), the expressions of heat kernel estimates
for the process studied in this case are the same as these for diffusions with jumps
studied in [CKW4] but with time interval t ≤ 1 and t > 1 switched. It turns
out that some ideas and strategies from [CKW4] on diffusions with jumps can be
adapted in this case but there are also new ingredients needed to deal with sym-
metric pure jump processes having light tails in [CKW5]. Our approach can yield
more concise and explicit heat kernel estimate HK(φj , φc) as mentioned in Remark
2.10(i). Furthermore, our approach also gives us the stable characterizations of par-
abolic Harnack inequalities (see Theorem 3.3 below), which are useful as indicated
in Example 4.2.

3. Stability of parabolic Harnack inequalities

Let Z := {Vs, Xs}s≥0 be the space-time process corresponding to X, where
Vs = V0 − s. Denote the law of the space-time process Z starting from (t, x) by
P(t,x). For every open subset D of [0,∞)×M , define τD = inf{s > 0 : Zs /∈ D}.

Definition 3.1. (i) We say that a Borel measurable function u(t, x) on
[0,∞)×M is parabolic (or caloric) on D = (a, b)×B(x0, r) for the process
X if there is a properly exceptional set Nu associated with the process
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X so that for every relatively compact open subset U of D, u(t, x) =
E(t,x)u(ZτU ) for every (t, x) ∈ U ∩ ([0,∞)× (M\Nu)).

(ii) We say that the parabolic Harnack inequality (PHI(φ)) holds for the pro-
cess X, if there exist constants 0 < C1 < C2 < C3 < C4, C5 > 1 and
C6 > 0 such that for every x0 ∈ M , t0 ≥ 0, R > 0 and for every non-
negative function u = u(t, x) on [0,∞)×M that is parabolic on cylinder
Q(t0, x0, φ(C4R), C5R) := (t0, t0 + φ(C4R))×B(x0, C5R),

ess supQ−
u ≤ C6 ess inf Q+

u, (3.1)

where Q− := (t0 + φ(C1R), t0 + φ(C2R)) × B(x0, R) and Q+ := (t0 +
φ(C3R), t0 + φ(C4R))×B(x0, R).

The next definition was introduced in [BBK2] in the setting of graphs, and
then extended in [CKK1] to the general setting of metric measure spaces.

Definition 3.2. We say that UJS holds if there is a symmetric function J(x, y)
so that (1.7) holds, and there is a constant c > 0 such that for any x, y ∈ M and
0 < r ≤ ρ(x, y)/2,

J(x, y) ≤ c

V (x, r)

∫
B(x,r)

J(z, y)µ(dz).

The following result is established in [CKW5, Theorem 1.15], which extends
the corresponding result in [CKW2, Theorem 1.20 and Corollary 1.21] from jump
kernels of mixture stable types to more general jumping kernels. It gives the stable
characterization of parabolic Harnack inequalities, as well as the relation between
parabolic Harnack inequalities and two-sided heat kernel estimates.

Theorem 3.3. Suppose that the metric measure space (M,ρ, µ) satisfies VD
and RVD, and that the functions φc and φj satisfy (2.1) and (2.3). Let φ(r) be
defined by (2.4). Then

PHI(φ)⇐⇒ PI(φ) + Jφ,≤ + CSJ(φ) + UJS.

Consequently,

HK−(φj , φc)⇐⇒ PHI(φ) + Jφj .

If, additionally, the metric measure space (M,ρ, µ) is connected and satisfies the
chain condition, then

HK(φj , φc)⇐⇒ PHI(φ) + Jφj .

Like [CKW2, Theorem 1.20], we can obtain more equivalent statements for
PHI(φ). But we will not go into details here for the sake of space consideration.
We also note that similar to the setting of [CKW2], the proof of Theorem 3.3 is
proved under an additional assumption that the jumping measure J(dx, dy) in the
non-local Dirichlet form (E ,F) in (1.4) is of the form J(dx, dy) = J(x, dy)µ(dx) on
M×M \diag. Under this assumption, it is shown in [CKW2, Proposition 3.3] that
PHI(φ) implies that J(x, dy) is absolutely continuous with respect to the measure
µ(dy) for µ-a.e. x ∈ M and so J(dx, dy) is absolutely continuous with respect to
µ(dx)µ(dy). Recently it is observed in [LM] that the proof of [CKW2, Proposition
3.3] can be refined to show that PHI(φ) always implies that J(dx, dy) is absolutely
continuous with respect to the product measure µ(dx)µ(dy) on M ×M \ diag.
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4. Examples

To illustrate the main results presented above, we give two more examples in
this section. They are taken from Examples 5.2 and 5.3 from [CKW5], where the
reader can find details of the proofs for the assertions below.

The first example shows that for Theorem 2.7, the scale function φc(r) does
not need to be the scaling function corresponding to diffusion processes (e.g. see
Example 1.2) even in the case of the Euclidean space.

Example 4.1. Let M = Rd and µ(dx) = dx. Consider the following jumping
kernel

J(x, y) ' 1

|x− y|dφj(|x− y|)
,

where φj is a strictly increasing continuous function with φj(0) = 0 and φj(1) = 1
so that

(i) there are constants c1,φj , c2,φj > 0 and 0 < β1,φj ≤ β2,φj < 2 such that

c1,φj

(R
r

)β1,φj ≤ φj(R)

φj(r)
≤ c2,φj

(R
r

)β2,φj

for all 0 < r ≤ R ≤ 1; (4.1)

(ii) there are constants c∗1,φj , c
∗
2,φj

> 0 and 1 < β∗1,φj ≤ β
∗
2,φj

<∞ such that

c∗1,φj

(R
r

)β∗
1,φj ≤ φj(R)

φj(r)
≤ c∗2,φj

(R
r

)β∗
2,φj

for all 1 ≤ r ≤ R. (4.2)

Let (E ,F) be the regular symmetric pure jump Dirichlet form on L2(Rd; dx)
having above J(x, y) as its jumping kernel, where F = {f ∈ L2(Rd; dx) : E(f, f) <
∞}. Define

φ(r) := 1[0,1](r)φj(r) + 1(1,∞)(r)φc(r),

where

φc(r) =

{
r2, r ∈ (0, 1],
Φ(r)
Φ(1) , r ∈ [1,∞)

and

Φ(r) =
r2

2
∫ r

0
s/φj(s) ds

, r > 0.

It is shown in [CKW5, Example 5.2] that HK(φj , φc) holds for (E ,F) by Theorem
2.7.

The above assertion improves [BKKL1, Theorem 1.4 and Corollary 1.5], in
which an extra condition that β1,φj > 1 is required. We also note that in this

example, φc(r) does not need to be comparable to the quadratic function r 7→ r2

for all r > 0. Nevertheless, we can treat symmetric pure jump forms with the
growth order of φj(r) not necessarily strictly less than 2, as in [BKKL1]. By
[BGT, Corollaries 2.6.2 and 2.6.4], φc(r) and φj(r) are comparable on [1,∞) if
and only if β∗2,βj < 2, in which case, the heat kernel estimate HK(φj , φc) is reduced

to HK(φj) in [CKW1] (see Remark 2.9(i)). Therefore, the “diffusive scaling”
appears in HK(φj , φc) only when β∗2,φj ≥ 2. For example, when φj(r) = rα ∨ r2 for

all r > 0 with α ∈ (0, 2), we can take

φc(r) := r21{0≤r≤1} +
r2

log(e− 1 + r)
1{r>1}
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and so

φ(r) = rα1{0≤r≤1} +
r2

log(e− 1 + r)
1{r>1}.

It holds that for any t > 1 and x, y ∈ Rd,

p(c)(t, x, y) � 1

V (x, (t log(1 + t))1/2)
exp

(
− ρ(x, y)2

t log(1 + t/ρ(x, y))

)
.

This does not belong to the so-called (sub)-Gaussian estimates. Indeed long time
behavior of the process is super-diffusive, and its heat kernel estimates are “super-
Gaussian”.

Our second example is to illustrate our stable characterization of parabolic Har-
nack inequalities. The assertion of the example below is a counterpart of [CKK1,
Theorem 1.4], which is concerned with a local version of parabolic Harnack inequal-
ities. One can use the assertion below to recover the parabolic Harnack inequalities
for a large class of symmetric jump processes studied in [CKK2].

Example 4.2. Let M = Rd and µ(dx) = dx. Consider a non-negative sym-
metric function J(x, y) on Rd × Rd such that

J(x, y) ' 1

|x− y|dφj(|x− y|)
, |x− y| ≤ 1,

J(x, y) � 1

|x− y|d+2
, |x− y| > 1

and

sup
x∈Rd

∫
{|x−y|≥1}

|x− y|2J(x, y) dy <∞. (4.3)

Here, φj is a strictly increasing continuous function with φj(0) = 0 and φj(1) = 1
so that (4.1) holds with 0 < β1,φj ≤ β2,φj < 2.

Let (E ,F) be the regular symmetric pure jump Dirichlet form on L2(Rd; dx)
having the above J(x, y) as its jumping kernel, where F = {f ∈ L2(Rd; dx) :
E(f, f) <∞}. It can be shown that that PHI(φ) holds with φ(r) = φj(r)1{0≤r≤1}+

r21{r>1}, if and only if UJS holds for the jumping kernel J(x, y) given above.
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