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Abstract

These are supplementary notes for [5]. Theorem 1.3 is a variant of the results in [13] and it
gives a proof of Lemma 3.18 and Theorem 3.21 of [5]. Theorem 1.4 is a variant of Theorem 4.1
in [14] and it gives a proof of Theorem 3.22 of [5].

1 Framework and main results

These notes prove theorems which are used in [5] to prove the uniqueness of Brownian motion on
Sieprinski carpets – see Theorems 4.30 and 4.31 of [5]. Many of these results are due to A. Grigoryan
and A. Telcs, and are due to appear in [13].

Let (X, d) be a connected locally compact complete separable metric space. We assume that the
metric d is geodesic: for each x, y ∈ X there exists a (not necessarily unique) geodesic path γ(x, y)
such that for each z ∈ γ(x, y), we have d(x, z) + d(z, y) = d(x, y). Let µ be a Borel measure on
X such that 0 < µ(B) < ∞ for every ball B in X. We write B(x, r) = {y : d(x, y) < r}, and
V (x, r) = µ(B(x, r)). We also assume that the closure of B(x, r) is compact for all x ∈ X and
0 < r ≤ 1. Since we work on bounded Sierpinski carpets in [5], in what follows we will assume that
X has finite diameter (and for simplicity we take the diameter to be 1), but similar results (with
obvious modifications to the statements and the proofs) hold when the diameter of X is infinite. We
will call such a space a metric measure space, or a MM space.

Now let (E,F) be a regular, strong local Dirichlet form on L2(X, µ): see [8] for details. We denote
by ∆ the corresponding (non-positive) self-adjoint operator; that is, we say h is in the domain of
∆ and ∆h = f if h ∈ F and E(h, g) = −

∫
fg dµ for every g ∈ F . Let {Pt} be the corresponding

semigroup; Pt = et∆. We will often use the notation (f, g) for
∫

fg dµ. (E ,F) is called conservative

(or stochastically complete) if Pt1 = 1 for all t > 0. Throughout the paper, we assume that (E ,F) is
conservative. Since E is regular, E(f, g) can be written in terms of a signed measure Γ(f, g). To be
more precise, for f ∈ F b (the collection F b is the set of functions in F that are essentially bounded)
Γ(f, f) is the unique smooth Borel measure (called the energy measure) on X satisfying

∫

X

g̃dΓ(f, f) = 2E(f, fg) − E(f 2, g), g ∈ F b,

where g̃ is the quasi-continuous modification of g ∈ F . (Recall that u : X → R is called quasi-
continuous if for any ε > 0, there exists an open set G ⊂ X such that Cap(G) < ε and u|X\G is
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continuous. It is known that each u ∈ F admits a quasi-continuous modification ũ – see [8], Theorem
2.1.3.) Throughout the paper, we will abuse notation and take the quasi-continuous modification of
g ∈ F b without writing g̃. We call (X, d, µ, E) a metric measure Dirichlet space, or a MMD space.

Let Y = (Yt, t ≥ 0, P x, x ∈ X} be the Hunt process associated with the Dirichlet form E on
L2(X, µ) – see [8], Theorem 7.2.1. Note that there is an ambiguity of the starting point up to a set
N of zero capacity. (However, such ambiguity can be removed when the process is sufficiently ‘nice’.)
In the following, we write X \ N as X if needed. Since E is strongly local, by [8], Theorem 7.2.2, Y
is a diffusion.

We introduce the following assumptions.

Assumption 1.1 X satisfies volume doubling (VD) if there exists a constant C1 such that

V (x, 2R) ≤ C1V (x, R) for all x ∈ X, 0 ≤ R ≤ 1. (VD)

Let H : [0, 2] → [0,∞) be a strictly increasing function which (for reasons which will be apparent
later) we call the time scaling function. We introduce the following assumption on H:

Assumption 1.2 There exist strictly positive constants C2, . . . C5, and β1 > 1 such that H(1) ∈
[C2, C3], and

(TD) H(2R) ≤ C4H(R) for all 0 < R ≤ 1.

(FTG) H(R)/H(r) ≥ C5(R/r)β1 for all 0 < r < R ≤ 2.

Here (TD) refers to ‘time doubling’ and (FTG) to ‘fast time growth’. It is well-known and easy
to see that (VD), (TD) and (FTG) imply the existence of constants D > 0, β2 ≥ β1 and C6, C7 > 0
such that for x, y ∈ X and 0 < r < R ≤ 2,

V (x, R)

V (y, r)
≤ C6

(
d(x, y) + R

r

)D

, C5

(
R

r

)β1

≤
H(R)

H(r)
≤ C7

(
R

r

)β2

. (1.1)

Note that we can take β2 = log C4/ log 2. Later, we assume H(1) = 1 instead of H(1) ∈ [C2, C3] just
for simplicity of notation.

We now mention various inequalities we will discuss in these notes.

(I) X satisfies the Poincaré inequality (PI(H)) if there exists a constant c2 such that for any ball
B = B(x, R) ⊂ X, 0 < R ≤ 1/3, and f ∈ F ,

∫

B

(f(x) − fB)2dµ(x) ≤ c2H(R)

∫

B

dΓ(f, f). (PI(H))

Here fB = µ(B)−1
∫

B
f(x)dµ(x).

(II) We say a function u is harmonic on a domain D if u ∈ F loc and E(u, g) = 0 for all g ∈ F with
support in D. Here u ∈ F loc if and only if for any relatively compact open set G, there exists a
function w ∈ F such that u = w µ-a.e. on G. See page 117 in [8] for the definition of E(u, g) for
u ∈ F loc when (E,F) is a regular, strong local Dirichlet form. Functions in F are only defined up
to quasi-everywhere equivalence; we use a quasi-continuous modification of u. X satisfies the elliptic

Harnack inequality (EHI) if there exists a constant c3 such that, for any ball B(x, R), whenever u is a
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non-negative harmonic function on B(x, R), R ≤ 1/3, then there is a quasi-continuous modification
ũ of u that satisfies

sup
B(x,R/2)

ũ ≤ c3 inf
B(x,R/2)

ũ. (EHI)

Note that (A.1) in the appendix is the natural definition of elliptic Harnack inequality, but it turns
out (see subsection A.1) that (A.1) implies (EHI).

Note that by a standard argument (see subsection A.1) (EHI) implies that ũ is Hölder continuous.

(III) Let A, B be disjoint subsets of X. We define the effective resistance R(A, B) by

R(A, B)−1 = inf
{∫

X

dΓ(f, f) : f = 0 on A and f = 1 on B, f ∈ F
}

. (1.2)

X satisfies the condition (RES(H)) if there exist constants c1, c2 such that for any x0 ∈ X, 0 ≤ R ≤
1/3,

c1
H(R)

V (x0, R)
≤ R(B(x0, R), B(x0, 2R)c) ≤ c2

H(R)

V (x0, R)
. (RES(H))

(IV) We say X satisfies (HK(H; β1, β2, c0)) if the heat kernel pt(x, y) on X exists and satisfies

c−1
0

V (x, H−1(t))
exp

(
− c0

(H(d(x, y))

t

) 1
β1−1

)
≤ pt(x, y)

≤
c0

V (x, H−1(t))
exp

(
− c−1

0

(H(d(x, y))

t

) 1
β2−1

)
, (1.3)

for all x, y ∈ X and t ∈ (0, 1]. We sometimes refer to the first inequality of (1.3) as (LHK(H)) and
the second inequality of (1.3) as (UHK(H)).
(V) X satisfies the condition (E(H)) if for any x0 ∈ X, 0 ≤ R ≤ 1/3,

c1H(R) ≤ Ex0[τB(x0 ,R)] ≤ c2H(R), (E(H))

where τA = inf{t ≥ 0 : Yt /∈ A}, Yt is the strong Markov process associated to the Dirichlet form
(E ,F), and Ex0 denotes the expectation starting from the point x0. The first inequality in (E(H))
is referred to as (E(H)≥) and the second is referred to as (E(H)≤).

Following the terminology used in number theory, we will say that a constant c which arises in
the conclusion of a theorem is effective if it could in principle be given as an explicit function of
the constants given in the ‘input data’. See the remark after the next theorem for a more explicit
statement.

Our first main theorem (cf. [13, 12]) is the following.

Theorem 1.3 Let (X, d, µ, E,F) be a MMD space. (Note that the assumption includes the facts that
d is geodesic and (E ,F) is conservative.) Let H satisfy Assumption 1.2, and βi be as in (1.1). Then
the following are equivalent, and the constants in each implication are effective:
(a) X satisfies (VD), (EHI) and (RES(H)).
(b) X satisfies (VD), (EHI) and (E(H)).
(c) X satisfies (HK(H, β1, β2, c0)).
The equivalence of the “global” version (i.e. each condition holds for t ∈ (0,∞), R ≥ 0) also holds.
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The statement that the constants in the implication (a) ⇒ (c) are effective means that the
constant c0 in (HK(H, β1, β2, c0)) depends only on the constants C1, . . . , C7, β1, β2 in Assumption
1.1 and 1.2, and the constants c3 in (EHI) and c1, c2 in RES(H).

One can show that if one of the above conditions holds, then there is no ambiguity of the starting
point for the process, i.e. one can take N = ∅.

Since we will only need (a) ⇒ (c) in [5], we will only prove (a) ⇒ (b) and (b) ⇒ (c) We remark
that in the proof of (a) ⇒ (b), we do not need the assumption that H is strictly increasing and
H(1) = 1.

Our second topic is the domains of Dirichlet forms. In the following, we will prove that if a
heat kernel of a regular Dirichlet form satisfies suitable two-sided estimates, then the domain of the
Dirichlet form is the so-called Besov-Lipschitz space. Let

Er(u) =
1

H(r)

∫

X

−

∫

B(x,r)

[u(x) − u(y)]2 µ(dy) µ(dx) (1.4)

for all u ∈ L2(X, µ). Here −
∫

A
. . . µ(dy) := µ(A)−1

∫
A

. . . µ(dy) denotes the normalized integral.
We then have the following, which is a version of the result in [14], Section 4.

Theorem 1.4 Let (X, d, µ, E,F) be a MMD space. Let H : [0, 2] → [0,∞) satisfy Assumption 1.2,
and assume that (HK(H; β1, β2, c0)) holds. Then, for all α > 1 there exist c1(α, β1, β2), c2 > 0 such
that the following holds.

c1(α, β1, β2)E(f) ≤ lim sup
m→∞

Eα−m

(f) ≤ sup
0<r≤1

Er(f) ≤ c2E(f) for f ∈ F . (1.5)

Here Er is the approximating Dirichlet form defined in (1.4). In particular,

F = WH(X) := {u ∈ L2 : sup
0<r≤1

Er(f) < ∞}.

2 Proof of Theorem 1.3

2.1 Proof of Theorem 1.3: (a) ⇒ (b)

In this subsection, we will follow the argument in [4]. Note that we do not use the property that H
is strictly increasing nor that H(1) = 1 in this subsection.

Recall from [8] Section 1.6 the definitions of invariant sets and irreducible Dirichlet forms.

Lemma 2.1 Let X satisfy (EHI). Then E is irreducible.

Proof. Let A be an invariant set, and suppose both µ(A) > 0 and µ(Ac) > 0. Then there exists
a ball B = B(x, R) with µ(A∩B ′) > 0 and µ(Ac ∩B′) > 0, where B′ = B(x, R/2). Since Pt1A = 1A

it follows that u = 1A and v = 1Ac are harmonic on B. So by (EHI) we have

ũ(x) ≤ Cũ(y), x, y ∈ B ′.

Since u > 0 on a set of positive measure in B ′, we have that there exists x ∈ B ′ with ũ(x) > 0; hence
by the (EHI), ũ > 0 on B ′. But as ũ = 1A µ-a.e., we deduce that µ(Ac ∩B′) = 0, a contradiction. �
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Proposition 2.2 Let X satisfy (EHI), and B = B(x, R). Then Gg < ∞ a.e. on B if g ∈ L1
+(B),

where L1
+(B) is the set of non-negative L1-functions on B.

Proof. Consider the Dirichlet form EB with domain FB = {f ∈ F : f |Bc = 0}. Let A = B(x, R/2)
and h(x) = P x(TA < τB). Then h is excessive with respect to EB. If h were constant on B then we
would have h = 1 on B, and the set B would be an invariant set for E . Thus h is non-constant.

So by Ex. (4.22), p. 89 in [7], we deduce that the killed semigroup P B
t is transient. Hence (see

[8] Lemma 1.6.4) we have Gg < ∞ a.e. for any g ∈ L1
+(B, µ). �

Lemma 2.3 Let D be a bounded domain in X. Then (EHI) implies that there exists a density
gD(·, ·) for the Green function which is continuous on (X × X) \ ∆g and gD(x, y) = gD(y, x) for
all x, y ∈ (X × X) \ ∆g, where ∆g is the diagonal. Further, there exists C > 0 such that for any
0 < r ≤ 1/3, if y0, y1 ∈ X satisfy d(y0, y1) ≥ 2r, then

gD(y0, x) ≤ CgD(y0, y) ∀x, y ∈ B(y1, r). (2.1)

Proof. Let x0, x1 ∈ D, Choose r > 0 such that B(xi, 2r) ⊂ D, B(x0, 2r) ∩ B(x1, 2r) = ∅. Write
Bi = B(xi, 2r), B′

i = B(xi, r). Let f, g ∈ F with supports in B ′
0 and B′

1, and
∫

f =
∫

g = 1. Let GD

be the Green operator for the process Y killed on exiting D. By Proposition 2.2 we have GDf < ∞,
GDg < ∞.

Then if u ∈ F with Supp u ⊂ B(x1, 2r),

E(GDf, u) = (f, u) = 0, (2.2)

so GDf is harmonic on B1. Similarly GDg is harmonic on B0. By the (EHI) if x ∈ B′
1, then

GDf(x) ≤ CGDf(y), y ∈ B′
1. (2.3)

Similarly
GDg(x) ≤ CGDg(x0), x ∈ B′

0.

So
GDf(x1) ≤ C(g, GDf) = C(GDg, f) ≤ C2GDg(x0).

Now fix g such that C1 = GDg(x0) < ∞; such a g exists by choosing g ≤ c∗h0, where h0(x) =
P x(TB(x,2r) < τD). Then we have GDf(x1) ≤ c′∗||f ||1 for all f with support in B ′

0. (Note that c∗, c
′
∗

may not be effective, but this does not create a problem later on since we only use these constants
for the existence of the Green kernel.) Therefore the kernel GD(x1, dx) has a density gD(x1, y) on
B′

0. Since (f, GDg) = (GDf, g) for f, g ∈ L2, it follows that gD(x, y) = gD(y, x) µ × µ–a.e.
Now, take y0, y1 ∈ X that satisfy d(y0, y1) ≥ 2r. For any ε > 0 and f ∈ L2 with support in

B(y0, εr), similarly to (2.2) we can show that GDf is harmonic on B(y1, (2− ε)r). Thus, by the same
argument as (2.3), we have

GDf(x) ≤ CGDf(y), x, y ∈ B(y1, r). (2.4)

Now let fn(z) = V (y0, rn)
−11B(y0 ,rn)(z) where εr ≥ rn ↓ 0. Applying (2.4) to fn and take n → ∞, we

obtain (2.1) for µ-a.e. y0. By the usual oscillation argument (see subsection A.1), we can deduce that
gD(x, y) is continuous on (X ×X)\∆g. In particular, gD(x, y) = gD(y, x) for all x, y ∈ (X ×X)\∆g.
We thus obtain (2.1) for all y0 ∈ X. �
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Definition 2.4 (E ,F) satisfies (HG) if there exists a constant c1 > 0 such that for any ball B(x0, R),
0 < R ≤ 1/3, there exists a Green kernel gBR(x0, y) and for any 0 < r ≤ R/2, we have

sup
y/∈B(x0,r)

gBR(x0, y) ≤ c1 inf
y∈B(x0 ,r)

gBR(x0, y). (HG)

Lemma 2.5 (EHI) ⇒ (HG).

Proof. We prove that if d(x0, x) = d(x0, y) = R, and B(x0, 2R) ⊂ D then

C−1
1 gD(x0, y) ≤ gD(x0, x) ≤ C1gD(x0, y). (2.5)

Once (2.5) is proved, then (HG) holds by the maximum principle (which holds for GDf and so for
gD as well). By symmetry it is enough to prove the right hand inequality of (2.5).

Let x′, y′ be the midpoints of γ(x0, x), and γ(x0, y). Thus d(x0, x
′) = d(x0, y

′) = R/2. Clearly we
have d(x′, y) ≥ R/2 and d(x, y′) ≥ R/2.

We now consider two cases.
Case 1. d(x′, y′) ≤ R/3. Let z be the midpoint of γ(x′, y′). Then d(z, x′) ≤ R/6 ≤ R/4. So

applying (2.1) to gD(x0, ·) in B(x′, R/4) ⊂ B(x′, R/2), we deduce that

C−1
2 gD(x0, x

′) ≤ gD(x0, z) ≤ C2gD(x0, x
′).

Now apply (2.1) to gD(x0, ·) in B(x, R/2) ⊂ B(x, R), to deduce that

C−1
2 gD(x0, x) ≤ gD(x0, x

′) ≤ C2gD(x0, x).

Combining these inequalities we deduce that

C−2
2 gD(x0, x) ≤ gD(x0, z) ≤ C2

2gD(x0, x),

and this, with a similar inequality for gD(x0, y), proves (2.5).
Case 2. d(x′, y′) > R/3. Apply (2.1) to gD(y, ·) in B(x0, R/2) ⊂ B(x0, R), to deduce that

C−1
2 gD(y, x′) ≤ gD(y, x0) ≤ C2gD(y, x′). (2.6)

Now look at gD(x′, ·). If z′ is on γ(y′, y) with d(y′, z′) = s ∈ [0, R/2], then as d(x′, y′) > R/3 and
d(x′, y) ≥ R/2, we have d(x′, z′) ≥ max(R/3 − s, s). Hence we deduce d(x′, z′) ≥ R/6. So applying
(2.1) repeatedly to gD(x′, ·) for a chain of balls B(z′, R/12) ⊂ B(z′, R/6) we deduce that

C−6
2 gD(x′, y′) ≤ gD(x′, y) ≤ C6

2gD(x′, y′). (2.7)

So, we obtain from (2.6) and (2.7),

gD(y, x0) ≤ C2gD(y, x′) ≤ C7
2gD(x′, y′), gD(x′, y′) ≤ C6

2gD(y, x′) ≤ C7
2gD(y, x0).

We have similar inequalities relating gD(x, x0) and gD(x′, y′), which proves (2.5). �

Lemma 2.6 Assume that (E ,F) satisfies (EHI) and let 0 < R ≤ 1/3.
1) For any ball BR = B(x0, R) and for any 0 < r ≤ R/2, we have

sup
y/∈B(x0 ,r)

gBR(x0, y) ≥ R(Br, B
c
R) ≥ inf

y∈B(x0,r)
gBR(x0, y). (2.8)
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2) There exist C1, C2 > 0 such that for any ball B(x0, R) and for any 0 < r ≤ R/2, we have

sup
y/∈B(x0,r)

gBR(x0, y) ≤ C1R(Br, B
c
R) ≤ C2 inf

y∈B(x0 ,r)
gBR(x0, y). (2.9)

3) Let Bk = B(x0, 2
kr) for k = 0, 1, · · · , such that 2kr ≤ 1/3. Then, there exist C3, C4 > 0 such that

for any integers 0 ≤ m < n,

sup
y/∈Bm

gBn(x0, y) ≤ C3

n−1∑

k=m

R(Bk, B
c
k+1) ≤ C4 inf

y∈Bm

gBn(x0, y). (2.10)

Proof. First, note that we have (HG) by using Lemma 2.5.
For 1), we modify the proof in Proposition 4.1 in [10]. Let us set

a = sup
y/∈B(x0,r)

gBR(x0, y), b = inf
y∈B(x0,r)

gBR(x0, y),

and for any number c, define
Ac = {x ∈ BR : gBR(x0, x) ≥ c}.

We claim that
Aa ⊂ Br ⊂ Ab. (2.11)

Indeed, gBR(x0, ·) is harmonic in BR \Br, and by the maximum principle, the supremum is attained
on ∂(BR\Br) = ∂BR∩∂Br. Since gBR vanishes on ∂BR, we have a = supy∈∂Br

gBR(x0, y), so Aa ⊂ Br.
Similarly, gBR(x0, ·) is super-harmonic in Br, and by the minimum principle, b = infy∈∂Br

gBR(x0, y),
so Ab ⊃ Br, and (2.11) is obtained. Next, (2.11) implies

Cap(Aa) ≤ Cap(Br) ≤ Cap(Ab),

where Cap is the 0-capacity with respect to (E,FBr
), FBr

= {f ∈ F : f |Bc
R

= 0}. Hence, noting

that Cap(Br) = Cap(Br) = 1/R(Br, B
c
R), (2.8) will follow if we show that for c = a, b,

Cap(Ac) = 1/c. (2.12)

Now recall that for any compact set K,

Cap(K) = sup{µ(K) : µ ∈ S00, Supp µ ⊂ K, Gµ ≤ 1 q.e.},

where S00 = {µ ∈ S0 : µ(X) < ∞, ‖Gµ‖∞ < ∞}, and S0 is the family of all positive Radon measures
of finite energy integrals (see Problem 2.2.2 in [FOT]; there Cap is the 1-capacity, but the 0-capacity
version holds similarly). By the same argument as in Lemma 2.3 we have that gBR(x0, ·) is continuous
on X \ {x0}. This together with the superharmonicity of gBR(x0, ·) shows that Ac is compact. If µ
is the capacitary measure for Ac, it will be supported on ∂Ac because the process has continuous
paths, so

1 = Gµ(x0) =

∫
gBR(x0, y)µ(dy) =

∫

∂Ac

gBR(x0, y)µ(dy) = cµ(Ac).

Here we used the fact gBR(x0, y) = c for y ∈ ∂Ac, which is due to the continuity of gBR(x0, ·). So
µ(Ac) = 1/c and (2.12) is established.

For 2), using (2.8) and (HG), we obtain (2.9).
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For 3), note first that the following holds:

n−1∑

k=m

R(Bk, B
c
k+1) ≤ R(Bm, Bc

n).

This and (2.9) imply the lower bound for inf gBn in (2.10). Next, we know that gBk+1(x, ·)− gBk(x, ·)
is a harmonic function in Bk. Thus,

gBk+1(x, y) − gBk(x, y) ≤ sup
z /∈Bk

gBk+1(x, z) ≤ cR(Bk, Bk+1), ∀y ∈ X, (2.13)

where the first inequality is by the maximum principle and the second inequality is by (2.9). For
y /∈ Bm, by (2.9)

gBm+1(x, y) ≤ c′R(Bm, Bm+1). (2.14)

For such y, adding up (2.14) with (2.13) for m < k < n, we obtain the upper bound of sup gBn in
(2.10). �

Proof of (VD) + (EHI) + (RES(H)) ⇒ (E(H)).

Ex0[τBR
] =

∫
gBR(x0, y)dµ(y) ≥

∫

B(x0,r)

gBR(x0, y)dµ(y) ≥ cR(Br, B
c
R)V (x0, r) ≥ cH(R),

where we used Lemma 2.6 1) in the second inequality and (VD) + (RES(H)) in the last inequality.
Now, for each k ∈ Z, let rk = Mk, Bk = B(x0, rk) and let n0 be the minimum number such that

R < rn0 . Then

Ex0[τBR
] ≤ Ex0[τB(x0 ,rn0 )] =

∫

Bn0

gBn0 (x0, y)dµ(y)

=

n0−1∑

m=−∞

∫

Bm+1\Bm

gBm(x0, y)dµ(y) ≤ c

n0−1∑

m=−∞

( n0−1∑

k=m

R(Bk, B
c
k+1)

)
µ(Bm+1 \ Bm)

= c

n0−1∑

k=−∞

( k∑

m=−∞

µ(Bm+1 \ Bm)
)
R(Bk, B

c
k+1) = c

n0−1∑

k=−∞

µ(Bk+1)R(Bk, B
c
k+1)

≤ c′
n0−1∑

k=−∞

H(rk+1) ≤ c′′H(R)(

∞∑

l=0

M−β1l) ≤ c′′′H(R),

where we used Lemma 2.6 2) in the second inequality and (VD), (RES(H)) and (FTG) in the third
inequality. We thus obtain (E(H)). �

2.2 Proof of (b) ⇒ (c)

In this subsection, we fix a set of capacity zero N (the exceptional set) and write X \N as X. There
is an ambiguity of the starting point when x ∈ N at the beginning, but in the end one sees that one
can take N = ∅ due to the ‘nice’ properties of the process. Later on, we also consider the processes
killed on exiting balls and the exceptional sets may depend on the choice of balls. However, one
needs only a countable number of balls, so the union of the exceptional sets is still an exceptional
set, which we denote by N .
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We first prove (HK(H)) for all x, y ∈ X \N and then use continuity of the heat kernel to deduce
(HK(H)) for all x, y ∈ X (in other words, to show that N = ∅). We first give some inequalities.

pt(x, y) ≤
C1

V (x, H−1(t))
, ∀x, y ∈ X, 0 < t ≤ 1. (DUHK(H))

P x(τB(x,r) ≤ t) ≤ C2 exp
(
− C3

(H(r)

t

) 1
β2−1

)
, ∀x ∈ X, 0 < r ≤ 1/3, 0 < t ≤ 1. (ELD(H))

pt(x, x) ≥
C4

V (x, H−1(t))
, ∀x ∈ X, 0 < t ≤ 1. (DLHK(H))

pt(x, y) ≥
C5

V (x, H−1(t))
, ∀x, y ∈ X, 0 < t ≤ 1 with H(d(x, y)) ≤ C6t. (NLHK(H))

Note that β2 in this subsection (for example in (ELD(H))) is the one in (1.1).
In order to prove (b) ⇒ (c), we first prove the following.

Proposition 2.7 (E(H)) ⇒ (ELD(H)).

To prove this proposition, we first give the following key lemma due to Barlow-Bass (see [1] for the
proof).

Lemma 2.8 Let {ξi} be non-negative random variables. Suppose there exist 0 < p < 1 and a > 0
such that

P (ξi ≤ t|σ(ξ1, · · · , ξi−1)) ≤ p + at, ∀t > 0.

Then,

log P
( n∑

i=1

ξi ≤ t
)
≤ 2

(ant

p

)1/2

− n log
1

p
.

Proof of Proposition 2.7. We first prove that there exists 0 < c1 < 1 and c2 > 0 such that

P x(τB(x,r) ≤ s) ≤ 1 − c1 + c2s/H(r) for all x ∈ X, 0 ≤ s ≤ 1. (2.15)

Indeed, by the Markov property, for each x ∈ X we have

ExτB(x,r) ≤ s + Ex[1{τB(x,r)>s}E
YsτB(x,r)] ≤ s + Ex[1{τB(x,r)>s}E

YsτB(Xs ,2r)]. (2.16)

Applying (E(H)) and (TD), we have

c3H(r) ≤ s + c4H(2r)P x(τB(x,r) > s) = s + c5H(r)(1 − P x(τB(x,r) ≤ s)). (2.17)

Rearranging gives (2.15).
Next, let l ≥ 1, b = r/l, and define stopping times σi, i ≥ 0 by

σ0 = 0, σi+1 = inf{t ≥ σi : d(Yσi
, Yt) ≥ b}.

Let ξi = σi − σi−1, i ≥ 1. Let F t be the filtration generated by {Ys : s ≤ t} and let Gm = Fσm
. We

have by (2.15)
P x(ξi+1 ≤ t|Gi) = P Yσi (τB(Yσi

,b) ≤ t) ≤ p + c2t/H(b),
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where 0 < p < 1. As d(Yσi
, Yσi+1

) = b, we have d(Y0, Yσl
) ≤ r, so that σl =

∑l
i=1 ξi ≤ τB(Y0 ,r). So, by

Lemma 2.8,

log P x(τB(x,r) ≤ t) ≤ 2p−1/2(
c2lt

H(r/l)
)1/2 − l log(1/p) = c6(

lt

H(r/l)
)1/2 − c7l.

Now take l0 ∈ N the largest integer l that satisfies

c7l/2 > c6(
lt

H(r/l)
)1/2. (2.18)

This is equivalent to H(r/l) > c8t/l for some c8 > 0. Note that if H(r) ≤ c8t, then (ELD(H))
clearly holds by taking C2 > 0 large, so we may assume that (2.18) holds for small l ∈ N. Then, by
(1.1),

c9

(H(r)

t

) 1
β2−1

< l0 + 1, and log P x(τB(x,r) ≤ t) ≤ −c7l0/2.

We thus obtain (ELD(H)). �

Corollary 2.9 Assume (E(H)). Then the following holds.
1) For each p > 0, there exists c1 = c1(p) > 0 such that for any x0 ∈ X, 0 ≤ R ≤ 1/3,

Ex0 [(τB(x0,R))
p] ≤ c1H(R)p.

2) There exist c2, c3 > 0 such that for any x0 ∈ X, λ > 0 and 0 ≤ R ≤ 1/3,

Ex0e−λτB(x0,R) ≤ c2 exp(−c3(λH(R))1/β2)

Proof. We first prove the following

P x(τB(x,r) ≥ t) ≤ C1 exp
(
− C2

( t

H(r)

))
, ∀x ∈ X, 0 < r ≤ 1/3, 0 < t ≤ 1. (2.19)

Indeed, by (E(H)), we have

P x(τB(x,r) ≥ c∗H(r)) ≤
Ex[τB(x,r)]

c∗H(r)
≤

1

2
,

by choosing c∗ > 0 large. Iterating and using the strong Markov property, we deduce that P x(τB(x,r) ≥
c∗kH(r)) ≤ 2−k = e−c′k and (2.19) follows easily.

1) is now obtained by computing the expectation using (2.19), and 2) is obtained by computing
the expectation using (ELD(H)). �

Our next goal is to prove the following.

Proposition 2.10 (VD) + (EHI) + (E(H)) ⇒ (DUHK(H)).

To prove this, we will compute higher order resolvents as in [2, Section 6]. We first make some
preparations.
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Lemma 2.11 Assume (VD), (EHI) and (E(H)).
1) There exists c1 > 0 such that if x0 ∈ X, 0 < r ≤ 1/3, and A ⊂ B(x0, r/8), then

Ey
[ ∫ τB(x0 ,r)

0

1A(Ys)ds
]
≤ c1µ(A)

H(r)

V (y, r)
, ∀y ∈ B(x0, 3r/4) \ B(x0, r/4).

2) Let p > 0. There exists c2 = c2(p) > 0 such that if x0 ∈ X, 0 < r ≤ 1/3, and A ⊂ B(x0, r/8),
then

Ey
[ ∫ τB(x0,r)

0

sp1A(Ys)ds
]
≤ c1µ(A)

H(r)1+p

V (y, r)
, ∀y ∈ ∂B(x0, r/2).

Proof. For y ∈ B(x0, 3r/4) \ B(x0, r/8), let

f(y) := Ey
[ ∫ τB(x0,r)

0

1A(Ys)ds
]

=

∫ ∞

0

P y(Y B
s ∈ A)ds,

where Y B
s is the process killed on exiting B := B(x0, r). Then, f is harmonic on B(x0, r)\B(x0, r/8)

and it is 0 on ∂B(x0, r). So, for y ∈ B(x0, 3r/4) \ B(x0, r/4), using (EHI), (VD) and (E(H)),

f(y) ≤
c1

V (y, r/10)

∫

B(y,r/10)

f(z)dµ(z) ≤
c2

V (y, r)

∫

B(x0,r)

f(z)dµ(z)

=
c2

V (y, r)

∫ ∞

0

ds

∫

B

P y(Y B
s ∈ A)dµ(y) =

c2

V (y, r)

∫ ∞

0

ds

∫

A

P z(Y B
s ∈ B)dµ(z)

=
c2

V (y, r)

∫

A

dµ(z)

∫ ∞

0

P z(Y B
s ∈ B)ds =

c2

V (y, r)

∫

A

Ez[τB]dµ(z) ≤
c3µ(A)H(r)

V (y, r)
,

where the symmetry of Y B
s is used in the second equality. This proves 1).

For 2), Let g(y) := Ey[
∫ τB(x0,r)

0
sp1A(Ys)ds] and T = τB(y,r/4). Then, since B(y, r/4) ∩ A = ∅,

g(y) = Ey
[ ∫ τB(x0,r)

T

sp1A(Ys)ds
]

= Ey
[
EYT

[ ∫ τB(x0 ,r)

0

(T + s)p1A(Ys)ds
] ]

≤ c1

(
Ey

[
T pEYT

[ ∫ τB(x0,r)

0

1A(Ys)ds
] ]

+ Ey[g(YT )]
)

≤ c2µ(A)
H(r)1+p

V (y, r)
+ c1E

y[g(YT )], (2.20)

where 1), (VD) and Corollary 2.9 1) are used in the last inequality. Let h(z) = Ez[g(YT )]. Then

h(z) = Ez
[
EYT

[ ∫ τB

0

tp1A(Yt)dt
] ]

= Ez
[ ∫ τB

T

(t − T )p1A(Yt)dt
]
≤ g(z), (2.21)

where τB = τB(x0,r). Also, h(z) is harmonic on B(y, r/4). Thus, using (EHI), (VD) and (2.21), we
have

h(y) ≤
c3

V (y, r)

∫

B(y,r/6)

g(x)dµ(x) =
c3

V (y, r)

∫ ∞

0

tp
∫

B(y,r/6)

P x(Y B
t ∈ A)dt dµ(x)

=
c3

V (y, r)

∫ ∞

0

tp
∫

A

P z(Y B
t ∈ B(y, r/6))dt dµ(z)

≤
c3

V (y, r)

∫

A

dµ(z)

∫ ∞

0

tpP z(τB ≥ t)dt =
c3

V (y, r)
µ(A)Ez[τ p+1

B ] ≤ c4µ(A)
H(r)1+p

V (y, r)
,

where the symmetry of Y B
s is used in the second equality and Corollary 2.9 1) is used in the last

inequality. This together with (2.20) implies 2). �
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Proposition 2.12 Assume (VD), (EHI) and (E(H)). Let p > (β1/D − 1) ∨ 0, where β1, D are
given in (1.1). There exists c1 = c1(p) > 0 such that if x0 ∈ X, λ ≥ 1, and A ⊂ B(x0, H

−1(λ−1)/8),
then

Ex0

[ ∫ ∞

0

1A(Ys)s
pe−λsds

]
≤ c1

µ(A)λ−1−p

V (x0, H−1(λ−1))
.

Proof. First, let Ar := {x ∈ X : d(x, A) < r/4}, τ̂ r
0 = 0 and define inductively

τ̂ r
k = inf{t > τ̂ r

k−1 : d(Yt, Yτ̂r
k−1

) ≥ r and Yt /∈ Ar}, ∀k ∈ N.

Let ξr
k = τ̂ r

k − τ̂ r
k−1. Then, one can easily see

c1H(r) ≤ Ex[ξr
k|σ(ξr

1, · · · ξ
r
i−1)] ≤ c2H(r), ∀k ∈ N, (2.22)

and we can obtain

P x(τ̂ r
k ≤ t) ≤ c1 exp

(
− c2k

(H(r)

t

)1/(β2−1))
, (2.23)

P x(τ̂ r
k ≥ t) ≤ c3 exp

(
− c4

t

kH(r)

)
, (2.24)

where c1, · · · , c4 can be taken independently with k. Indeed, we can obtain (ELD(H)) for each
P (ξr

k ≤ t|σ(ξr
1, · · · ξ

r
k−1)) thanks to (2.22). So, together with the estimate

P x(τ̂ r
k ≤ t) ≤ Πk

i=1P (ξr
i ≤ t|σ(ξr

1, · · · ξ
r
i−1)),

we obtain (2.23). (2.24) can be obtained in the same way as (2.19). Integrating these bounds, we
have for any x0 ∈ X, 0 ≤ R ≤ 1/3,

Ex0 [(τ̂ r
k )p] ≤ c1(kH(R))p, (2.25)

Ex0e−λτ̂r
k ≤ c2 exp(−c3(k

β2−1λH(R))1/β2), (2.26)

similarly to Corollary 2.9, where c1 = c1(p) > 0. Using these estimates, we can obtain the following
for each A ⊂ B(x0, r/8)

E
Yτ̂r

k

[ ∫ τ̂r
1

0

1A(Ys)ds
]

≤ c1µ(A)
H(r)

V (Yτ̂r
k
, r)

≤ c2µ(A)
kDH(r)

V (x0, r)
, (2.27)

E
Yτ̂r

k

[ ∫ τ̂r
1

0

sp1A(Ys)ds
]

≤ c3µ(A)
H(r)1+p

V (Yτ̂r
k
, r)

≤ c4µ(A)
kDH(r)1+p

V (x0, r)
, (2.28)

similarly to Lemma 2.11 where c3 = c3(p), c4 = c4(p) > 0 and D > 0. (Note that these inequalities
are trivial when A ∩ B(Yτ̂r

k
, r) = ∅.) Here in the second inequalities in (2.27) and (2.28), we used

(1.1).
We are now ready to estimate Ex0[

∫ ∞

0
1A(Ys)s

pe−λsds] which we denote by V (A). For each
n ∈ N ∪ {0}, let rn = 2−n and let m0 be such that H(rm0)

−1 ≤ λ < H(rm0+1)
−1. Since λ ≥ 1, such

m0 ∈ N ∪ {0} exists. Let r := rm0 ; then τr = τ̂ r
1 , τ̂ r

k → ∞ as k → ∞ and τrn
→ 0 as n → ∞. Thus,

V (A) =

∞∑

n=m0+1

Ex0

[ ∫ τrn−1

τrn

1A(Ys)s
pe−λsds

]
+

∞∑

k=1

Ex0

[ ∫ τ̂r
k+1

τ̂r
k

1A(Ys)s
pe−λsds

]
=:

∞∑

n=m0+1

Jn +

∞∑

k=1

Lk.
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Using the strong Markov property, (1.1), Corollary 2.9 and Lemma 2.11, we have

Jn = Ex
[
e−λτrn EYτrn

[ ∫ τrn−1

0

1A(Ys)(s + τrn
)pe−λsds

]]

≤ c1

{
Ex

[
e−λτrn τ p

rn
EYτrn

[ ∫ τrn−1

0

1A(Ys)ds
] ]

+ Ex
[
e−λτrn EYτrn

[ ∫ τrn−1

0

1A(Ys)s
pds

] ]}

≤ c2

{
Ex[e−2λτrn ]1/2Ex[τ 2p

rn
]1/2µ(A)

H(rn)

V (x0, rn)
+ Ex[e−λτrn ]µ(A)

H(rn)
1+p

V (x0, rn)

}

≤ c3µ(A)
H(rn)

1+p

V (x0, rn)
exp(−c4(λH(rn))

1/β2). (2.29)

Let β ′ := β1(1 + p) − D which is positive by our choice of p. Then, using (1.1) and (2.29),

∞∑

n=m0+1

Jn ≤ c3µ(A)
∞∑

n=m0+1

H(rn)
1+p

V (x0, rn)
≤ c4µ(A)

H(rm0)
1+p

V (x0, rm0)

∞∑

n=m0+1

2−β′n ≤ c5
µ(A)λ−1−p

V (x0, H−1(λ−1))
.

We can estimate Lk similarly to (2.29) using (2.25), (2.26), (2.27), (2.28), (1.1) and obtain

Lk ≤ c1µ(A)
H(rm0)

1+pkD+p

V (x0, rm0)
exp(−c2k

(β2−1)/β2(λH(rm0))
1/β2).

Since H(rm0)
−1 ≤ λ < H(rm0+1)

−1, we obtain

∞∑

k=1

Lk ≤ c1µ(A)
H(rm0)

1+p

V (x0, rm0)

∞∑

k=1

kD+p exp(−c3k
(β2−1)/β2) ≤ c4

µ(A)λ−1−p

V (x0, H−1(λ−1))
.

We thus obtain the desired result. �

Proof of Proposition 2.10. For a Borel function f , define

Uλ,pf(x) := Ex
[ ∫ ∞

0

f(Ys)s
pe−λsds

]
x ∈ X.

Then, we see from Proposition 2.12 that Uλ,p has a density gλ,p with respect to µ and

gλ,p(x, x) ≤ c1
λ−1−p

V (x, H−1(λ−1))
. (2.30)

Thus, since µ(X) < ∞, we see that Uλ,p is a Hilbert-Schmidt operator and therefore compact, and
Uλ,pL

2 ⊂ L∞. So, gλ,p has the Mercer expansion

gλ,p(x, y) =
∑

i∈N

βi(λ)ϕi(x)ϕi(y),

where {βi(λ)}, {ϕi} are the eigenvalues and the eigenfunctions of Uλ,p. Furthermore {ϕi} forms a
complete orthonormal system of functions in L2 that are also in L∞, the convergence is absolute
and takes place in L∞(X × X). Note that, if we denote the non-negative self-adjoint operator
corresponding to Ys as −∆, then Uλ,p = p! (λI − ∆)−p−1 for each p ∈ N. So, we see that −∆
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has a compact resolvent, and there is a transition density pt(x, y) =
∑

i e
−λitϕi(x)ϕi(y) where λi =

(βi(1)/(p!))−(p+1)−1
− 1. In particular, pt(x, x) is non-increasing for t. Now, since

gλ,p(x, y) =

∫ ∞

0

pt(x, y)tpe−λtdt,

taking λ = t−1 and using (2.30), we have

c1
t1+p

V (x, H−1(t))
≥

∫ ∞

0

ps(x, x)spe−1ds ≥ ctp
∫ t

t/2

ps(x, x)ds ≥ c′tp+1pt(x, x),

and (DUHK(H)) is obtained. �

We are now ready to complete the proof of (b) ⇒ (c).

Proposition 2.13

(VD) + (DUHK(H)) + (EHI) + (E(H)) ⇒ (HK(H)).

This proposition will be proved through several steps.
Step 1: Proof of (V D) + (DUHK(H)) + (ELD(H)) ⇒ (UHK(H)). Here, for simplicity we
will prove (UHK(H)) only for µ-a.e. x, y. One can prove the q.e. results by using the technique in
subsection 2.1 of [6] and argue similarly to subsection 2.2 of [6]. –See also Theorem 6.2 of [13].

Fix x 6= y and t and let r := d(x, y), ε < r/6. For a ∈ X, set Bε(a) = {b ∈ X : d(a, b) < ε}. Let
µ̄x = µ|Bε(x), A1 = {z ∈ X : d(z, x) ≤ d(z, y)} and A2 = X − A1. Then

P µ̄x(Yt ∈ Bε(y)) = P µ̄x(Yt ∈ Bε(y), Y t
2
∈ A1)

+P µ̄x(Yt ∈ Bε(y), Y t
2
∈ A2) ≡ I1 + I2.

Now, letting τ := τB(x,r/2), we have

I2 ≤ P µ̄x

(
Yt ∈ Bε(y), τ <

t

2

)
= Eµ̄x

(
1τ<t/2

∫

Bε(y)

pt−τ (Yτ , w)dµ(w)
)

≤ P µ̄x(τ < t/2) sup
z∈B(x,r/2)∪Bε(y)

pt/2(z, z)µ(Bε(y)).

For z ∈ Bε(x), by (ELD(H)),

P z
(
τB(z,r/3) <

t

2

)
≤ c1 exp

(
− c2

(H(r)

t

) 1
β2−1

)
.

Thus,

I2 ≤ c1

(
sup

z∈B(x,r/2)∪Bε(y)

pt/2(z, z)
)
µ(Bε(x))µ(Bε(y)) exp

(
− c2

(H(r)

t

) 1
β2−1

)
.

For I1, by the symmetry of pt(x, y),

P µ̄x(Yt ∈ Bε(y), Y t
2
∈ A1) = P µ̄y(Yt ∈ Bε(x), Y t

2
∈ A1)

which is bounded in exactly the same way as I2,where x and y are changed. Adding the bounds for
I1 and I2,

P µ̄x(Yt ∈ Bε(y)) ≤ c1

(
sup

z∈B(x,r/2)∪B(y,r/2)

pt/2(z, z)
)
µ(Bε(x))µ(Bε(y)) exp

(
− c2

(H(r)

t

) 1
β2−1

)
.
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By (DUHK(H)) and (1.1),

sup
z∈B(x,r/2)∪B(y,r/2)

pt/2(z, z) ≤
c3

V (x, H−1(t))

(r + H−1(t)

H−1(t)

)D

.

If H(r) ≤ t, this is bounded by c4V (x, H−1(t))−1. If H(r) > t, then, for each ε > 0, there exists
cε > 0 such that (r + H−1(t)

H−1(t)

)D

exp
(
− ε

(H(r)

t

) 1
β2−1

)
≤ cε.

This is due to the following fact; M = r/H−1(t) is equivalent to H(r/M) = t, so using (1.1),

M <
(

H(r)
t

)β1

. In any case, we obtain

P µ̄x(Yt ∈ Bε(y)) ≤
c5

V (x, H−1(t))
µ(Bε(x))µ(Bε(y)) exp

(
− c2

(H(r)

t

) 1
β2−1

)
.

Dividing both sides by µ(Bε(x)), µ(Bε(y)), if x and y are Lebesgue points (i.e., points of density),
we obtain (UHK(H)). Since µ-a.e. points are Lebesgue points, we obtain the result for µ-a.e. x, y.
�

Step 2: Proof of (V D) + (ELD(H)) ⇒ (DLHK(H)). Using (ELD(H)) and the conservative-
ness of the process, we have that

P x(Yt /∈ B(x, r)) ≤ P (τB(x,r) ≤ t) ≤ c1 exp
(
− c2

(H(r)

t

) 1
β2−1

)
.

Hence by choosing r such that c3H(r) < t < c4H(r) for some c3, c4 > 0, we have

P x(Yt /∈ B(x, r)) ≤ c5 < 1.

Thus P x(Yt ∈ B(x, r)) ≥ 1 − c5 > 0. By Cauchy-Schwarz,

(1 − c5)
2 ≤ P x(Yt ∈ B(x, r))2 = (

∫

B(x,r)

pt(x, z)dµ(z))2 ≤ V (x, r)p2t(x, x).

Now, using the lower bound of our choice of t and (VD), we obtain the result. �

Remark. By the same argument, we can obtain the following slightly stronger conclusion.
Assume (V D) and (ELD(H)). Then there exist c1, c2 > 0 such that

p
B(x,R)
t (x, x) ≥

c1

V (x, H−1(t))
, ∀x ∈ X, 0 < R ≤ 1/3, t ∈ (0, c2H(R)]. (2.31)

Step 3: Proof of (VD) + (DUHK(H)) + (EHI) + (E(H)) ⇒ (NLHK(H)). We follow the ar-

guments in [13, 11]. Fix x ∈ X, t > 0 and set R := H−1(t/ε) where ε > 0 will be chosen later. We
can assume ε < c2 where c2 is given in (2.31). Hence by (2.31)

pB
t (x, x) ≥

c1

V (x, H−1(t))
, (2.32)

where B := B(x, R). Set f(y) = ∂tp
B
t (x, y). Applying Proposition A.7 to pB

t , we have, for y ∈ B,

|f(y)| ≤
2

t

√
pB

t/2(x, x)pB
t/2(y, y) ≤

2

t

√
pt/2(x, x)pt/2(y, y).
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By (DUHK(H)), we have

pt/2(x, x) ≤
c1

V (x, H−1(t))
,

and

pt/2(y, y) ≤
c1

V (y, H−1(t))
≤

c1

V (x, H−1(t))

V (x, H−1(t))

V (y, H−1(t))

≤
c1

V (x, H−1(t))

(
1 +

d(x, y)

H−1(t)

)D

≤
c1(1 + ε−β1)D

V (x, H−1(t))
, ∀y ∈ B,

where we used (1.1) and the definition of R. Hence, we have

|f(y)| ≤
c2(1 + ε−1/β1)D/2

tV (x, H−1(t))
, ∀y ∈ B. (2.33)

Define u(y) = pB
t (x, y). Note that ∂tu = ∆Bu and the Green operator GB is a bounded operator in

L2(B) and GB = (−∆B)−1. Thus, u = −GB(∂tu) = −GBf . Let γ > D/(2β1) and apply Proposition
A.4 below with εγ+1 instead of ε. Then, there exists δ > 0 such that for any 0 < r < R,

OscB(x,δr)u ≤ 2(Ē(x, r) + εγ+1Ē(x, R))‖f‖∞,

where Ē(x, r) = supz Ez(τB(x,r)). By (E(H)), we have Ē(x, r) ≤ c3H(r) and Ē(x, R) ≤ c3H(R).
Estimating ‖f‖∞ by (2.33), we obtain

OscB(x,δr)u ≤
H(r) + εγ+1H(R)

t
·
c4(1 + ε−1/β1)D/2

V (x, H−1(t))
.

By definition of R, we have
εγ+1H(R)

t
= εγ.

Choose r by the equation H(r) = εγ+1H(R), which implies, by definition of H, r ≥ δ′R for some
δ′ > 0. Hence, we obtain

Oscy∈B(x,δδ′R)p
B
t (x, y) ≤ OscB(x,δr)u ≤

2c4ε
γ(1 + ε−1/β1)D/2

V (x, H−1(t))
. (2.34)

By the choice of γ > 0, εγ(1 + ε−1/β1)D/2 → 0 as ε → 0. So, choosing ε small enough and combining
(2.34) with (2.32), we conclude that

pt(x, y) ≥ pB
t (x, y) ≥

c1/2

V (x, H−1(t))
, ∀y ∈ B(x, δδ′R),

which proves (NLHK(H)). �

Step 4: Proof of (VD) + (NLHK(H)) ⇒ (LHK(H)). Since there is nothing to prove when
H(d(x, y)) ≤ C6t due to (NLHK(H)), we will consider the case H(d(x, y)) > C6t. Let N ∈ N be
the smallest integer n that satisfies

c0t/n ≥ H(d(x, y)/n), (2.35)
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where c0 > 0 is taken small enough so that (2.35) does not hold for n = 1, 2 and

t/N ≥ H(3d(x, y)/(NC6)).

Let ε = d(x, y)/N . Then, by the choice of c0 and by (1.1), we have

H−1
(c1t

N

)
≤ ε ≤

C6

3
H−1

( t

N

)
. (2.36)

Now, let {xi}N
i=0 be such that x0 = x, xN = y and d(xi, xi+1) ≤ ε for i = 0, 1, · · · , N − 1. Such a

sequence exists by the choice of N and by the fact that d is a geodesic metric. We then have

pt(x, y) =

∫

X

· · ·

∫

X

pt/N (x, z1)pt/N (z1, z2) · · · pt/N (zN−1, y)dµ(z1) · · ·dµ(zN−1)

≥

∫

B(x1,ε)

· · ·

∫

B(xN−1 ,ε))

pt/N (x, z1)pt/N (z1, z2) · · · pt/N (zN−1, y)dµ(z1) · · ·dµ(zN−1).(2.37)

Clearly d(zi, zi+1) ≤ 3ε. Hence, by (NLHK(H)), (VD) and (2.36), we have

pt/N (zi, zi+1) ≥
c2

V (zi, H−1(t/N))
≥

c3

V (xi, H−1(t/N))
≥

c4

V (xi, ε)
.

Therefore, it follows form (2.37)

pt(x, y) ≥
c4

V (x, H−1(t/N))

N−1∏

i=1

c4

V (xi, ε)
· V (xi, ε) ≥

cN
4

V (x, H−1(t/N))

≥ c5
exp(−c6(N − 1))

V (x, H−1(t))
.

On the other hand, by the choice of N in (2.35), we have N − 1 < c7(H(d(x, y))/t)1/(β1−1). We thus
obtain (LHK(H)). �

Combining Steps 1 –4, the proof of Proposition 2.13 is completed.

3 Proof of Theorem 1.4

We first prove sup0<r≤1 E
r(f) ≤ c1E(f) which in turn immediately will imply F ⊂ WH(X). For t ≤ 1

and f ∈ L2(X, µ), let E t(f) := 1
t
(f − Ptf, f)L2, where Pt is the semigroup corresponding to (E ,F).

Then, since (E,F) is conservative,

E t(f) =
1

2t

∫ ∫

X×X

(f(x) − f(y))2pt(x, y)µ(dx)µ(dy)

≥
1

2t

∫ ∫

d(x,y)≤H−1(t)

(f(x) − f(y))2pt(x, y)µ(dx)µ(dy)

≥
e−1

2t

∫ ∫

d(x,y)≤H−1(t)

(f(x) − f(y))2

V (x, H−1(t))
µ(dx)µ(dy), (3.1)

where we use the lower bound of (HK(H; β1, β2, c0)) in the last inequality. Taking t = h(r) for r > 0,
we see that the RHS of (3.1) is equal to 1

c1
Er(f) for some c1 > 0. It is well known that E t(f) ↗ E(f)

as t ↓ 0 ([8], Lemma 1.3.4). Thus the claim follows.
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We next prove c2(α, β1, β2)E(f) ≤ sup
m∈N Eα−m

(f) which then will imply F ⊃ WH(X). In this
proof, constants may depend on α > 1, β2 ≥ β1 > 1, but we will not write down this dependence
explicitly. For each t ≤ 1 and g ∈ WH(X), since (E,F) is conservative,

E t(g) =
1

2t

∫ ∫

X×X

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

=
1

2t

∫ ∫

x,y∈X
d(x,y)>1

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

+
1

2t

∫ ∫

x,y∈X
d(x,y)≤1

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy) =: A(t) + B(t).

We first estimate A(t). (In fact, this part is zero since diam(X) = 1. Since we need to compute
Ak(t) in the end of this proof, we will make some estimates.) Since

A(t) =
1

2t

∞∑

m=0

∫ ∫

αm<d(x,y)≤αm+1

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy),

for α > 1 (note that
∫ ∫

αm<d(x,y)≤αm+1 · · · = 0 if diam(X) < αm), using the fact (a + b)2 ≤ 2(a2 + b2)

and the symmetry, we have

A(t) ≤
2

t

∞∑

m=0

∫

X

g(x)2µ(dx)

∫

αm<d(x,y)≤αm+1

pt(x, y)µ(dy).

Set Lm = {y ∈ X : αm < d(x, y) ≤ αm+1}. Let Φ2(x) = c3 exp(−c4x
1/(β2−1)). By (HK(H; β1, β2, c0))

we have
∫

Lm

pt(x, y)µ(dy) ≤

∫

Lm

1

V (x, H−1(t))
Φ2

(H(αm)

t

)
µ(dy)

≤
µ(Lm)

V (x, H−1(t))
Φ2

(c3α
mβ1

t

)
≤

V (x, αm+1)

V (x, H−1(t))
Φ2

(c3α
mβ1

t

)
,

where we use (FTG) and the fact H(1) = 1 in the second inequality. Using (1.1), we have

V (x, αm+1)/V (xH−1(t)) ≤ c4(α
m/H−1(t))D.

Note that by (FTG), if t′ is small we have H(1)/H(t′) = 1/H(t′) ≥ c5/t
′β1 . Taking t = H(t′), we

have 1/H−1(t) ≤ c6/t
1/β1 . Combining these facts, we have

A(t) ≤
c7

t
‖g‖2

L2

∞∑

m=0

(
αmβ1

t
)D/β1Φ2

(c3α
mβ1

t

)
≤ c8‖g‖

2
L2t−1−D/β1Φ2

(c3

t

) ∞∑

m=0

α−mβ2

for small t ≤ 1. Here we used the fact αm(D+β2) exp(−c(αmβ1

t
)1/(β2−1)) ≤ c′ exp(−ct1/(β2−1)) in the last

inequality. Thus, we obtain

A(t) ≤ c9‖g‖
2
L2t−1−D/β1Φ2

(c3

t

)
(3.2)

for small t and thus A(t)
t→0
−→ 0.
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Next we estimate B(t). By (HK(H; β1, β2, c0)) again, we have

B(t) ≤
1

2t

∞∑

m=1

∫
µ(dx)

∫

L−m

1

V (x, H−1(t))
Φ2

(H(α−m)

t

)
(g(x) − g(y))2µ(dy)

≤
c9

t

∞∑

m=1

∫
µ(dx)

V (x, α1−m)

V (x, H−1(t))
−

∫

B(x,α1−m)

Φ2

(H(α−m)

t

)
(g(x) − g(y))2µ(dy)

≤c9( sup
m∈N

Eα−m

(g))

∞∑

m=1

{c10(
α1−m

H−1(t)
)D ∨ 1}

H(α1−m)

t
Φ2

(H(α−m)

t

)
=: I1,

where we use (1.1) in the last inequality. We now compute the sum in I1. Let t′ = H−1(t) and take
m0 = m0(t

′) so that α−m0−1 < t′ ≤ α−m0 . Then, by (1.1),

I1 ≤ c14( sup
m∈N

Eα−m

(g))
{ m0∨0∑

m=1

(α−m

t′

)D+β2

Φ2

(
c15

(α−m

t′

)β1
)

+
∞∑

m=(m0+1)∨1

(α−m

t′

)β1
}

≤ c16( sup
m∈N

Eα−m

(g))
{ ∫ ∞

1

Φ2(s)s
D+β2

β1
−1

ds +
∞∑

m=0

α−mβ1

}

≤ c17 · sup
m∈N

Eα−m

(g),

where we use
∫ ∞

1
Φ2(s)s

D+β2
β1

−1
ds ≤ Cα,β2 < ∞ in the last inequality. Thus, together with (3.2), we

obtain
E(g) = lim

t→0
E t(g) ≤ c17 · sup

m∈N

Eα−m

(g).

Now replacing A(t) and B(t) in the previous argument by

Ak(t) =
1

2t

∫ ∫

d(x,y)>α−k

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

and

Bk(t) =
1

2t

∫ ∫

d(x,y)≤α−k

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

yields E(g) ≤ c17 · supm≥k E
α−m

(g) for each k ∈ N and thus

E(g) ≤ c17 · lim sup
m→∞

Eα−m

(g).

�

A Appendix: Miscellaneous proofs

A.1 Oscillation inequalities and the Hölder continuity

In this subsection, we will assume (EHI) and deduce various Oscillation inequalities and Hölder
continuity of harmonic functions.
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Let u be nonnegative and harmonic in B(x0, R). To be precise, the definition of (EHI) in Section
1 should be,

ess supB(x0 ,R/2)u ≤ c1ess infB(x0,R/2)u. (A.1)

x0 here is x in the definition of (EHI). We will show here that (A.1) implies the continuity of u inside
the ball B(x0, R), so that (EHI) holds. Indeed, take x1 and r such that B(x1, 3r) ⊂ B(x0, R). By
looking at Cu + D for suitable constants C and D, we may suppose that ess supB(x1,2r)u = 1 and
ess infB(x1,2r)u = 0. Hence by (A.1), we have

ess supB(x1,r)u − ess infB(x1 ,r)u ≤ (1 − c−1
1 )ess supB(x1,r)u ≤ (1 − c−1

1 ).

So if ρ = 1 − c−1
1 then

ess supB(x1,r)u − ess infB(x1,r)u ≤ ρ
[
ess supB(x1 ,2r)u − ess infB(x1,2r)

]
.

It follows easily that
ess supB(x1,r)u − ess infB(x1,r)u ≤ c2r

γ (A.2)

for some γ > 0. Define û(x1) = limr→0 ess supB(x1,r)u. If one takes a countable basis {Bi} for X
and excludes those points x ∈ Bi such that u(x) /∈ [ess infBi

u, ess supBi
u], then for every other x it

is easy to see, using (A.2), that u(x) = û(x). Thus, û is equal to u for µ-almost every x. Moreover,
from (A.2) we see that û is continuous. Recall that in our definition of harmonic function we take a
quasi-continuous modification as defined in [8]. We conclude u = û quasi-everywhere, and so u has
a quasi-continuous modification that is continuous. Using this modification and (A.1), we have

sup
B(x0,R/2)

u ≤ c1 inf
B(x0,R/2)

u,

which is the desired inequality.

Let HB(x0,r) be a space of harmonic functions on B(x0, r). Define the oscillation of a function f
over B by OscBf := ess supBf − ess infBf . Then, the above arguments also show the following.

Lemma A.1 Assume (EHI).
1) For any ε > 0, there exists δ ∈ (0, 1) such that

OscB(x0,δr)u ≤ εOscB(x0,r)u, ∀u ∈ HB(x0,r).

2) There exist c1, γ > 0 such that

sup
x,y∈B(x0,ρr)

|u(x) − u(y)| ≤ c1ρ
γ sup

x∈B(x0,r)

|u(x)|, ∀ρ ∈ (0, 1), ∀u ∈ HB(x0,r). (A.3)

We can now prove the following Hölder continuity of harmonic functions.

Proposition A.2 Assume (EHI). There exists γ > 0 with the property that for any δ ∈ (0, 1), there
exists C = Cδ > 0 such that

sup
x,y∈B(x0,δr)

{ |u(x) − u(y)|

d(x, y)γ

}
≤ Cr−γ sup

x∈B(x0,r)

|u(x)|, ∀u ∈ HB(x0,r).
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Proof. Denote Br := B(x0, r). For x, y ∈ Bδr, we consider two cases. First, if d(x, y) ≥ (1 − δ)r,
then

|u(x) − u(y)| ≤ 2 sup
Br

|u| ≤ 2{(1 − δ)r}−γd(x, y)γ sup
Br

|u|.

If d(x, y) < (1 − δ)r, then B(z, (1 − δ)r) ⊂ Br contains both x and y, where z ∈ X is the mid point
of x and y. Further x, y ∈ B(z, d(x, y)). Applying (A.3) with ρ = d(x, y)/{(1− δ)r} yields

|u(x) − u(y)| ≤ c1{(1 − δ)r}−γd(x, y)γ sup
Br

|u|.

We thus obtain the result. �

We next discuss the oscillation of Green functions. Given an open set Ω ⊂ X and f ∈ B(Ω),
define the Green operator GΩ as

GΩf(x) = Ex
[ ∫ τΩ

0

f(Yt)dt
]
.

Denote Ē(Ω) := supz Ez[τΩ]. When Ω = B(x, r), we will abbreviate Ē(B(x, r)) as Ē(x, r). It is easy
to see

‖GΩ‖L∞→L∞ ≤ Ē(Ω). (A.4)

The following results are due to [13].

Lemma A.3 Assume that Ē(Ω) < ∞. Then, for any f ∈ C0(Ω), GΩf is harmonic in Ω \ Suppf .
Also, for any open set Ω′ ⊃ Ω, GΩ′f − GΩf is harmonic in Ω.

Proof. Let uf = Gωf . Since Gω = (−∆Ω)−1, we see that uf ∈ D(∆Ω). So

E(uf , v) = −(∆Ωuf , v) = (f, v) = 0, ∀v ∈ F(Ω \ Suppf).

Thus, uf is harmonic in Ω \ Suppf . Similarly, set wf = GΩ′f − GΩf , then

E(wf , v) = E(GΩ′f, v) − E(GΩf, v) = (f, v)L2(Ω′) − (f, v)L2(Ω) = 0,

for any v ∈ F(Ω). �

Proposition A.4 Assume (EHI). Let f : B(x, r) → R be a bounded Borel function and set uf =
GB(x,R)f . Then, for any 0 < r < R,

OscB(x,δr)uf ≤ 2(Ē(x, r) + εĒ(x, R))‖f‖∞,

where ε and δ are the same as in Lemma A.1 1).

Proof. If Ē(x, R) = ∞, there is nothing to prove, so assume that Ē(x, R) < ∞. Denote Br :=
B(x, r) and let vf = GBr

f . Then, by (A.4),

‖uf‖∞ ≤ Ē(x, R)‖f‖∞, ‖vf‖∞ ≤ Ē(x, r)‖f‖∞. (A.5)

By Lemma A.3, wf := uf − vf is harmonic in Br. Using Lemma A.1 1) and 0 ≤ wf ≤ uf , we obtain

OscBδr
wf ≤ εOscBr

wf ≤ ε‖wf‖∞ ≤ ε‖uf‖∞.

Since uf = vf + wf ,

OscBδr
uf ≤ OscBδr

vf + OscBδr
wf ≤ ‖vf‖∞ + ε‖uf‖∞ ≤ (Ē(x, r) + εĒ(x, R))‖f‖∞,

where we used (A.5) in the last inequality. Thus we obtain the desired inequality for f ≥ 0. For a
general function f , write f = f+ − f−. Then Osc uf = Osc (uf+ − uf−) ≤ Osc uf+ + Osc uf−, and the
desired inequality is obtained. �
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A.2 Time derivative

We follow the arguments in [13, 11]. First, we show the following well-known fact from semigroup
theory.

Lemma A.5 For any f ∈ L2, let ut = Ptf . Then, we have

‖∂tut‖2 ≤
1

t − s
‖us‖2, 0 < ∀s < t.

Proof. Let {Eλ}λ≥0 be spectral resolution of the operator −∆. Then we have

ut = et∆f =

∫ ∞

0

e−tλdEλf, ‖ut‖
2
2 =

∫ ∞

0

e−2tλd‖Eλf‖
2.

Thus, we have

∂tut =

∫ ∞

0

(−λ)e−tλdEλf, ‖∂tut‖
2
2 =

∫ ∞

0

λ2e−2tλd‖Eλf‖
2 =

∫ ∞

0

λ2e−2(t−s)λe−2sλd‖Eλf‖
2.

Since λe−(t−s)λ ≤ (t − s)−1, we obtain

‖∂tut‖
2
2 ≤

1

(t − s)2

∫ ∞

0

e−2sλd‖Eλf‖
2 =

1

(t − s)2
‖us‖

2
2,

which is the desired estimate. �

Corollary A.6 For t > 0 and z ∈ X, the function t 7→ pt(·, z) is Frechet differentiable in L2 and

‖∂tpt(·, z)‖2 ≤
1

t − s

√
p2s(z, z), 0 < ∀s < t.

Proof. Let f = pε(·, z) for some ε > 0. Then, ut = Ptf = pt+ε(·, z). Thus, by Lemma A.5,

‖∂tpt+ε(·, z)‖2 ≤
1

t − s
‖ps+ε(·, z)‖2 =

1

t − s

√
p2(s+ε)(z, z).

Replacing t + ε, s + ε by t, s respectively, we obtain the result. �

Proposition A.7 For any x, y ∈ X, the function t 7→ pt(x, y) is differentiable in t > 0 and

|
∂t

∂t
pt(x, y)| ≤

2

t

√
pt/2(x, x)pt/2(y, y).

Proof. By the Chapman-Kolmogorov equation, pt(x, y) = (pt−s(·, x), ps(·, y)) for any s ∈ (0, t), so
that ∂tpt(x, y) = (∂tpt−s(·, x), ps(·, y)). Thus, applying Corollary A.6,

|
∂t

∂t
pt(x, y)| ≤ ‖∂tpt−s(·, x)‖2‖ps(·, y)‖2 ≤

1

t − s − r

√
p2r(x, x)p2s(y, y), 0 < ∀r < t − s.

Taking s = r = t/4, we obtain the result. �
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