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Abstract

It is well-known that there is a deep interplay between analysis and probability theory. For
example, for a Markovian infinitesimal generator £, the transition density function p(t, z,y) of
the Markov process associated with £ (if it exists) is the fundamental solution (or heat kernel)
of L. A fundamental problem in analysis and in probability theory is to obtain sharp estimates
of p(t,x,y). In this paper, we consider a class of non-local (integro-differential) operators £ on
R? of the form

Lu(x) = lim (uly) — u(@))J (x,y)dy,
€10 Jiyerd: jy—a|>e}
where J(z,y) = ml{w—mg”} for some constant x > 0 and a measurable symmetric

function ¢(z,y) that is bounded between two positive constants. Associated with such a non-
local operator £ is an R?valued symmetric jump process of finite range with jumping kernel
J(z,y). We establish sharp two-sided heat kernel estimate and derive parabolic Harnack prin-
ciple for them. Along the way, some new heat kernel estimates are obtained for more general
finite range jump processes that were studied in [BBCK]. One of our key tools is a new form
of weighted Poincaré inequality of fractional order, which corresponds to the one established by
Jerison [J] for differential operators. Using Meyer’s construction of adding new jumps, we also
obtain various a priori estimates such as Hélder continuity estimates for parabolic functions of
jump processes (not necessarily of finite range) where only a very mild integrability condition is
assumed for large jumps. To establish these results, we employ methods from both probability
theory and analysis extensively.
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1 Introduction and Main Results

The second order elliptic differential operators and diffusion processes take up, respectively, an
central place in the theory of partial differential equations (PDE) and in probability theory, see
[GT] and [IW] for example. There are close relationships between these two subjects. For a large
class of second order elliptic differential operators £ on R?, there is a diffusion process X on R?
associated with it so that £ is the infinitesimal generator of X, and vice versa. The connection
between £ and X can also be seen as follows. The fundamental solution (also called heat kernel)
for £ is the transition density function of X.

Recently there are intense interests in studying discontinuous Markov processes, due to their
importance both in theory and in application. See, for example, [B, JW, KSZ] and the refer-
ences therein. The infinitesimal generator of a discontinuous Markov process in R is no longer
a differential operator but rather a non-local (or, integro-differential) operator. For example, the
infinitesimal generator of a isotropically symmetric a-stable process in R? with o € (0,2) is a
fractional Laplacian operator c (—A)a/ 2. Recently there are also many interests from the theory of
PDE (such as singular obstacle problems) to study non-local operators; see, for example, [CSS, S]
and the references therein.

In this paper, we consider the following type of non-local (integro-differential) operators £ on
R? with measurable symmetric kernel J:

Lu(z) = lim (u(y) — u(z))J (z,y)dy,
10 J{yerd: |y—a|>c}
where ( )
c\T,Y
T y) = o e Hla—vi<s) (1.1)

for some constant k£ > 0 and a measurable symmetric function ¢(z,y) that is bounded between
two positive constants. Associated with such a non-local operator £ is an R%valued finite range
symmetric jump process X with jumping kernel J(z,y). We will be concerned with obtaining sharp
two-sided heat kernel estimates for £ (or, equivalently, for X), as well as establishing parabolic
Harnack inequality and a priori joint Holder continuity estimate for parabolic functions of £. Our
approach employs a combination of probabilistic and analytic techniques.

Two-sided heat kernel estimates for diffusions (or second order elliptic differential operators)
have a long history and many beautiful results have been established. But two-sided heat kernel
estimates for jump processes in R? have only been studied recently. In [K], Kolokoltsov obtained
two-sided heat kernel estimates for certain stable-like processes in R%, whose infinitesimal generators
are a class of pseudo-differential operators having smooth symbols. Bass and Levin [BL] used a
completely different approach to obtain similar estimates for discrete time Markov chain on Z¢
where the conductance between x and y is comparable to |z — y|~%~® for a € (0,2). In [CK1],
two-sided heat kernel estimates and a scale-invariant parabolic Harnack inequality for symmetric
a-stable-like processes on d-sets are obtained. (See [HK] for some extensions.) Very recently in
[CK2], parabolic Harnack inequality and two-sided heat kernel estimates are even established for
non-local operators of variable order. But so far the two-sided heat kernel estimates for non-local



operators have been established only for the case that the jumping kernel has full support on the
state space. See [BBCK] for some result on parabolic Harnack inequality and heat kernel estimate
for non-local operators of variable order on R?, whose jumping kernel is supported on jump size
less than or equal to 1.

Throughout this paper, d > 1 and « € (0,2). Let the jump kernel J be defined by (1.1) and let

Q) = 5 [ [ (o) = u)e(e) = o) (o oy (12)
D = {feLQ(Rd,dx):Q(f,f)<oo}. (1.3)

It is easy to check that (Q,D) is a regular Dirichlet form on R? and so there is a Hunt process

c(z,y)
|z —yldt+a>

process is the symmetric stable-like process Y on R? studied in [CK1]. Among other things, it is

X associated with it. When the jumping kernel J(zx,y) is the unrestricted the associated

shown in [CK1] that Y has Holder continuous transition density function and so Y can be modified
to start from every x € R?. Since X can be constructed from Y by removing jumps of size larger
than x via Meyer’s construction (see [BBCK, BGK]), X is conservative and can be modified to start
from every point in R?. For this reason, in the sequel, we will call such X a finite range (or truncated)
stable-like process. It is proved in [BBCK, Theorem 3.1] that there is a properly exceptional set
N C R? and a positive symmetric kernel p(t,z,y) defined on (0,00) x (R4 \ N) x (R?\ N) such
that p(t, z,y) is the transition density function of X (starting from 2 € R4\ N') with respect to the
Lebesgue measure on R?, and for each y € R*\ A and t > 0, z +— p(t,z,y) is quasi-continuous.
It is this version of the transition density function of X we will take throughout this paper. Here
a set NV C R? is called properly exceptional with respect to the process X if it has zero Lebesgue
measure and

pe ({Xt,Xt_} c R4\ N for every t > 0) =1 forzeRI\N.

It is well-known (see [FOT]) that every exceptional set is Q-polar and every Q-polar set is contained
in a properly exceptional set. Later we will show in Theorem 4.3, p(t,z,y) in fact has a Holder
continuous version and so we can take A" = (). The purpose of this paper is to obtain sharp upper
and lower estimates on p(t,z,y). The jump size cutoff constant « in (1.1) plays no special role, so
for convenience we will simply take x = 1 for the rest of this paper.

When c¢(z,y) is a constant, X is a finite range (also called truncated) isotropically symmetric
a-stable process in R¢ with jumps of size larger than 1 removed. The potential theory of this
Lévy process is studied in [KS1, KS2]. One interesting fact is that, even though scale-invariant
elliptic Harnack principle is true for such a process, the boundary Harnack principle is only valid
for the positive harmonic functions of this process in bounded convex domains (see the last section
of [KS1] for a counterexample). Since the parabolic Harnack principle implies elliptic Harnack
principle, our Theorem 4.1 extends the result on Harnack principle in [KS1] to the case that ¢(z,y)
is not necessarily constant.

Finite range stable processes, more generally finite range jump processes, are very important
both in theory and in application. Finite range jump processes are very natural in applications



where jumps only up to a certain size are allowed. Moreover, in some aspects, finite range jump
processes have nicer behaviors and are more preferable than unrestricted jump processes. For
instance, in [CR], to show certain property of Schramm-Loewner evolution driven by symmetric
stable processes, finite range (or truncated) stable process has been used as a tool. However, as
we shall see below, in some other respects, finite range jump processes are much more delicate to
study than unrestricted jump processes.

In the sequel, for two non-negative functions f and g, the notation f =< ¢ means that there are
positive constants ¢y, c2,c3 and ¢4 so that c1g(cax) < f(x) < c3g(csx) in the common domain of
definition for f and g. The Euclidean distance between x and y will be denoted as |z — y|. For
a,b € R, a Ab:=min{a,b} and a V b := max{a,b}. We will use ug4 or dr to denote the Lebesgue
measure in R%. A statement that is said to be hold quasi-everywhere (q.e. in abbreviation) on a
set A C R? if there is an Q-polar set N such that the statement holds for every point in A\ N.

Our theorems on the heat kernel estimate on p(t,z,y) can be stated as follows (in the figure,
R, is a constant in (0,1)):

(i) [Proposition 2.1 and Theorem 3.6] In the regions D; and Ds, we have

p(t,x,y) < <t_d/°‘ A t) .

’.’L‘ _ y’d—i-a

d/a

(More precisely, p(t, z,y) < t~%* in Dy and p(t,x,y) < W in Dy.)

(ii) [Theorem 2.3 and Theorem 3.6] In the region D3, we have

t o\ lz —yl
p(t,z,y) < ( > = exp (—CIw —yllog — ) :

[z — |

(iii) [Theorem 2.3 and Theorem 3.6] In the regions Dy and Ds, we have

2
p(t,x,y) < t=42 exp (—M) .

(More precisely, p(t,z,y) < t~%2 in Dy and p(t,z,y) <t~ exp (—M) in Ds.)

t=C,R
F\:\: Iy | 2
D5

D3
1 D4
R* .. -

D2
Dq\t=Ra t
rR%1



As we see, the heat kernel estimate is of a-stable type in (i), of Poisson type in (ii) and of Gaus-
sian type in (iii). Such behavior of the heat kernel, in particular (i) and (iii), may be useful in
applications. For example, in mathematical finance, it has been observed that even though discon-
tinuous stable processes provide better representations of financial data than Gaussian processes
(cf. [HPR]), financial data tend to become more Gaussian over a longer time-scale (see [M] and
the references therein). Our heat kernel estimates show that finite range stable-like processes have
this type of property: they behave like discontinuous stable processes in small scale and behave
like Brownian motion in large scale. Furthermore, they avoid large sizes of jumps which can be
considered as impossibly huge changes of financial data in short time.

In fact, some of our heat kernel estimates for ¢ > 1 will be stated and proved for a more general
class of finite range jump processes that is studied in [BBCK] (see (2.16), Theorems 2.4 and 3.5
below). These heat kernel estimates improve the estimates given in [BBCK, Theorems 1.2 and 1.3]
significantly. They are also used in Section 4 to show the two-sided estimates for Green functions
of these processes for |z —y| > 1.

To get the near diagonal lower bound of the heat kernel p(¢,z,y), we introduce and prove a
general scaling version of weighted Poincaré inequality of fractional order (see Theorem 5.1 below).
This inequality may be of independent interest. (For the details on (weighted) Poincaré inequality
and lower bound estimate of heat kernels for diffusions, we refer our readers to [FS, J, SC, SS] and
the references therein.) The proof of our weighted Poincaré inequality is quite long and involved.
To keep the flow of the main ideas of our proof for the heat kernel estimates, we put the proof
of the weighted Poincaré inequality in the last section. We hope that the establishing of such a
scaling version of weighted Poincaré inequality and its usage in getting the heat kernel lower bound
estimate will shed new light on our understanding of the heat kernel behavior of more general
Markov processes.

Using the heat kernel estimates, we derive the parabolic Harnack inequality for the finite range
jump processes. Our proof uses a combination of the techniques developed in [CK1, CK2| and
in [BBK, BBCK]. As a direct consequence of the heat kernel estimates, we derive a two-sided
sharp estimate for Green functions in R? for d > 3. From the heat kernel estimates and the
parabolic Harnack inequality, we also obtain the Holder continuity of the parabolic functions of
finite range stable-like processes. In particular, we note that the Holder continuity for bounded
parabolic functions is a consequence of the local heat kernel estimate, while the parabolic Harnack
inequality at small size scale can be obtained from the local heat kernel estimate and some mild
condition on the jumping kernel for large jumps. This allows us to establish the parabolic Harnack
inequality and the joint Holder continuity for parabolic functions for a larger class of symmetric
processes that can be obtained from finite range stable-like process by adding larger jumps with
uniformly bounded (total) jumping intensity for those jumps of size larger than 1 through Meyer’s
construction. See Theorem 4.5 for details.

The remainder of this paper is organized as follows. In Section 2, we prove the upper bound
estimates of the heat kernel. Section 3 contains the results on the lower bound estimates of the
heat kernel. In Section 4, we establish parabolic Harnack principle and the two-sided estimates for
Green functions of the finite range jump processes as well as Holder continuity of heat kernels. In



the last section, we give the proof of weighted Poincaré inequality of fractional order.

2 Heat Kernel Upper Bound Estimate

In this section, we will state the results on the upper bound estimates of the heat kernel for the
finite range symmetric a-stable-like process X more precisely and present proofs. Most of the heat
kernel estimates in this section and next one are established for quasi-everywhere (q.e.) point in
R?. However in Theorem 4.3 of Section 4, we will show that the heat kernels of finite range stable
processes are Holder continuous and therefore these estimates hold for every point in R

Proposition 2.1 (i) For each T* > 0, there exists ¢c; = c¢1(T*) > 0 such that

t
—d/a
p(t7$7y) S C1 <t A ’.T—y’d+a>

for all t € (0,T*] and g.e. z,y € R

(ii) There exist 0 < Ry <1 and ca > 0 such that

t
—d
e (t /%A |x—y|d+o‘> < p(t,z,y)

for allt € (0,Ty] and q.e. x,y € R? with |x — y| € (0, R,] where T, := R

Proof. The estimates on these regions can be deduced from the existing results. Let po(t, z,y) be

the transition density function of stable-like process Y on RY whose jumping kernel is &%) Since
lz—yl|¢t

X can be constructed from Y by removing jumps of size larger than 1 via Meyer’s construction, by
[BBCK, Lemma 3.6] and [BGK, Lemma 3.1(c)] we have

p(t,:U,y) < et”JHOOpO(tvxay) and pO(taxvy) < p(t>$ay)+t‘|Jl||oo
where

Ji(z,y) = Mlﬂm—ybl} and  J(x) 12/

Ji(z,y)dy.
o =yl o 1OV

Applying the estimates on py(t, x,y) in [CK1] to the above two inequalities, we have

_ t
plt,z,y) < ceflIlle <t N |x—y|d+a) (2.1)
and )
_ t
o (t e |J:—y|d+0‘> =t J1llc < p(t,2,9). (22)

Now (i) follows immediately from (2.1). Since

1 1 _a
gt VS Tt Dl i8S (201 1]]o) "
C1 1



d
an 1 ¢ 1 ¢

2y |z — yldte = ¢z — y|d+a

1
=t il if |z =y < 2er][S1floo) e,
we get (ii) from (2.2). O

The discrete Markov chain analogue of the following result is established in [BL, Proposition
2.1]. See also [CKS, Section 2] where the following result is discussed when c¢(z,y) is a constant
and a = 1.

Proposition 2.2 There exist c1,co > 0 such that

at~¥*  forte (0,1],

p(t,x,y) < { CQt_d/Z fO?"t c [1700) (23)

Proof. By Proposition 2.1(i), we only need to show (2.3) for ¢t € [1,00).
Let (£°, F9) be the Dirichlet form for the finite range isotropically symmetric a-stable process
with jumps of size larger than 1 removed. That is,

co(d, o
Q) = [ (o) =) U 1 endady

Fo o= {u e LX(RY, dx) : E%u,u) < oo},

where cy(d, o) > 0 is a constant. Note that D C F° and there is a constant k := x(d, ) > 0 such
that
E%u,u) < K Qu,u) for u € F. (2.4)

By the Fourier transform, we have

£9(f.g) = e / 3(6) F(&)o(6)de.
Rd

where f(£) := (2m)~ /2 Jga €Y f(y)dy is the Fourier transform of u and

_ l—cos(ﬁ-y)d 95
) /{|y<1} gl (2

By the change of variable y = z/|{|, we have from (2.5)

1- COS(% - T)

o(6) =l /{ ey TR (2.6)

Note that 1 — cos (% . x) behaves like |z|? for small |z|. Moreover, as |¢] goes to infinity, the
integral in the above equation goes to a positive constant. Thus it is easy to see that there exist
M > 1 and ¢q > 0 such that

b(€) > ca1)§|e, for all |&| > M,
— ] €, forall |¢ < M.



Thus for every r < 1, we have

2 «
)2d (’f\> )P + <\gy> vy
/{5l>r}|f(£)| ‘ /{M>|s|>r} r) Or /{azm r) WORE

co [ 72 F(6)%d r F(6)2d
2< /{M>|£I>T}¢(€)If(£)l £+ /{gle}Qﬁ(f)lf(&)l 5)

car™” /R KON dg = car™E%([, f) < esur™Q(f, f),

IN

IN

IN

where the last inequality is due to (2.4). Using the above inequality, we get
I8 = [ 1f@Pas [ if©ras < el (0 + 2A1R), et @D
>r <r

Note that, if @ < b, the function r — h(r) := ar~2 + 2br? has a local minimum at

1
a\ s
== <1
= ()" =
Thus by minimizing the right-hand side of (2.7) for Q(f, f) < || f||3, we get

I£13 < es E°CF, £)a52 | FIIF < o6 Q(F, £)72 | £ 77

Therefore by Theorem 2.9 in [CKS], we conclude that

p(t,x,y) < cpt=¥? for all ¢t € [1,00).

0
Theorem 2.3 There exist Cy < 1 and c1,c2,c3,c4 > 0 such that
" cala—y| |z —y|
p(t,z,y) < c1 < ) = ¢ exp (-CQ.I'—y log) 2.8
(o) <en (2 o~ yllog " (28)
for g.e. x,y € RY with (t, |z —y|) € {(t, R) : R > max{t/C,, R.}} and
12
p(t.z,y) < est™ ¥ exp (—M) (2.9)

for q.e. x,y € R with (t, |z —y|) € {(t,R) : R« < R <t/C.}, where R, is given in Proposition 2.1.

Proof. Using Proposition 2.3 above, [CKS, Corollary 3.28] and [BBCK, Theorem 3.1|, we have

p(t, z,y) < c(t™Y Vv ¥ exp(—E(2t, 2, y)) for q.e. z,y € R (2.10)



Here E(2t,x,y) is given by the following:

P()(x) = / (e¥@=00) _ 1)1z, y)dy,

AW)? = T loo V IT (=) [loos
E(t,z,y) = sup{|¢(x) — ¢(y)| — tA(¥)* : ¥ € Lipo with A(3) < oo},

where Lip is a space of compactly supported Lipschitz continuous functions on R
Fix 20,70 € R? and let R = |z — yo| > R.. Define

(@) = MR — |z —2|) .

So |1h(z) — ¥(y)| < Az — y|. Note that |e! — 1|> < t2e2!l. Hence

T(¥)(z) = /(61”(’”)_1”(” —1)2J(z,y)dy < eQAAQ/\w—y\QJ(myy)dy < e N2,

So we have
—E(2t,20,50) < —AR + c1tA%e?, (2.11)
For each t and R, take Ag > 0 such that
R
Aoe?0 = ——. 2.12
0¢ QClt ( )
Since ze?® is strictly increasing, it is easy to check that such \g exists uniquely. Then the right

hand side of (2.11) is equal to —A\gR/2. Let C\ = (2cie)~! which is less than 1 by taking c; large.
When R/(2cit) > e (i.e. t < CyR), (2.12) holds with Ay < log(R/t), and when R/(2c1t) < e (i.e.
t > CyR), (2.12) holds with A\g < R/t. Putting these into (2.10), we obtain the following; In the
region {(t,R) : t < CyR,R > R.},

" co2R
p(t,z,y) < c'(t_d/o‘ v t_d/2) exp <—02Rlog f) = <t_d/°‘ V t_d/Q) <R> , (2.13)
and in the region {(¢,R) : t > CxR, R > R.},
p(t,z,y) < 7 exp(—c"R*/t),

which gives (2.9).

To complete the proof, we need to discuss the former case more. When ¢ > 1, the right hand
side of (2.13) is bounded from above by ¢/(t/R)%, and when t < 1 and R > R* for some large
R* > 1, it is bounded from above by ¢/(t/R)*E~%/® < ¢/(t/R)%® both of which give (2.8). So all
we need is to consider the case ¢ < 1 and R, < R < R*. But in this case, the desired estimate is
already established in Proposition 2.1(i). O

Now let’s consider a more general non-local Dirichlet form (&€, F). Set

E(f,f) = /Rd/]Rd N2 J(x,y)dzdy , (2.14)

F = CIRY (2.15)



where the jump kernel J(z,y) is a symmetric non-negative function of x and y such that J(z,y) =0
for |x — y| > 1 and there exist «, § € (0,2), 8 > « and positive k1, k2 such that

rily — 2| < J(x,y) < koly — x| 74P for ly —z| < 1. (2.16)

Here &(f, f) == E(f, ) + |If]13, CL(R?) denotes the space of C! functions on R? with compact
support, and F is the closure of C}(R?) with respect to the metric & (f, f)'/2. The Dirichlet form
(€, F) is regular on R? and so it associates a Hunt process Z, starting from quasi-everywhere in R,
It is proved in [BBCK] that Z is conservative and has quasi-continuous transition density function
q(t, z,y) with respect to the Lebesgue measure on R

When t € [1,00), only the upper bound of the jumping kernel played a role in the proofs of
Proposition 2.2 and Theorem 2.3. Thus, combining with Theorem 1.2 in [BBCK], the following is
true for Z.

Theorem 2.4 There is a constant ¢ > 0 such that
q(t,z,y) < c(t*d/o‘ V t*d/z) for q.e. z,y € R%

Moreover, there exist C; < 1, Ry < % and c1,co,c3,c4 > 0 such that

" calz—y| |z — y|
q(t,z,y) < 1 (H) = ¢ exp (—02]33 —y|log t) for ge. z,y € R (2.17)
r—y
with (t,|x —y|) € {(t,R) : t > 1, R > max{t/C1, R1}} and
2
q(t, 2, y) < cst™ % exp <—C4‘xty‘> for q.e. z,y € R? (2.18)

with (t,|z —y|) € {(t, R) : t > 1,Ry < R < t/C1}.

The above theorem will be used in the next section to prove the near-diagonal lower bound for
q(t, . y).

3 Heat Kernel Lower Bound Estimate

In this section, we give the proof of the lower bound estimate of the heat kernel. We first
record a simple observation, which sheds lights on the different heat kernel behaviors at small
(stable) and large (Gaussian) scale. Recall that a finite range isotropically symmetric a-stable
process in R? with jumps of size larger than 1 removed is the Lévy process with Lévy measure

Co(d, Oz)|h|_d_0‘1{|h|§1}dh.

Lemma 3.1 Let X be finite range isotropically symmetric a-stable process in R with jumps of
size larger than 1 removed. For A > 0, define

YN = YV A 12(x - X)) and 2N = 2V 4 AV (X, — X).

Then the process YN converges in finite-dimensional distributions to a Brownian motion on R%
as A\ — oo and ZW) converges in finite-dimensional distributions to the isotropically symmetric
a-stable process as X — 0.

10



Proof. Recall that the Lévy exponent ¢ of X is given by (2.5). Clearly YW and ZW are Lévy
processes as well, with

E [ez‘s-m“)—Yé”)] :E[ IEAT2 (X g~ Xo)] MO e

and

B [e€@7-27)] — B [0V 0 X0] _ M0, g e R,

Let ¢ (€) and 1y (€) denote the Lévy exponents of YN and Z&) | respectively. Then we have by
above and (2.6) that

1 —cosxy

FED dx (3.1)

OA(€) = Ao (A1/%6) = Al‘““rf\a/{

x€RL:|x|<A—1/2|¢|}

which converges to c|£|? as A — co. Moreover, there is ¢; > 0 so that

| (€)] < e1]€]? for every ¢ € R? and X\ > 0. (3.2)
Similarly,
unle) = Ao(n g = g [ L gy (33)
{weRe:|z|<A-Vealgy 2|4
which increases to cz|€|* as A | 0, where ¢ = [pq L Cﬁizl dx. This proves the lemma. 0

Inequality (3.2) will be used later in the proof of Theorem 3.4.

Now let’s consider the more general non-local Dirichlet form (€, F) in (2.14)-(2.15). Recall that
the jump kernel J(z,y) for (£,F) is zero for |z — y| > 1 and satisfies the condition (2.16), and
q(t,z,y) is the transition density function for the associated Hunt process Z with respect to the
Lebesgue measure on R

Define

o(x) = c (1= |2) "/ 1501 (@),

where ¢ > 0 is the normalizing constant so that [p, ¢(x)dr = 1.

The following proposition is an immediate consequence of the assumption (2.16) and Theorem
5.1 in Section 5 below. As mentioned earlier, to keep the flow of our proof for heat kernel estimates,
we will postpone its proof to Section 5.

Proposition 3.2 There is a positive constant ¢c; = c1(d, «, 3) independent of r > 1, such that for
every u € L'(B(0,1), ¢dx),

/ (u() — ug)2(x)dz
B(0,1)
< o / (u() — u(y)) 120 (ra, ry) /B (@) 9(y) dady.
B(0,1)xB(0,1)
Here ug := fB(O,l) u(z)o(x)dz.

11



Remark 3.3 The above weighted Poincaré inequality in fact holds for more general weight function
¢. See Section 5 for the details. O

For § € (0,1), set

To(e.y) = {J = (34

roly — x|~ B for |z —y| <6,

and define (€%, F°) in the same way as we defined (£, F) in (2.14)-(2.15).

For 6 € (0,1), let Z% be the symmetric Markov process associated with (£, 7). By [BBCK],
the process Z° can be modified to start from every point in R? and is conservative; moreover Z° has
a quasi-continuous transition density function ¢°(t,z,y) defined on [0, 00) x R? x R%, with respect
to the Lebesgue measure on R

The idea of the proof of the following theorem is motivated by that of Proposition 4.9 in [BBCK].
For ball B(xzg,r) C R?, let ¢>B (zo.r) (t,z,y) denote the transition density function of the subprocess
ZB@0m) of Z killed upon leaving the ball B(zq, 7).

Theorem 3.4 Suppose the Dirichlet form (€, F) is given by (2.14)-(2.15) with the jumping kernel J
satisfying the condition (2.16) and Js is given by (3.4). For each §y > 0, there exists ¢ = c¢(dg) > 0,
independent of 6 € (0,1) such that for every xo € R, t > &g ,

q‘S’B(mO’tm)(t, x,y) > ct™? for every t > 8y and q.e. z,y € B(zg, Vt/2) (3.5)

and
Ct,z,y) > ct™4? for every t > &y and q.e. z,y with |z —y|*> < t. (3.6)

Proof. In view of [BBCK, Theorem 4.10], it suffices to prove that there are tp < 1/2 and ¢ > 0,
independent of § € (0, 1), such that (3.5)-(3.6) hold for t > t;'. In fact, if §p < t5 " and 6y < t < 57,
we let ng = 1 + [2/v/t0do], where [a] is the largest integer which is no larger than a. By [BBCK,
Theorem 4.10], we have

/ do
qé’B(zo"Sé 2)(s,m,y) > ¢, for every — < s < t5' and z,y € B(wo, 39, 12 /4) (3.7)
no

where the constant cg is independent of § and ¢ € R%. Given z,y € B(zo, V1/2), let 2 - - Zng—1
be equally spaced points on the line segment joining x and y such that =z € 3(21,353/ 2 /4) C
B(z1,64%) € B(xo,t/2) and y € B(2ny_1, 3652 /4) € B(zng—1,03'%) C B(zo,t'/?). Using (3.7) and
the semigroup property, we have

Pt 2, )

1/2 1/2
= / . / PP (4 ng, 2, wr) . g PEOT) (4 ng, wng -1, y)dws . . dwng 1
B xo t1/2 B(:EQ t1/2)

5,B(21,6%/2
N /B 1/2 / e, 4 (1.9 )(t/no,x,wl),,.
(21,39, /4) B(zng—1,365""/4)

1/2
..q5’B(Z"0’60 )(t/no,wno_l,y)dwl Sdwpy—1 > ¢y > €p,

V

d/24—d/2
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Similar argument gives (3.6) when &y < t5* and t € [, %5 ]

Fix 0 € (0,1) and, for simplicity, in this proof we sometimes drop the superscript “6” from Al
and ¢°(t,z,y). For ball B, := B(0,7) C RY, let ¢Br(t,z,%) denote the transition density function
of the subprocess ZP of Z killed upon leaving the ball B,. Then by the proof of Proposition 4.3
in [BBCK], there is a constant ¢; = ¢1(d,7) > 0 such that

qBT(t,:v,y) > ci(r — \x|)5(r — |y])ﬁ for every t € [r2/8, 7”2/4] and z,y € B,.

Define
or(@) = (r* = o) 15 ().

It follows from Lemmas 4.5 and 4.6 of [BBCK] that for every ¢ > 0 and yo € By, ¢®"(t,z,v9) € F5Br
and ¢, (-)/q¢P" (t,z,y0) € FBr, where (€, FPr) is the Dirichlet form for the killed process Zr.
Note that the Dirichlet form of {r‘erzt, t> O} is (E(T), ]—"(T)), where

EM(u,u) = /R o (u(x) — u(y))2r?2Js(re, ry)dedy (3.8)
Fo = {u e L2(u,u) : EM(u,u) < oo} = WO/22(RY).

By (2.16) and (3.2), there are constants ca,c3 > 0 independent of » > 1 and ¢ € (0, 1) such that for
every u € W12(R") ¢ WF/22(R%),

EM (u,u) < 02/ b (E)|U())?de < 03/ |Vu(z)|dz. (3.9)
d
Here 4 denotes the Fourier transform of .
Define
@ (t,x,y) =P (rPt,ra, ry). (3.10)

It is easy to see ¢Z(t,x,y) is the transition density function for process r—1Z TBQ; The latter is the
subprocess of {r~1Z,2,,t > 0} killed upon leaving the unit ball B(0,1), whose Dirichlet form will
be denoted as (£, F"):B). Tt follows from above there is a constant ¢4 = ¢4(8,7) > 0 such that

qB(t,z,y) > ea(1 — |z))P(1 = |y|)?  for every t € [1/8, 1/4] and =,y € B(0,1).

Recall that

12/(2-5)
o) = e5 (1= o) 77 10 (@),
where c¢5 is a normalizing constant so that [pq ¢(z)dz = 1. Let 29 € B(0,1) and Define
u(t,z) = q’(tw,x0), o(t,x) = q](t,2,20)/(x)"?,
1) = [ o)logult. )i
B(0,1)

1
G(t) = /(O ) d(y) logv(t,y)dy = /B(O’l) o(y) log u(t,y)dy — 2/3(071) ¢(x)log ¢(x)dx
= H(t)—CG.
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By Lemma 4.7 of [BBCK],

&(t) = —£0 (u(t. ) u(‘f _)) | (3.11)

(The reason we work with Js rather than J is so that we can use [BBCK, Lemma 4.7] to obtain
above (3.11). The remainder of the argument does not use the condition on Js, and in particular
the constants can be taken to be independent of § € (0,1).)

Write J) (z,y) == r¥2J5(rz, ry) and /ig)(a:) = 2fRd\B(0 0 J) (z,y)dy for x € B := B(0,1).
Then we have from (3.8) and (3. 11) 7

/ / o f)] [u(t, 2)$(y) — d(@)u(t,y)]J " (z,y) dy da

-/ ¢<x>n

The main step is to show that for all ¢ in (0,1] one has

G'(t) > —er + cs /B (logut, y) — H(t)%6(y) dy . (3.12)

for positive constants c7, cs.
Setting a = u(t,y)/u(t,z) and b = ¢(y)/¢(x), we see that

[u(t,y) — u(t, )]
u(t, r)u(t,y)

[u(t, 2)9(y) — d(z)u(t,y)]
:qS(a:)(b—g—a—i—l)
—o@)[(1-p) - p (B 0)). 319

Using the inequality
1
A+Z—2Z(logA)2, A>0,

with A = a/v/b, the right hand side of (3.13) is bounded above by

(D(2)1? = p(y)1/%)? — V()b (y) (logv(t,y) — logu(t, z))>.

Substituting in the formula for G’(t) and using Proposition 3.2,
H(t)=G'(t —69+// log v(t,y) — logu(t,z))%\/¢ J(T (z,y)dx dy
>~ o [ (ogltyy) = G(0)o(0) dy
B

> —en + e /B (log ult.y) — H(t)*o(y) dy .

which gives (3.12). Note that in the first inequality we used the fact that
[ 0@ = o) 2210 @) dady+ [ sl (a)de = M2 01 < o

14



which follows from (3.9) and in the last inequality we used the fact that
| ozutt.) = )P0ty
= /B (logu(t, y) — G(t) + log ¢(y) — c6)” d(y) dy
< 2 [ (logultn) — GO o) dy +2 [ (Hloga(s) - )’ olu) dy
= 2 (logo(t.s) = G(O) olo) dy -+ e
Let g-(t,z,y) := riq(r’t,rx,ry), which is the transition density function with respect to the
Lebesgue measure on R? for the process Zt(r) := r~1Z,2,, whose non-local Dirichlet form is given

by the jumping intensity measure r¢+2.J (ra,ry). Using Theorem 2.4 and the fact that Ry < i <7
where R; is given in Theorem 2.4, for r2t > 1,

P, (2" ¢ B(,1/4))
= / rlq(r2t, ra, ry)dy
B(x,1/4)¢

= / q(r?t,rz, 2)dz
B(rz,r/4)¢

< 614/ 6_015|Z_Tx| dz
{zERd:Cl|z—7"ac|2max{C’17‘/4,rzt}}
2
—d.— C17|12 — T2
—|—016/ r~ d/zexp <—’ 5 | )dz
{zERd:rthC’l|z—rz|ZC’1r/4} Tt
T2t/Cl 2
_ —d,— C178 _
< 618/ e—c1slwl dw+619/ pdy—d/2 exp (—2> s 1ds
{weR%:|w|>r/4} r/4 T4t

o0

< 018/ eIl duy + ¢19 / exp (—cl7u2) uw?du.
{weR:|w|>r/4} 1/(4V1)

Let tp € (0,1/2) be small so that

619/ exp (—017u2) wldu < 1/16
1/(4v/%0)
and

018/ el duy < 1/16.
{weRd:jw|>1/(4v/10)}

We then have
P, (Zt(” ¢ Bz, 1/4)) <1/16+1/16=1/8  for every r > {g /> and 0 < t < t,.

By Lemma 3.8 of [BBCK], we have for every r > tal/Q,

P, sup |20 —Z|>1/4) <1/4.
s€[0,to]
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Therefore, with r > ¢, 1/ 2, for every t < o,

/ u(t,z)dz > Py | sup |27 — Z((]T)| <1/4
B(0,1/4)

s€0,to]
—1-PF [ sup (20— 2| >1/4]) > 3.
s€[0,to]
Here the conservativeness of Zt(r) is used in the first equality.
Choose K such that p1q(B(0,1/4))e ® = } and define
Dy := {x € B(0,1/4) : u(t,z) > e X},

By Proposition 2.2, if t < tg

3 < / u(t,z)dr = / u(t,x) dz +/ u(t, z) dz
47 JB(0,1/4) D: B(0,1/4)\D;

1
< Cgotfd/a/ubd(Dt) + Md(B(O, 1/4))€7K = Cgotfd/a/ubd(Dt) + Z

Therefore
7fd/oz
,ud(Dt) > —— >c99 >0 ift€[€/4,t0].
€21
Note that the positive constant coa = c22(g) can be chosen to be independent of r > to 1/2 and

xo € B(0,1/2).
Jensen’s inequality tells us that if ¢ < ¢y

H@ZLU%W@M@®<M/MMW@M<WWM:H.

B

On Dy, logu(t,z) > —K so there are only four possible cases:
(a) If logu(t,x) > 0 and H(t) <0, then (logu(t,x) — H(t))? > H(t)%.
(b) If logu(t,z) > 0 and 0 < H(t) < H, then

(logu(t,z) — H(t))? > 0> H(t)* — H".

(c) If =K <logu(t,x) <0 and |H(t)| > 2K, then (logu(t,z) — H(t))?

IV
[ =
=
~
S—

Do

(d) If —K <logu(t,z) <0 and |H(t)| < 2K, then

(logu(t,x) — H(1))* >0 >

16



Thus we conclude

(logu(t,z) — Ht)> > ~H(t)>— (HV K)*>  on D,.

=

Since ¢ is bounded below by cs3 > 0 on B

—

0,1/4), then
—c11 + 12 /B(log u(t,z) — H(t)2¢(x)dz > cio /D (logu(t,x) — H(t))*¢(x)dx — c1y

> coapa(Dy) (iH(t)z —(HV K)2> — 11
We therefore have
H'(t)> FH(t)> = E,  tc[e/4,t)
for some positive constants F and F' that are independent of r > ¢, 12,
Now we do some calculus. Let ty € [/2, to A 2] and let Q := max(16E, (16E/F)'/?). Suppose
H(tQ) < —(Q. Since H/(t) > —Fandto—t<tgN2 <2,
H(ty) — H(t) > —2F for t € [g/4,ta]. (3.14)

This implies H(t) < —Q/2. Since FQ?/4 > AE, E < £H(t)? and hence

H'(t) > §H<t)2'
Integrating H'/H? > F/2 over [%, t5] yields
1 1 F Fe
_ < (ty—e/a) < "
i) HEm S gl =3
Since H(e/4) < —Q/2 < 0, we have 1/H (t3) < —Fe/16, that is,
16
H(ty) > ——.
(t2) 2 Fe

This proves that either H(t2) > —Q or H(tz) > —16/(F¢). Thus in either case, H(t2) > —U,
where U = U(¢) := max{Q, 16/(Fe)} > 0, and so G(t2) = H(t2) —cs > —U — cs.

Now for every xg,z1 € B(0,1/2), applying the above first with 2y and then with xy replaced
by x1, we have

logqf(th,xO,:cl) :log/Bqf(tg,xo,z)qf(tg,xl,z) dz
210 [ af (t2,20,2)08 (t2,00,200(2) dz — 1og 0]
> [ 10g (a8 (2,0, 2)a8 (t2.1.2) ) 8(2) d= — o 0]
:/Blogqf(tQ,wo72)¢(2)dZ+/Blogqf(tz,xl,zw(@dz—10g||¢|!oo

> _2(U + CQG)a
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that is, ¢Z(2t2, zo,x1) > e~2(UFe26) A repeated use of the semigroup property (but at most 2/t
more times) then shows ¢Z(t,xo,21) > ca7(¢) for every t € [¢/2, 2] and xg, 21 € B(0,1/2). Taking
e = 1/4, we have for every r > t(;l/g, x,y € B(0,1/2) and t € [1/4,2],

74d

qr(

7“2t,7“x,7“y) = qu(t,JZ, y) > C8,
in particular,
Br(

q 7‘2,Tm,ry) > c28r_d.

Thus we have
qB(O’\/Z) (t,z,y) > coat™Y? for t > ty" and z,y € B(0,Vt/2).

Clearly the above inequality holds with B(0,+/t) and B(0,v/t/2) being replaced by any other ball
B(xo,/t) and B(xg,t/2) of the same radius, respectively. Consequently,

q(t,x,y) > qB(IO"/E) (t,z,y) > 028t_d/2 for t > tal and |z — y[z <t.

This proves the theorem. O

For any ball B C R?, let (£%B, F%B) denote the Dirichlet form of the subprocess Z%% of Z°
killed upon leaving the ball B. It is shown in [BBCK, Theorem 1.5 and Theorem 2.6] that (£9, F?)
and (£%B, FOB) converge as § — 0 to (&, F) and (EB, FB), respectively in the sense of Mosco,
where B is a ball in R?. Therefore the semigroup of Z% and Z%% converge in L? to that of Z and
7ZB | respectively. By the same proof as that for [BBCK, Theorem 1.3], we deduce from Theorem

3.4 the following lower bound estimate for the heat kernel of Z, which extends Theorem 1.3 in
[BBCK].

Theorem 3.5 Suppose the Dirichlet form (€, F) is given by (2.14)-(2.15) with the jumping kernel
J satisfying the condition (2.16). For each to > 0, there exists c; = ¢1(tg) > 0, such that for every
xo € Rd, t > to,

Pt (2, y) > at™ Y for g,y € Blxo,Vi/2)
and
q(t,z,y) > eyt 42 for q.e. x,y with |z —y|* < t.
Now we return to the case for the Dirichlet form (Q, D) given by (1.2)-(1.3).
Theorem 3.6 There exist ¢y, c1,co,c3,cq4 > 0 such that
co /2 when t > RS, |x —y|? < t,
¢ calz—y|
e = e () when | —y| > max(t/C., R), (3,15

_04\95 —yl

- ) when Cylz —y| <t < |z —y|?,

where R, and Cy are the constants given in Proposition 2.1 and in Theorem 2.3, respectively.
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Proof. By Theorem 3.5, we only need to show the second and third inequalities in (3.15). We
first prove the second inequality in (3.15). Let R := |z — y| and ¢4 := (4/R.) V (C,/T%) > 1. Let
I > 2 be a positive integer such that c; R <l < cyR~+1 and let x = zg, 21, ,2; = y be such that
|z; — 1| < 2RJ1 < 2/cy fori=1,--- 1 —1. (Here we used the fact that R? is a geodesic space.)
Since t/l < CLR/l < Cy/cy < T, and 2R/l < 2/c. < R, /2, by Proposition 2.1(ii), we have for all
(Yis yi+1) € B(wi, Ri/4) x B(@it1, R /4)

Pt/ i, yir1) > co ((t/l)d/o‘ A U%(/tl/)gﬂ> > ¢ ((t/l)’d/o‘ A (t/l)) = e/l (3.16)

since ¢/l < T, < 1. Let B; = B(z;, R./4). Using (3.16), we have

p(t,$,y) > / / p(t/lvxayl)"'p(t/layl—lay)dyl~'-dyl—1
B B4

et/ ea(t/1) = (est/)! = (cat/R) > es(t/R)F,

v

and the proof is completed.

We next prove the third inequality in (3.15). Take maximum [/ € N such that ¢/l < (R/l)?; then
R?/t —1 <1 < R?/t. Since t > C,R, we can take t/l > C2. Let x = zg,21,--- ,2; = y be such
that |z; — x;41| < R/l for i =1,--- 1 — 1. Since (R/1)? < t/l > C2, by Theorem 3.5, we have

p(t/l, x5, xip1) > e (812 (3.17)

Using (3.17), we have

v

p(t,z,y) // p(t/Lz,y1) - p(t/Lyi—1,y)dyr - . dyi—
B B

er(t/1)~ LY (ealt/D)~2(R/1))
er(t/1) ey
1 (t/1)2 exp(—esl)

2
C4t—d/2 exp <_C5|113 yl > '

AVARRAVARN V]

Y

t

This completes the proof. O

Remark 3.7 In [CK2], the following two-sided transition density function estimate was obtained
for the relativistic a-stable-like process where J(z,y) < |z — y|~¢ ¥~ 1#=¥l: for t < 1

t
c1 <td/°‘ A ) el < p(t,z,y) < es <td/a A > e~calz=yl,

|x7y|d+a ‘x,y‘d+o¢

Theorem 2.3 and 3.6 show that when |z — y| — oo, the behavior of the heat kernel for finite range
a-stable-like process is different from that of relativistic a-stable-like process. O
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We will use the following near diagonal lower bound for the killed process in the next section.
Recall that R, € (0,1) is the constant given in Proposition 2.1(ii).

Proposition 3.8 For every c¢; € (0,1), co,c3 > 0, there is a constant c4 > 0 such that for every
zo € R? and r < R,,

pPEon) (¢ 2 y) > cqt™ Y for g.e. xz,y € B(xg,cir) and t € [car®, car?]. (3.18)
Proof. Let k := ¢a/(2¢c3) and B, := B(xg,r). We first show that there is a constant ¢5 € (0, 1) so
that (3.18) holds for every r < R,, quasi-every x,y € B(zg,c1r) and t € [k cs5r®, c5r®]. We will use

the following Dynkin-Hunt formula, which is easy to establish using the strong Markov property,
since we know the existence of the heat kernels:

PPtz y) = pt, 2, y) — E*[Liry <np(t — 78, Xop, 0)]- (3.19)

For r < R, and t € [kcsr?®, csr?], and z,y € B(xg,c17), by (3.19) and Proposition 2.1(i) and (ii)
(Jz —y| < 2c17 < 2¢1(kes) ™2t~ we have

a,—d/a x —d/« t—T r
PP (t,2,9) > coe e — oo [1{%@ ((t—m) o Am—ZwH (3.20)
B,

where constants cg, c7 are independent of ¢5 € (0, 1]. Observe that

| Xrg, —yl > (1 —c1)r, t—71p, <t <csr®
and so )
(7
L= L= T % ~d/a (3.21)

<
[ X, —ylite = (L =—ec)r)) e = (1= cp)tte

Note that if c5 < ((1 —¢1)/2)®, by Proposition 2.1 (i), for t < c5r®

P, (X, ¢ B(z, (1 - c1)r/2)) = / ot 2, y)dy
B(z,(1—c1)r/2)°

< / b g < el <
<¢r ————dz < cg— < 305
B(ay(1—c1)r/2)c |7 — yloT e

where cg is independent of ¢5. Now applying [BBCK, Lemma 3.8], we have
Py (TB(a,(1—c1)r) < t) < 2cs65. (3.22)

Consequently, we have from (3.20), (3.21) and (3.22)

1+d citdle
p” (t,z,y) = (CGC5+ o _ 07(1_56WP36 (1B, < t)) 14/
1+4d/ Cl-l-d/oz
+ —
> (0605 a 67(1_5CWP36 (TB(:L"(I—Cl)T) < t)> t d/o
Z 05 « <66 — 20867(1_01)d+a> t /Oé'
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Clearly we can choose c5 < ((1 — ¢1)/2)® small so that pPr(t,z,y) > cot=%®. This establishes
(3.18) for any zg € RY, r < R, and t € [kcsr®, c5r®].

Now for r < R, and t € [cor®, csr®], define kg = [2c3/c5] + 1. Here for a > 1, [a] denotes the
largest integer that does not exceed a. Then t/kg € [k c5r®, csr®]. Using semigroup kg times, we
conclude that for q.e. z,y € B(zo,c17) and ¢ € [car®, c3r?],

pPron (t, 2, y)

= / / PPN (t /g, 2, w1) ... PO (kg w1, y)dw . . . dwp—y
B(zo,r) B(zo,r)

/ / pB(EO’T)(t/kO’x’wl)"'pB(xO’T)(t/kO,wn_l,y)dwl - dwy,
B(xo,(t/ko)t/*/2) B(zo,(t/ko)//2)

ko—1
> co(t/ko) ¥ (Cg(t/ko)_d/o‘ Cl?"d) ’
> et~
ko 1.4/ —d/a ko—1 .
where c19 1= ¢’k (010905 > . The proof of (3.18) is now completed. O

4 Applications of Heat Kernel Estimates

4.1 Parabolic Harnack Inequality

We first introduce a space-time process Zs := (V, X;), where V; = Vi — s. The filtration generated
by Z satisfying the usual condition will be denoted as {fs; s > 0}. The law of the space-time
process s — Z, starting from (¢, ) will be denoted as P(:%).

We say that a non-negative Borel measurable function h(t,z) on [0,00) x R? is parabolic (or
caloric) on D = (a,b) x B(zg,r) if for every relatively compact open subset Dy of D, h(t,z) =
E®2) [W(Z7,, )] for every (t,z) € D1 N ([0,00) x RY), where 7p, =inf{s > 0: Z, ¢ D;}.

For each r > 0, we define

Y(r) == r® v

Theorem 4.1 For every § € (0,1), there exists ¢ = c(a,d) > 0 such that for every xo € R, tg >0,
R > 0 and every non-negative function u on [0,00) x R that is parabolic on (to,ty + 651 (R)) x
B(IEQ, 4R),

sup  u(ty,y1) <c inf  u(te,ye), (4.1)
(t1,y1)€Q— (t2,y2)€Q+

where Q_ = (to+0Y(R), to+251(R)) x B(xg, R) and Q+ = (to+35(R),to+46Y(R)) x B(xg, R).

To prove the theorem, we need one notion and one lemma. According to [BBK], we say (UJS)
holds if
J(z,y) < Cd/ J(2',y)da’  whenever r < 3z —y|, z,y € RY. (UJS)
™™ JB(z,r)
For R > 0, we say (UJS)<g holds if the above holds for all z,y € R? and r < u%y' A R.
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It is easy to check that finite range jump process satisfies (UJS)<;.

The following lemma corresponds to [CK1, Lemma 4.9] (also [CK2, Lemmas 6.1]). The state-
ment is changed (in the sense that the size of two space-time balls are different and the initial
points are also different) and the proof requires major changes from the original ones.

Lemma 4.2 Let R< R, and § < 1. Q1 = [to + 2(5Ra/3, to + 5(5Ra] X B(.%'o,?)R/Q), Qs = [to +
SR%/3, to+66RY] x B(xg,2R) and define Q_ and Q4 as in Theorem 4.1. Let h : [0,00) x R* — R,
be bounded and supported in [0,00) x B(xg,3R)¢. Then there exists C; = C1(0) > 0 such that the
following holds:

E(tl,yl)[h(z

TQy )] S (/\’11[’E(t2’y2)[h(ZTQ2 )] fO'f' (tla yl) € Q— and (752,?/2) € Q+'

Proof. Without loss of generality, assume that ty = 0. Denote B.gr = B(zo, cR). Using the Lévy
system formula,

EC9[1(Zy,,)] = B[kt = (tpy0 A (b2 = 0RY/3)), Xop s—sre/3))]

' ts—0R™/3
— E(t22) /0 l{tSTBzR}dt/gR h(ty —t,v)J(X¢,v)dv

to—6R%/3
/ h(ty —t U)dt/ E(tz’yz)[l{tSTB2R}J(Xt,’U)]dv
J

s/c EO.2) |:1{t2*SSTB2R}J(Xt2_8’/U)i| dv

§R%/3
to
= / ds/ h(s U)dv/ pP2R(ty — 5,40, 2)J (2,0)dz (4.2)
srRe/3  JBg, Bar
t1
> / / h(s U)dv/ pP2R(ty — 5,49, 2)J (2,v)dz.
SR/3 BSp Bar

> / ds/ (s,v dv/ PR (ty — 5,40, 2)J (2, 0)dz. (4.3)
SR>/3 R B3r)2

Since 60RY >ty — s > ta —t1 > 0R® for s € [§R*/3, t1], by Proposition 3.8, we have that the right
hand side of (4.3) is greater than or equal to

/ / h(s,v)dv/ J(z,v)dz.
dR>/3 R B3r/2

So, the proof is complete once we obtain

Etv)[n(Z 0,)] < /Ra/gds/c h(s,v)dv/B / J(z,v)dz. (4.4)
3R 3R/2

Analogous to (4.2), we have by using the Lévy system,

t1
E(tl’yl)[h(ZTQ )] - / ds/ h(s’v)dv/ pBSR/Q (tl - S5, Y1, Z)J(Za ’U)ClZ.
! 26R*/3 ¢ Bsgy2
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Since

/ pBgR/Z (tl — S’yl’z)/ J(z,v)h(s,v)dvdz
B3r/2

c
BSR

= / pParr2(ty — Sayl,z)/ J(z,v)h(s,v)dvdz
Bsr/a

c
B3R

+/ pPsrs2(t) — s,yl,z)/ J(z,v)h(s,v)dvdz = I + I.

B3r/2\Bsr/4 BSp

When z € B3g/s \ Bsgya, we have |y1 — z| > R/4, so by Proposition 2.1(i), pSBSR/Z(yl,z) < c3R™?
for some constant c3 > 0 and fotl Iy ds is less than or equal to the right hand side of (4.4). For
z € Bsgyy by UJS<1,

/ J(z,v)h(s,v)dv < ;;d/ / J(2',v)h(s,v)dvdz'
¢ B(=.R/6) J B,

3R
< CA;/ / J(2',v)h(s,v)dvdz
R BSR/2 Bsg

since B(z, R/6) C Bsp /2. Since the right hand side of the above inequality does not depend on z
anymore, multiplying both sides by pP3r/2(t; — s,y1, z) and integrating over z € Bsp /4 (and further
integrating over fztha/:s ds), we obtain fgl I1ds is less than or equal to the right hand side of (4.4).
This proves the lemma. O

Proof of Theorem 4.1. Let R, denote the constant given in Proposition 2.1. We first
consider the case that u is non-negative and bounded on [0, 00) x R¢.

(1) Suppose R < R, /2. When t € (0, RY] and |x —y| < Rs, one can prove [CK1, Lemmas 4.11]
(also see [CK2, Lemmas 6.2]) from our heat kernel estimates in Proposition 2.1. Given our Lemma
4.2 and the lemmas corresponding to [CK1, Lemmas 4.11, and 4.13], the proof of the parabolic
Harnack inequality is similar to those in [CK1, CK2] with some modification. We skip the details
here. Interested reader can find its full proof in [CKK].

(2) Suppose R € (R./2,1] and let (t1,21) € Q- and (t2,z2) € Q4. Without loss of generality,
we may assume zo = 0 and tg = 0. We further assume that |z1 — 22| < R, /8. If not, we just repeat
the argument below at most 16[R/R*] times.

For notational convenience, denote R, /2 by 7. and let B = B(z1,7), B2 = B(z1,7+/2). Define

Q1 = (t1 + 3¢(r.), t1 + 2y(r.)) x (B'\ B?) and Q2= [0,t] x B2
Since w is parabolic, by the case (1) but with
(t1 — So(ry), t1 + S(rs)) x B and (t1 + S9(ra), t1 + 24(ry)) x B
in place of _ and @)y respective, we have
u(ty, o) = EI22) {u(ZTQQ )]

> [E(t222) [U(ZTQQ) t Zrg, € Ql} > cru(ty, z1) Pp(t2:72) (Z1g, € Q1) .
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Since |y — 2| < 2r, = R, < 1 for every (y, z) € B?> x B!, we have by the Lévy system formula for

X that

Pp(t222) (ZTQ2 € Ql) = P (X, € B ta—t1 — B(r,) < p2 <t —t1 — J3(rs))

Y

é
t2—t1—§'¢)(7"*) B2
b (57 x2, y)
CQ/ 35 / / - Wdz dde
to—t1— 5 Y (rs) J B B\BZ Y
)
to—t1—5¥(r+) )
> 63/ . / P (s, w2, y)dyds
tg—tl—Il/J(’r‘*) B2
for some positive constants ca = c2(a, d) and c3 = c3(a, d, Ry). Note that
Sp(ri) < to —t1 — Bop(r,) < to —t1 — S(ry) < 309(2r.).
Applying Proposition 3.8 to pB2 (s,x2,y), we have

P22 (Z,, € Q1) > e /

to—t1 *%61/1(7“*)

t2—t1—%¢(7’*)

This proves that u(te,x2) > cgu(ti, 1) for some positive constant cg = cg(d, o, Ry, 9).

/ s~ q(dy)ds > cs 31/1(7"*) > 0.
B(x1,1(r+/8))

(3) Now let’s consider the case R > 1. We will use balayage; see [BG, Chapter VI] for details,
and see [BBCK, Theorem 1.7] and [BBK, Proposition 3.3] for similar arguments. Without loss
of generality, we may assume xzyp = 0 and tc = 0. Let B = B(0,4R), B = B(0,3R), E =
(0,669 (R)) x B', Q = (0,681 (R)) x B. As in the proof of [BBCK, Theorem 1.7], we define ug, the

réduite of u with respect to £ by

’U,E(S,J}) = E(s’w)[u(VTE,XTE) Ty < TQ],

where T = inf{s > 0 : Z; € E}; then u = ug on E. By the balayage formula, there exists a

measure vg supported on F such that
up(t,z) = / pB(t —r,x, 2)vg(dr,dz) for all (t,z) € Q,
E

where pZ(s,z,y) = 0if s < 0.
Let (t1,21) € Q- and (t2,72) € Q@+ and observe that

30U(R) >ty —r >ty —t1 > dYP(R) for every r € [0, t1].
It follows from Theorem 3.5 and semigroup property that
pB(ta —r,y,2) > e R, for all y, z € B/,r € [0,14].

The above gives us that

up(te, ro) > / pB(t —r, x, 2)vp(dr,dz) > C—IdVE([O,tl] x B).
[O,tﬂxﬁ R
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Thus in order to prove the parabolic Harnack inequality, it suffices to show the following for each

(t1, 1) € Q—;

ug(t, 1) = / pB(ty — r,x1, 2)vp(dr,dz) < C—ZdyE([O,tl] x B). (4.6)
[0,61]x B R

Since the jumps of the process X are bounded by 1 and R > 1, ug is parabolic (caloric) on
(0,689 (R)) x B(0,2R). Tt follows that the support of v is contained in E\ (0,66¢(R)) x B(0,2R).
Thus, we can write

up(t,z1) = / pB(t1 —r,x1, 2)vp(dr,dz),
Fl(tl)UFQ

where Fy(t) := [0,t] x (B’ \ B(0,R)), F, = {0} x B’. If (r,z) € Fi(t1), then |r; — 2| > R, so
by (2.3) when ¢; —r > 6(R) and by Proposition 2.1 (i) and Theorem 2.3 otherwise, we have
pP(t1 — rx1,2) < 3R~ If (r,2) € Fy, then t; — 7 > 6¢(R) and by (2.3) again, we have
pP(t1 —r,x1,2) < 3R~ Thus,

C C __
uE(tl,:rl) < Rii;VE(Fl(tl) U FQ) < FZVE([O’tl] X B’)

and (4.6) is established.

Finally, we will prove (4.1) when u is not necessarily bounded on [0,00) x R%. Let U be a
bounded domain such that Q- UQ+ C U C U C (to,to + 651 (R)) x B(zg,4R). For any n € N,
define u,, (t,z) = E®®)[(uAn)(Zy,)]. Then u,, is non-negative and bounded on [0, 00) x R%, parabolic
on U and lim,, oo un(t, ) = u(t,x) for z € [0,00) x R% From the above arguments, we see that
(4.1) holds for u, with the constant ¢ independent of n. Letting n — oo, we obtain (4.1) for u. O

By the same proof as that for [CK1, Theorem 4.14] or [CK2, Proposition 4.14], we have the
following Holder continuity for parabolic functions.

Theorem 4.3 For every Ry € (0,1], there are constants ¢ = ¢(Ry) > 0 and k > 0 such that for
every 0 < R < Ry and every bounded parabolic function h in Q(0,xo,2R) := (0, (2R)*) x B(xo, 2R),

h(s,) = At )| < el|lloo,p B (1t = 5] + |2 — y1) (4.7)

holds for (s, ), (t,y) € Q(0,xo, R), where ||h||oo,r 1= SUD( y)c(o, (2r)o|xre |1, Y)|. In particular, for
the transition density function p(t,z,y) of X, for any ty € (0,1), there are constants ¢ = c(ty) > 0
and k > 0 such that for any t, s € [to, 1] and (z;,y;) € R x R with i = 1,2,

— K
pls21,0) = p(tswz, )| < etf (= 4oy —aa 4l —wl) . (48)

Remark 4.4 (i) Since the heat kernel p(t,x,y) is Holder continuous, the estimates derived in
previous sections for p(, z,y) hold for every x,y € R%.
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(ii) Note that the proof of Theorem 4.3 needs only the short time heat kernel estimates in Propo-
sition 2.1 on p(t,z,y) for t € (0,7%] and for q.e. z,y € R? having |z — y| < R, for some
T, € (0,1) and R, € (0,1]. Therefore as long as a pure jump symmetric strong Markov
process Y has a transition density function p(¢,x,y) that has the two sided short time finite
range estimates as that in Theorem 4.3 for ¢ € (0,0) and (z,y) € R? x R? with |z — y| < rg
for some ty and rg > 0, it can be established directly from these heat kernel estimate that
every bounded parabolic functions of Y is Holder continuous. If in addition we have (UJS)<;
and the lower bound on the heat kernel p?(t,x,%) as in Proposition 3.8, then the parabolic
Harnack inequality (Theorem 4.1) can be proved for R < R, /2.

(iii) In fact, (UJS)<; is necessary for the parabolic Harnack inequality for R < 1. This is proved in
[BBK, Proposition 4.7] for the discrete space setting, and the proof for the continuous space
case can be found in [CKK].

(iv) There is a minor gap in the proof of [CK2, Lemma 6.1]. Condition (UJS)<; should be
imposed on the jumping kernel J for this lemma and consequently for the main results (such
as Theorems 1.2 and 4.12) of [CK2|. Note that (UJS)<; is automatically satisfied if ¢ = 1
in (1.12) of [CK2| (corresponds to the case y1 = 72 = 0). A sufficient condition for J to
satisfy condition (UJS)<; is that the function ¢ in (1.12) of [CK2| has the property that
P(r+1) < cotp(r) for every r > 1. O

Suppose that Y is the Hunt process associated with Dirichlet form (Q, D) given by (1.2)-(1.3)
whose jumping intensity kernel J(z,y) has the property that J(z, Y)1{(2,y): d(z,y)>x} s bounded and

c(z,y)

J(a:,y)zm

for [z —y| <1 and sup / J(z,y)dy < oo, (4.9)
z€R J{yeR: |y—z|>1}

where ¢(z,y) is a function that is bounded between two positive constants and is symmetric in z
and y. Then by the Meyer’s construction method (see [BBCK, Lemma 3.6] and [BGK, Lemma
3.1(c) and (3.18)]), the process Y can be constructed from the finite range a-stable-like process X

c(z,

having jump intensity kernel %1{@,?}‘31} and so Y has a transition density function q(¢, z,y)

with respect to jig. Moreover, for any ball B ¢ R?,
g(t,z,y) > e Wlep(t,z,y) and  ¢®(t,,y) > e Wl=pB(t, 2, y), (4.10)

and

where p(t,z,y) is the transition density function of X,

Ha) = T ey and Ta) = [ Bl ppaldy)

Thus using the heat kernel estimate for p(¢,x,y) in Proposition 2.1 and Proposition 3.8, by the
same line of argument as that in the Remark 4.4(ii) we have the following.
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Theorem 4.5 The Hélder continuity estimate (4.7) holds for bounded parabolic functions of Y.
In particular, all these applies to the transition density function q(t,z,y) of Y. Moreover, if we

assume (UJS)<g, in addition, then the parabolic Harnack inequality (4.1) holds for non-negative
parabolic functions of Y with R < Ry /2.

The full detail of the above theorem will be given in more general format in [CKK].

Remark 4.6 Very recently, Kassmann [Ka, Theorem 1.1] proved by a quite different analytic
method the Holder continuity for bounded harmonic functions of symmetric pure jump processes
whose jumping intensity kernel J satisfies the condition

J(z,y) = c(z,y)|e—y|~ for |t —y|<1 and J(z,y) <clz—y| """ for|z—y|>1,

where n > 0 and ¢ > 0 are two positive constants. Clearly, such type of jumping kernel is a special
case of those given by (4.9). Since every harmonic function is parabolic, our Theorem 4.5 recovers
and extends the main result of [Kal. See [S] for some related work on the Hélder continuity of
bounded harmonic functions for a class of non-local operators. O

4.2 Two-sided Green Function Estimates

When d = 1,2, the finite range a-stable-like processes are all recurrent. So in this subsection, we
assume d > 3 and give two-sided sharp estimates the Green function for G(z,y) of finite range
stable-like process X in R¢ where

Gla,y) = / p(t,z,y)dt, @y e R
0

Theorem 4.7 There exists ¢ = c(a,d) > 1 such that

1 1 1 1
B <G = e R%.
& (:n — y’d—a + Iz — y|d_2) < G(r,y) <c 7 — y’d_a + 7 — y|d—2 , T,y

Proof. We first note that for every T, M € [0, c0)

lz—y|?

oo |z —yl 1 -
/ t_ge_ = 2ty dt = d—2/ g u%e_%Mudu. (412)
T |z —y| 0

Recall that R, < 1 and T, = R? are the constants from Proposition 2.1(ii). Using (4.12), it is easy
to see that, if |z — y| < R, by Proposition 2.1 (i) and Theorem 2.3

el t T d X4 _cyle—y)?
G(z,y) < 01/ |dt+02/ t~ /adt+(:3/ "2 o dt
0 \ !

L= y|d+a -yl
2
cs N c3 % % —%qud < Ce
u e u —_—.
|z —yld=> |z —yl2 )y T |z —ylde
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On the other hand if |z — y| > R,, by Theorem 2.3 and (4.12)

Cylz—y| T — 00 S
G(z,y) < 07/ exp <—c8|x —yl|log ‘ty‘) dt+cg/ e T gt
0

Culz—yl
Cylz—y| 7‘050?" B
< 07/ exp (—ciolz — y|) dt + ngz/ u'T e
0 |z —y[?=2 Jo

C11 C12
<
lz —yli=2 = |z — y|d2

< Cyl|z — ylexp (—ciolz — y|) +

where C, < 1 is given in Theorem 2.3.
The lower bounded is easier. If |z — y| < R, by Proposition 2.1(ii)

t C13
dt = .
o —y]Te T T 2fa —yj-

lz—y[*
G(z,y) > 613/
0

If |x — y| > R, by Theorem 3.6 and (4.12)

o) 1
G(z,y) > 014/ R dt = Cl4d_2/ T du.
|lz—y|? ‘$ - y‘ 0

Remark 4.8 Under some mild assumptions on bounded open set D, when ¢(z,y) is a constant,
Green function Gp(x,y) for X in D is comparable to the one for isotropically symmetric stable
process in D (see [GR, KS2]). Theorem 4.7 shows that, unlike bounded open sets, the behavior of
the Green function for X in R is different from the behavior of the Green function for isotropically
symmetric stable process in R%. O

Now let’s consider the more general non-local Dirichlet form (€, F) in (2.14)-(2.15) with the
jumping kernel J satisfying the condition (2.16). Recall that ¢(¢,z,y) is the transition density
function for the associated Hunt process Z with respect to the Lebesgue measure on R?. For d > 3,
let

V(z,y) ::/0 q(t, z,y)dt, z,y € R

Using Theorems 2.4 and 3.5 instead of Theorems 2.3 and 3.6 respectively in the proof of Theorem
4.7, we get the Green function estimate for the process Z for |z —y| > 1.

Theorem 4.9 There exists ¢ = c(a,d) > 1 such that

1 1
! < V(z,y) <c

eyl =
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4.3 Differentiability of Spectral Functions

In [TT, TT2, Ts|, the differentiability of spectral functions for symmetric stable processes are
studied.

Recall that X is a finite range stable-like process considered in this paper whose Dirichlet form
(Q,D) is given by (1.2)-(1.3) whose jumping intensity kernel J(z,y) = %Hu-mgl}- Let p
be a signed measure in Kato class Ko (X) as introduced in [C]. The associated spectral function

C()) is defined to be

C(\) = — in {Q(u, u) + )\/Rd w(@)2u(dz) : u € D with /

R4

u(z)?de = 1}.

Using the heat kernel estimates established in this paper, by an almost same argument as that in
[TT, TT2] and [Ts|, it can be shown that if d < 4 and if the extended Dirichlet space (Q,D,) is
compactly embedded into L*(R%, |u|)), then X — C()) is differentiable on R. But we will not go
into details about it.

5 Weighted Poincaré Inequality of Fractional Order

Throughout this section, » > 1, o € (0,00) and « € (0,2). Recall that p4 denotes the Lebesgue
measure in R%. In this section, the exact values of the constants ¢’s are always independent of r
and they might change from one appearance to another. Let M (o) be the set of all non-increasing
function ¥ from [0, 1] to [0, 1] such that U(s) > ¥(1) = 0 for every s € [0,1) and
U(s+2((1—s)A3) > o¥(s), se(0,1). (5.1)
We will use N (o) to denote all the functions ® of the form ¢¥(|z|) for some ¥ € M(o) having
Jga ®(x)dz = 1. Note that, when 3 € (0,2), ¢(1 — ’x‘2)12/(2—,8)1B(071)(x) is in A((1/8)12/(2=9)),
Condition (5.1) says that for each ® € N (o), values of ® at points with comparable distance from
the unit sphere 0B(0,1) are comparable. This implies that values of ® in balls in Whitney-type
covering, which will be discussed below, are universally comparable to each other. This property

will be used in many places below.
For ® € N(0), define

Up = / u(x)®(x)dz.
B(0,1)
This section is devoted to prove the following form of weighted Poincaré inequality.

Theorem 5.1 For every d > 1, 0 < a < 2 and o € (0,00), there exists a positive constant
c1 = c1(d, a, o) independent of r > 1, such that for every ® € N'(o) and u € L'(B(0,1), ®(x)dx),

/ (u(z) — ugp)?®(x)dx
B(0,1)

7.2701

< c w(z) — u(y))?——————1 (D) AP dxdy.
< @ /B e ()~ WO G ) () £ 8(0) ddy

Moreover, the constant ¢1 stays bounded for a € (0,2).
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The exponent 2 — « of r in the integral above is quite delicate to get. We will prove the above
theorem through several lemmas. For the remainder of this section, we fix ¢ € (0,00) and ® € N (o).
We first prove the following simple lemma. Let

1
UB(p.s) ‘= — = u(y)dy.
B B O

Lemma 5.2 For every B(z,s) C B(0,1) and every u € L'(B(z, s),dz),

u(z) —u 2dx v () — w(e) 2dedy.
/B(Z,8)< ( ) B(Z7S)) a = Md(B(Z,S)) /;(z,s) /B(z,s)( ( ) (Z/)) d dy

Proof. By Cauchy-Schwartz inequality,

2
—u Ya)de = _ u(z) —u x
/B(z,s)(U(x) B(z,s)) (z)d /B(z,s) (#d(B(Z,S)) /B(;,«,s)( () (y))dy> d

o w(z) — u(y))’dx
Nd(B(ZNS)) /B(zs) B(z,s)( ( ) (y)) d dy

IN

Recall Whitney-type coverings (see [SC, Section 5.3.3] for details): We first let
_ 1
W= {B : the center of the ball B is in B(0,1) and r(B) = 103p(B)}

where r(B) is the radius of the ball B and p(B) denotes the Euclidean distance between the ball
B and B(0,1)¢. In the sequel, for A > 0 and a ball B = B(x,r) centered at x with radius r, we
denote AB the concentric ball B(z, A7) with radius Ar.

Start W by picking a ball B € W with the largest possible radius. Pick the next ball B?
to be a ball in W which does not intersect B and has maximal radius. Assuming that k balls
BY, ... BF1 have already been picked, pick the next ball B¥ to be a ball in W which does not
intersect U?;éBj and has maximal radius. Though this procedure, we get a sequence of disjoint
balls W := {B°,...  B¥=1 Bk ...} from W. Moreover, the Whitney-type decomposition of the
unit ball B(0, 1) has the following properties (see, for example, page 135 of [SC]).

(1)
B(0,1)= | 2B.

Bew

(2) There exists a positive constant K such that

sup #{BcW:ycl0’°B} <K (5.2)
y€B(0,1)

where #5 is the number of elements in the set S.
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There exists a ball B(0) € W such that 0 € 2B(0). We pick an fix such a ball B(0) and call it
the central ball of W. For any B € W, let yp be the straight line segment between the center of B
and the origin. Let

W(B) := {AeW: 2AN~p # 0}
Now we define the chain W(B) := (Bo, B1,--- , Bypy—1) with By = B(0) and Bypy_; = B as
follows; Starting from the origin, let ¢y be the first point along vp which does not belong to 2Bj.
Define B; to be (any) one of balls in W(B) such that yo € 2B;. Inductively, having By, By, - , By
constructed, let yi be the first point along vp which does not belong to U;‘?:OQBj. Define By to
be (any) one of balls in W(B) such that y; € 2Bi1. When the last chosen is not B, we simply
add B as the last ball in W(B).
Using Lemma 5.2, the next lemma can be proved easily.

Lemma 5.3 There exists a positive constant ¢ = ¢(d) such that for every B € W, B;, Biy1 € W(DB)
and for every u € L'(B(0,1), ®dx),

1 1/2
¢ 2
U4B;, — U4B; < g / / u(z) — u(y))“dzdy .
| il , Olud(BiJrj) ( 4B 4Bi+]~( (@) ~uly)

j:
Proof. Note that

(ka(4B; N4Bi1)) *luap, — uap,,, |

1/2
= (/ ’u4Bi - u4B¢+1|2/'Ld(dx)>
4Biﬂ4Bi+1

<AB¢ ule) = U4Bi’2Md(dx)> : i </43i+1 u(z) — 4B, |2Md(d:c)> 1/2.

Now the lemma follows from our Lemma 5.2 and the fact that

IN

1a(4B; N 4B;11) > cmax{uq(B;), pa(Bit1)}

(see Lemma 5.3.7 in [SC]). O

Lemma 5.4 There exists a positive constant ¢ = c(d, o) such that for every B € W, B;, Bi11 €
W(B) and for every u € L'(B(0,1), ®dz),

1

1/2
Vg |uap, —uap,,| < Z; M(giﬂ) (/mH /43¢+j (u(z) = u(y))*(®(z) A <I>(y))d:vdy> :

j=
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Proof. Since the values of ® are universally comparable to each other on 4B for every B € W, we
have from Lemma 5.3

|uap; — UaB;,, | (5.3)
1

1/2
]Z% (Hd(Bi+j))1/2(fBi+. D(y)dy)1/2 (ABHj /4Bi+j (u(x) — u(y))2(@($) A ‘I)(y))dacdy> )

Note that

IN

10° 1
p(A) = 103r(A) > %T’(B) = ZP(B) for every A € W(B). (5.4)
(See Lemma 5.3.6 in [SC].) Using (5.1), (5.4) and the fact that ¥ is non-increasing, there exists a

positive constant ¢ independent of B such that

d < in ¢ f A e W(B).
I;leaé( (y) < 01;1612 (y) or every (B)

Thus we have

1 / 1
dp = d(y)dy < ¢ /bedy for every B; € W(B). 5.5
B ,U/d(B) 5 ( ) ,U/d(Bz) B, ( ) ( ) ( )
The lemma follows from (5.3) and (5.5). O

The proof of the next lemma is similar to that of Theorem 5.3.4 on page 141-143 of [SC]. For
reader’s convenience, we nevertheless spell out the details of the proof here.

Lemma 5.5 There exists a positive constant ¢ = c(d, o) such that for every u € L*(B(0,1), ®dx),

2
/3(071)(U( %) uq) T < ¢ Z /A><4A(U(x) —u(y))*(®(z) A ®(y))dzdy.

Proof. Note that

IA
()

2 2
/B o () a0 2 ( /B . @(x)dx) (o — usn()

— U 2 X )ax u\r) —u 2 X )ax
/ 1 () 500 2 /B 1 )~ 500

IN
()

< 4 Z/ —u4B(0))2<I>(x)dac
Bew
= 83%1;\;/ ) — usp)?®(z)dx + 83%;\)@43 —u4B(0))2 /43 ®(z)dx
1 (N2 (B(x N
S 0T ) L)~ U000 N0y
tc Z /1B |usp — U4B(o)‘(@3)1/2>2dz,
Bew
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where in the last inequality, we used the fact that the values of ® are universally comparable to
each other on 4B for every B € W. To establish the lemma, it suffices to deal with the second
summation above.

By Lemma 5.4, we get

lusp — up()| (P5)/*1p(2)
I(B)—2

< Z lusp, — usp,,, |(®5)/*1p(2)
I(B)-1 12
! —Uu 2 T i z
< o 2wty (U L (60— @) n2a) 15t
s 12
= ¢ Z; <5 < A ., A . (u(x)—u(y))2(<1>(x)/\<1>(y))d:ndy> Lot ()15(2)
1/2
< e o (] ) - w2 nededy)  Lia)se)

AEW

In the first equality above, we have used the fact that B C 10*B; (Lemma 5.3.8 in [SC]). Since the
balls in W are disjoint, summing both sides over B € W and taking the square, we get

2
Z 15(2) (|U4B - U4B(0)|((I>B)1/2>
Bew

¢ (A o ( N RCEREORCTS A@(y))dmdy> 1/21104A<z>>

Integrating over z € B(0,1), and using Lemma 5.3.12 in [SC] and the fact the balls in W are
disjoint, we have

2
Z /13 \U4B—U4B(0)’®}9/2) dz

2

Bew
< c/ (A 3 </ / (@) — uly 2(@(95)A@(y))da:dy>1/21104A(z)>2dz
< c/ (A 1A </ / 2((1)(95)A@(y))dwdy>1/21,4(z)>2dz

EW
< / AZW (] / (D) A () dzdy ) 1(2)ds
> " ( / | (0le) — w0 A () sy ).
EW
This completes the proof for the lemma. O
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Lemma 5.6 There exists a positive constant ¢ = c(d, o) such that for every u € L*(B(0,1), ®dx),

/ (u(z) — 1e)2®(x)dx
B(0,1)

c (u(z) = u(y))?
1 P ) .
102« /B(o,l)xB(o,l) |z — yldte ﬂm_ygﬁ}( (@) A 2(y))dwdy

Proof. Since |z —y| < 8r(A) < # if z,y € 4A, we have for every A € W

L uw(z) —u(y))?(®(x ~
o (o) = )00 A B()dady

¢ u(r) —u x — yldte
= (7"(A))d/4AX4A( L ’w(_y)y)’dLa y LY y\<102}( () A ®(y))dxdy

¢ (u(x) — u(y))®
< -_ .

It then follows from Lemma 5.5 and (5.2) that

/ (u(z) — ugp)*®(z)dx
B(0,1)

u(y)?
< AT\ A
< o [ e (@) A Ry

Aew
c (u(a) — u(y))?
< _— .
< 1o /B(Oﬁl)wm L ey (00) A0y

O
Due to Lemma 5.6, we have Theorem 5.1 for 1 < r < 10%. So, from now we may assume r > 102

Lemma 5.7 There exists a positive constant ¢ = c(d,o) such that for every r > 10% for every
u € LY(B(0,1), ®dx),

/ (u(z) — up)?®(z)dx
B(0,1)

,r.*a

<L ) O T G e ey (B() A By

(u(z) — u(y))?
+C/ L 1 (R(2) A P(y))dzdy.
B(0,1-12)x B(0,1-12) |z — yl|d {l y\<132}( () A @(y))

Proof. By Lemma 5.5, we have

— e )2B(z)dr < ¢ (u(z) —u()? ( |z —y|\* . N
/B(O,l)(U(x) 2)"®(2)dr < Z /A><4A < r(A) > (@(z) A @(y))dzdy

Acyy /4 |z -yl

|z — yld

ul\xr) —u 2
el ¥ o+ % | = a0) A () dody
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If Ae W and r(A) < then |z — y| < 8r(A) < L for every z,y € 4A. So using (5.2), we have

10’

—Q

,
I < ¢ > / (u(z) = w(¥)) —gza Le—yi<1/r} (P(2) A (y))dady
1 4Ax4A |z —yl
eEW:r(A)<

,,,.—Oé

<cf e 1)<u<x> ) [ L) () A 2(0)) iy

On the other hands, if A € W and r(A) > ﬁ, then for every pair of points x,y in 44, we have
|z — y| < 8r(A) < 1§z and

dist(z, B(0, 1)) > p(A) — dr(A) > 10%(A) > 170

Therefore, using (5.2) we have

U 2
mee Y /,4 I ey (B() A 2 dsdy

_ yld <
AeEW:r(A)> ‘x y‘ 0%

C/ (u(z) —u(y))?
B(0,1-12)x B(0,1-19) |z — y\d

IN

O

For our purpose we need to construct another covering; For each 7“ > 102, we let V =V, :=
{Bl, ‘.- } be a maximum sequence of disjoint balls with radius W that we can put inside
B(0, . ) Note that

B(0 1—9) c [J2Bc |J10°B c B(O 1—9)
) /r b r .
Bey Bey

For every y € B(0,1), since Upey.yeap B C B(y, 1),

#{BeV: ye2B} (B0, 155-)) < pa(Bly, 125)).

Therefore we have
sup #{BecV:yc2B} <3 (5.6)
y€B(0,1)

Recall that p(B) denotes the Euclidean distance between the ball B and B(0,1)¢. For balls A
and B in V with dist(A4, B) > ;- and p(B) > p(A), we construct the path y4 p starting from A
in the following way. Let x4 be the center of A and zp be the center of B. If |zg| > 1/(400r),
then let yp := |‘ ||£UB so that xp is in the straight line segment from yp to 0. Let 'yAB be the
straight line segment from yp to xp. We also let 'YA,B be the shortest path from z4 to yp with
%14,3 C 0B(0, |z 4]). In this case, 74 p is the union of 7}173 and 712473 starting from x4 and ending
at xp via yp. If |xp| < 1/(400r), let y4 p be simply a straight line segment between 0 and x 4.
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For A, B € V with p(B) > p(A), let

V(A,B) :=={CeV:2CN~vyap#0}

and define the chain V(A, B) := (Co, C1, -+, Cya,py—1) with Co = A and Cj4 py—1 = B similar to
the chain in the Whitney-type coverings; Starting from the center of A, let 3y be the first point along
v4,B which does not belong to 2Cy. Define C to be one of balls in V(A, B) such that yg € 201.
Inductively, having Co, C1, - - - , C}, constructed, let y; be the first point along v4 g which does not
belong to U?ZOQC]-. Define C 1 to be one of balls in V(A, B) such that y € 2Cj,1. When the last
chosen is not B, we add B as the last ball in V(A, B).

In the sequel, for every path v in R? we denote by |v| the length of .

Lemma 5.8 There exists a positive constant ¢ = c(d) such that for every r > 10% and every
A, B €V with p(B) > p(A), |va,| > 1 and dist(4, B) < =,
lx —y| > ;#V(A,B) > ;#V(A,B) > |va,8l, for every (z,y) € 2A x 2B. (5.7)

In particular,

#V(A,B) < #V(A,B) <ecr. (5.8)

Proof. It is easy to see that the length of v4 p is less than or equal to 4|x—y| for every (x,y) € AxB.
Thus by using the fact that balls C’s in V(A, B) are disjoint and that Uceva B)C is within the

Tlor—neighborhood of YA, we have

— 1

P =e 3 palC) < clo—ylr
CEV(A,B)

and so #V(A,B) < crlz —y|.
On the other hand, since 2C’s in V(A, B) covers y4 g, it is easy to see that

. 1
E:={xz € B(0,1) : dist(xz,va,B) < 2000 } C U 3C

CeV(A,B)
and that
E) > Ly
Ha(E) = clyasl(2)™
Thus 3
chaslr! ™ <pu(B) <Y ma30) = #V(A, B) - (15-)"
CeV(A,B)
and so |ya,B| < $#V(A, B). The lemma is proved. O

The proof of the next lemma, is similar to the one of Lemma 5.3. So we skip its proof.
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Lemma 5.9 Let A, B € V with p(B) > p(A). There exists a positive constant ¢ = c¢(d) such that
for every C;, Civ1 € V(A, B) and for every u € L*(B(0,1), ®dx),

1
Uac, — U2c, < / / (y))2dxdy.
| nl? Z o 2% u(y)

Lemma 5.10 There exist positive constants ¢ = c(d,o) and c; = c1(d) such that for every r > 102
and every A, B € V with p(B) > p(A) and |ya,5| > £,

2
/ / ]x—y|d s Lja- yl<1ss (@(x) A @(y))dxdy
2
< e (VA BT / / $_y’d+a) (P(x) A P(y)) dedy.

CeV(A,B)

Proof. Let | := #V(A, B) > 2. For every y € A and z € B,
(u(@) = u(y))*(®(z) A @ (y))
< (1+2)(®(z) A D(y)) (\u(x) —upal? + |u(z) — uopl® + li lugc, — u2oi+1!2>
20 ((®(x) A @(y))[uly) —u2al® + (2(x) A (y))lu(z) — 1;]!2

1—

+ Y (@) A 2(y))lusc; — usz!Z).

i=

IN

[e=]

Note that from the construction of the chain V(A, B), it is easy to see that there exists a constant
¢ independent of r such that for every A, B € V and C € V(A, B),

/ / ) A @(y))dzdy < c/ /Z+1 (y)) dzdy.

Obviously

/ / fu(z) — usp[2(@(2) A B(y))dady < ja(2B) / () — usp2P(x)da
2A J2B 2B
and

/ / () — s (B(x) A B(y))ddy < pa(24) / u(y) — uza 20 (y)dy.
2A J2B

2A
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Thus we have, for every y € A and = € B,

/ / (ul) — () 2(B(x) A B(y))dedy

< 2z(// 2) A S)lu(s) ~waaldody + | [ (@) 7 0)lu(o) = waPdady
+Z / / ¥))|usc, — u20i+1|2dxdy>
< d (ud(QA)\ | 1) = weaP o)y + a2B) [ futa) = waplo@)do

-1
+ > lusc, — uacy,, | / / ))dwdy>
=0 7,+1

We apply Lemma 5.2 to the first two integrals in the above and apply Lemma 5.9 to the integrals
in the summation above. Then using the fact that the values of ® are universally comparable on
each A, B, C;, we get that

| [ ) @ nvmddy < ot S [ [ () - )@ o) dedy,
24728 CEV(A,B)
(5.9)
Note that, using (5.7), we have that for x € B and y € A with |z — y| < 171)0
1 l
100 2 > |z —y| >c; > cl|z —wl, Vz,we C € V(A, B). (5.10)

Therefore, from (5.9)-(5.10), we conclude that

2
/ / ‘lﬂ—y’d ) (@(z) /\q)(y))lﬂm_ykﬁ}dxdy

2
= 102°‘/ / |x_y|d+a) ((I)(x)/\q)(?/))l{\x yl< yddy
= 1020‘ c— d+a/ / 2((I)<x)/\(I>(y))1{‘x y|<10}d1’dy
< eqitte ))2(‘1’(2)/\<I>(w))dzdw.
1 CE%B/ / |z—w|d+a

Recall that [a] denote the largest integer which is no larger than a and define for C' € V
C(V) :={(A,B): A,B eV with p(B) > p(A) and C € V(A, B)}.

The following is a key lemma to count the number of chains containing each C' € V.
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Lemma 5.11 There exists a positive constant ¢ = c(d) such that for every r > 10%, 30 <1 < [167]
and C €V,

< el (5.11)

#{(A,B)EC(V):100+Z <101+l}

<
a00r < asl = —56;

Proof. Without loss of generality, we assume d > 2. (The case of d = 1 is easier.) Fix r > 102,
30 < I < [16r] and C € V. We will order (4,B) € C(V) so that p(B) > p(A). Let z¢ be
the center of the ball C. If |z¢| < 4/(4007), then |xg| < 6/(400r), so the number of possible
choice for B is less than 2. Since (100 + 1)/(4007) < |va.5| < (101 + 1)/(400r), the number of
possible choice for A is c/%~!, so (5.11) holds in this case. We thus assume |a:o| > 4/(400r). Define
Hy., = B(0,|zc| + 2/(400r)) \ B(0, |zc| — 2/(400r)). Since 2C Nyap # 0, Hy, Nyap # 0. Let
Y’z be the first point along 4 p (starting from xp) which belongs to Hy, NyA,B. Also, let z4 p be
the first point along y4 p (starting from xp) which belongs to 2C, and let yp be the sub-path of
v4,B starting from z4 p ending at xp.

Let m/(400r) < |yg| < (m + 1)/(400r) where 0 < m <[+ 100 and consider the following two

cases:
)

5
= 4007 4007
For Case (i), the number of possible choices for yf and B is less than ¢2? when C is given and

Case (i) |y — 2a.8| < Case (ii) |yp — za.B| >

m is fixed. Once vy is fixed, the number of possible choice for A is ¢(I —m + 106)?~!, since the

arclength between z4 g and x4 along the curve 4 g is at most migér ™ and |y —2z4,8] < 5/(400r).
Summing over m, the number of possible choices for A and B is less than
14100
d Z (I—m+106)%"1 < 14,
m=0
For Case (ii), let i < m be such that i/(400r) < |24, —yB| < (i+1)/(400r) where yp 1= ||x ‘|xB
In this case, |yp — yz| < 4/(400r) and i > 1. Since yp € 0B(0, |za|) C Hy,, given C, the number

of possible choices for yg and B is less than ¢i% 2

when m and i are fixed. Observe that given C
and B, yj and zp are determined. Since x4 € 0B(0, |za|) C Hy,,, given C and B, the number of
possible choice for 2 4 is less than ¢((I —m + i+ 101)/i)%~2 when m and i are fixed. Summing over

m and 4, the number of possible choices for A and B is less than

14100 m l—m+z+101 14100 m
d Z sz 2( > =c Z Z:(l—vai—i-lOl)d*2 < 4.

m=1 i=1 m=1 i=1

We thus obtain (5.11). O

Lemma 5.12 There exist positive constants ¢ = c(d, o) and ¢; = c1(d) such that for every r > 102

2
S [ SR (@) A 2oy

A,BeV
dist(A,B)> 3r

2 «
< ccf u(z) —u 27 ) dxdy.
< e [ s M) U L e (8(0) A 0) dody
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Proof. For (z,y) € 2A x 2B with |z —y| <
by Lemma 5.10, we have

2
A;v / / |1:—y|d 2 Lipy< 13 (2(2) A (y))drdy

dist(A, B)> 3

100, it is elementary to check that |y4 g| < % Thus,

(6% —ad—x )2
<ed > @vasyte ¥ [ [ B S0 ) ) dedy
A,BEV:p(B)>p(A) CeV(A,B) y
1%<|’YA,B\<%
[167]
< et | Y > (#V(4,B))' 4
Ccey | =30 (A,B)eC(V)

10041 100 +1
4007 <lva B|< ++

2
/ / |x - |d+a) 1{|I*y|§%}(‘b(l‘) A ®(y)) dxdy.

Applying (5.7), we see that

2
/ / ]x—y]d 4 Lo YI< 155 (@(z) A @(y))dzdy

[167]

. s 100 + 1 101 + 1
ca ¥ [ S w{ameco Pt < sl < 1

cey \I1=30

2
/ / \x - y\d+a) Ljp—y<2y(2(2) A D(y)) dady.

A Bev
dist(A,B)> 37“

By Lemma 5.11,

[167] [167]

100 +1 101 +1
l1—-d—« 11—« 2—a
E -# (A, B : < < E < .
l_—3ol {( B) e C) 400r <174, 400r } Cz_—3ol i

Thus we conclude that

u(lx) —u 2
AEBJV /2,4 /23 Wlﬂx—yg@}@(w} A ®(y))dzdy

dist(A,B)> 7

2
o, 2—« )
car Cev/ / Ix—y\d+a 1{‘$_y‘§%}(<1)(_r)A@(y))d(ﬂdy
2

o

a —u 2 " 4 xdy.
S el [ ) ) e ) (802) A B(0) ddy

IN

In the last inequality above, we have used (5.6). D
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Proof of Theorem 5.1: By Lemma 5.7, it is enough to show the following claim; there exist
constants ¢ = ¢(d, o) > 0 and ¢1(d) > 0 such that for every r > 10 and u € L'(B(0, 1), ®dx)

(u(z) — u(y))®

d(x) N P(y))dxdy
/B(O,llro)xB(O,llro) \ﬂf—y’d (@) W)

Loyl by

2a

& —u(y)?—— 1 xdy. .
< e [ iepa ) O G ) (@) A0y (312

Note that

(u(z) — u(y))®
[ - o gl Heist) (20 A 2y

: AB v/ / Ix—y\d)) Loyl 1853 (B(2) A @(y))drdy
S
= 2 ))2 (®(z) A ®(y))dzd
A yx_yyd Lja—yi<ty y))dxdy
BeVv
dist(A, BE)< 1
))21 i ®(y))dxd
* Z ’x_y’d (lo—yl< 21 (D(2) A D(y))dzdy
dlst?ABIBG)ig
2-a (u(z) — u(y))?
= /B(mBm)|x_y|d+a1{|x—y|<,1_}<<1><x>A@(y))dwdy

2
s / / ym—yyd)) Loyl 1y (B(2) A (y))dady.

A,BeV
dist(A, B)> 3

In the last inequality above, we have used (5.6) and the fact 72~% > 1. Thus (5.12) follows from

Lemma 5.12. 0

Acknowledgment: We thank Zoran Vondracek for pointing out an error in a preliminary version
of this paper.
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