[D] Full-harmonic Structures on a Green Space (Abstract)

Fumi-Yuki MAEDA, Dept. of Math., Hiroshima Univ.

Chap. I. Full-harmonic structures and associated kernels.

§ 1. Full-harmonic structure.

Let Ω be a non-compact space of type $\mathcal E$ in the sense of Brelot-Choquet (1) or an open Riemann surface. For an open set $G \subset \Omega$, let H(G) be the linear space of all harmonic functions on G. Let $\mathcal G$ be the family of all domains D in Ω such that D is not relatively compact and its relative boundary ∂D is compact. Let $\mathcal G$ be the family of all open sets G in Ω such that ∂G is compact. Then every component D of $G \in \mathcal G$ is either relatively compact or $D \in \mathcal A$.

Suppose there is given a family $\mathcal{F} = \{\widetilde{H}(D)\}_{D \in \mathcal{O}}$ satisfying the following three conditions:

- (i) Each $\widetilde{H}(D)$ is a linear subspace of H(D);
- (ii) If D, D' $\in \mathcal{A}^{D}$, D' \subset D and $u \in \widetilde{H}(D)$, then $u|_{D'} \in \widetilde{H}(D')$;
- (iii) If $u \in H(D)$ and if there exists a compact set K in \mathbb{R} such that $u \mid_{D'} \in \widetilde{H}(D')$ for every component D' of D K, then $u \in \widetilde{H}(D)$.

A domain $D \in \mathcal{O}$ is called \mathcal{F} -regular if, for any non-negative continuous function f on ∂D , there exists a unique non-negative function u_f on \overline{D} such that $u_f|_{\overline{D}} \in \widetilde{H}(D)$ and $u_f|_{\partial D} = f$. An open set $G \in \mathcal{G}$ is called \mathcal{F} -regular if each relatively compact component of G is regular with respect to the Dirichlet problem and each component D of G such that $D \in \mathcal{D}$ is \mathcal{F} -regular.

- J is called a <u>full-harmonic structure</u> if it satisfies the following fourth condition (cf. (6)):
- (iv) For any compact set K_0 in Ω , there exists another compact set K in Ω such that K^1 (the interior of K) $\supset K_0$ and ΩK is \mathcal{F} -regular.

In this note, we shall assume the following condition (iv)' instead of (iv):

Let D be an \mathcal{F} -regular domain. For $f \in C(\partial D)$, we define $u_f = u_{f^+} - u_{f^-}$. Then $u_f \in \widetilde{H}(D)$ and the mapping $f \to u_f$ is linear. For each $x \in D$, the mapping $f \to u_f(x)$ is positive linear, so that there exists a measure $\mu_X^D \equiv \mu_{\mathcal{F}}^D$, on ∂D such that $u_f(x) = \int f d\mu_X^D$ for all $f \in C(\partial D)$. If $G \in \mathcal{G}$ is \mathcal{F} -regular, then we define $\mu_X^G \equiv \mu_{\mathcal{F}}^G$, as follows: Let D be the component containing x. If $D \in \mathcal{D}$, then define $\mu_X^G = \mu_X^D$. If D is relatively compact, then let μ_X^G be the usual harmonic measure of D with respect to x.

§ 2. Full-superharmonic functions.

Let \mathcal{F} be a full-harmonic structure and let $D \in \mathcal{O}$. A superharmonic function s on D is called \mathcal{F} -full-superharmonic if there exists a sequence $\{\vec{k}_n\}$ of compact sets such that $\partial D \subset K_1^i$, $K_1 \subset K_{n+1}^i$, $\bigcup_{n=1}^\infty K_n = \Omega$, each $\Omega - K_n$ is \mathcal{F} -regular and

$$s(x) \ge \int sd\mu_{\mathcal{F}, x}^{D-K_n}$$

for all n and for all $x \in D$ - K_n .

It can be seen that if s is \mathcal{F} -full-superharmonic on D, then for any compact set K such that $K^1\supset\partial D$ and Ω - K is \mathcal{F} -regular,

 $s(x) \ge \int sd\mu_{\mathcal{F}, x}^{D-K}$ for all $x \in D - K$.

For $D \in \mathcal{D}$, $u \in \widetilde{H}(D)$ if and only if u and -u are both $\widetilde{\mathcal{F}}$ -full-superharmonic. Thus, $u \in \widetilde{H}(D)$ is said to be $\widetilde{\mathcal{F}}$ -full-harmonic on D.

Full-superharmonic functions have many properties analogous to those of superharmonic functions (cf. (6)). For example, we have:

Minimum Principle: Let $D \in \mathcal{Q}$ be such that $\overline{D} \neq \Omega$. If u is a full-superharmonic function on 3 and if $\lim_{x \to \frac{\pi}{2}, x \in D} u(x) \ge 0$ for all $\frac{\pi}{2} \in \partial D$, then $u \ge 0$.

§ 3. Full-superharmonic functions of potential type.

Let a full-hormonic structure f be given. We take a domain $\Omega_0 \in \mathcal{N}$ such that $\Omega_0 \neq \Omega$ and fix it in the sequel.

It is shown that any non-negative full-superharmonic function on Q has the greatest full-hurmonic minorant (cf. (6)).

Definition. A non-negative \mathcal{F} -full-superharmonic function on Ω_{o} is called of potential type if its greatest \mathcal{F} -full-harmonic rinovant on Ω_{o} is zero. We denote by $\hat{F} = \hat{F}(\Omega_{o}; \mathcal{F})$ the set of all \mathcal{F} -full-superharmonic functions of potential type.

Any non-negative \mathcal{F} -full-superharmonic function u on Ω_0 is decomposed into u=v+h with $v\in\mathcal{F}$ and h \mathcal{F} -full-harmonic.

Let $\hat{\mathcal{P}}_b = \hat{\mathcal{P}}_b(\Omega_o; \mathcal{F})$ be the set $\hat{\mathcal{P}}(\Omega_o; \mathcal{F}) \cap \mathcal{H}(\Omega_o)$.

§ 4. F-Green kernel.

The domain Ω_0 has the Green function $G_X(y) \equiv G_X^{\Omega_0}(y)$ (cf. (1)). For a full-harmonic structure \mathcal{F} , an \mathcal{F} -Green kernel is a non-negative extended real valued function $M_X(y) \equiv M_{\mathcal{F},X}(y)$ $\equiv M_{\mathcal{F},X}(y)$ on $\Omega_0 \times \Omega_0$ such that

- (i) for each $x \in \Omega_0$, $M_x G_x$ is narmonic on Ω_0 ;
- (ii) for each $x \in \Omega_0$, $M_x \in \mathcal{F}(\Omega_0; \mathcal{F})$ and M_x is \mathcal{F} -full-harmonic on Ω_0 $\{x\}$.

Theorem. The \mathcal{F} -Green kernel $\underline{\mathbf{M}}_{\mathbf{X}} \equiv \underline{\mathbf{M}}_{\mathbf{X}}^{\mathbf{Q}_{\mathbf{Q}}}$ always exists and is unique. It is continuous on $\Omega_{\mathbf{Q}} \times \Omega_{\mathbf{Q}}$. Furthermore, $\underline{\mathbf{M}}_{\mathbf{X}} = G_{\mathbf{X}} + U_{\mathbf{X}}$ with $U_{\mathbf{X}} \in \mathcal{P}_{\mathbf{D}}(\Omega_{\mathbf{Q}}; \mathcal{F})$.

Sketch of the proof: For each $x \in \Omega_0$, let $\mathcal{U}_x = \{u \in \beta; G_x + u \in \beta\}.$

- (i) \mathcal{U}_{x} is non-empty. To show it, choose a closed sphere K_{0} such that $K_{0} \cap \overline{\Omega}_{0} = \emptyset$ and let $h(y) = \int d\mu_{\mathcal{F},y}^{-K_{0}}$ and h_{0} be the Dirichlet solution on ΩK_{0} with boundary values 1 on ∂K_{0} , 0 on the ideal boundary. $h h_{0}$ is \mathcal{F} -full-superharmonic and nonnegative on Ω_{0} . Let $h h_{0} = v + h_{1}$, where $v \in \mathcal{F}(\Omega_{0}; \mathcal{F})$ and h_{1} is \mathcal{F} -full-harmonic on Ω_{0} . Choose a compact set K with smooth boundary such that $K^{1} \supset \partial \Omega_{0} \cup \{x\}$ and let
- $\lambda = \sup_{y \in \partial K \cap \Omega_0} [G_x(y)/h_0(y)].$ Then $0 < \lambda < +\infty$. We can show that
- $G_{x} + \lambda v \in \beta$, so that $\lambda v \in \mathcal{U}_{x}$.
- (ii) Let $U_x = \inf \mathcal{U}_x$. It is easy to see that $U_x \in \beta_b$ and $G_x + U_x \in \beta$. By Theorem 3 of (6), we also see that $G_x + U_x$ is full-harmonic on $\Omega_0 \{x\}$. Hence $M_x = G_x + U_x$ satisfies (i) and (ii).
- (iii) The continuity follows from the fact that, given $\epsilon>0,\; \textbf{U}_{\textbf{x}},\; +\; \epsilon \textbf{v}\in \mathcal{U}_{\textbf{x}}\; \text{if } \textbf{x'} \; \text{is sufficiently close to } \textbf{x}.$
 - 9 5. Integral representation of \$\overline{P}\$-functions.

Let $u \in \beta(\Omega_0; \mathcal{F})$. There exists a unique positive measure μ on Ω_0 such that

$$u = h + \int_{\Omega_0} \mathbb{A}_{\mathfrak{F}, x}^{\Omega_0} d\mu(x)$$

with $h \in \mathcal{F}_b(\mathfrak{L}_0; \mathcal{F})(cf. (5))$.

In order to consider the integral representation of $h\in\mathcal{P}_b(\Omega_o;\mathcal{F}), \text{ we construct an ideal boundary associated with }\mathcal{F}\colon$ Fix $\mathbf{x}_o\in\Omega_o$ and let

$$\mathbb{K}_{\mathcal{F}, \mathbf{X}}^{\Omega_{\mathbf{O}}}(\mathbf{y}) = \begin{cases} \frac{\mathbb{K}_{\mathbf{O}}^{\Omega_{\mathbf{O}}}(\mathbf{y})}{\mathbb{K}_{\mathbf{F}, \mathbf{X}}^{\Omega_{\mathbf{O}}}} & \text{if } \mathbf{x} \neq \mathbf{y} \text{ or } \mathbf{x} \neq \mathbf{x}_{\mathbf{O}} \\ \mathbb{K}_{\mathcal{F}, \mathbf{X}}^{\Omega_{\mathbf{O}}}(\mathbf{x}_{\mathbf{O}}) & \text{if } \mathbf{y} = \mathbf{x} = \mathbf{x}_{\mathbf{O}}. \end{cases}$$

For each $y \in \Omega_0$, $x \to K_X(y) \equiv K_{X}(y)$ is continuous on Ω_0 . We can define ideal boundary points with respect to K_X just as the Martin boundary points. The ideal boundary thus obtained is denoted by $\Delta_{\mathcal{F}}(\Omega_0)$. The corresponding metric defines a topology on $\Omega_0 \cup {}^*\!\Delta_{\mathcal{F}}(\Omega_0)$ and $\Delta_{\mathcal{F}}(\Omega_0)$ is compact with respect to this topology. It is shown that $\Delta_{\mathcal{F}}(\Omega_0)$ does not depend on $x_0 \in \Omega_0$. For each $\S \in \Delta_{\mathcal{F}}(\Omega_0)$ let $K_{\S}(y) = \lim_{X \to \S} K_{X}(y)(y \in \Omega_0)$.

On $\Delta_{\mathcal{F}}(\Omega_0)$, there appear \mathcal{F} -minimal points and \mathcal{F} -non-minimal points. The set of \mathcal{F} -minimal points on $\Delta_{\mathcal{F}}(\Omega_0)$ is a G_δ -set and is denoted by $\Delta_{\mathcal{F}}^1(\Omega_0)$. As in the case of the Martin boundary, we obtain the following integral representation theorem (cf. (2), (5) and (6)):

Theorem. Given $u \in \mathcal{P}_b(\Omega_o; \mathcal{F})$, there exists a unique positive measure μ on $\Delta_{\mathcal{F}}(\Omega_o)$ such that $\mu(\Delta_{\mathcal{F}} - \Delta_{\mathcal{F}}^{\frac{1}{2}}) = 0$ and

$$u = \int_{\Delta_{\mathcal{J}}} h_{\xi} du(\xi).$$

Thus, for any $u\in \mathcal{S}(\Omega_0;\mathcal{F})$, there exists a unique positive measure ν on Ω_0 \cup $\Delta_{\mathcal{F}}(\Omega_0)$ such that $\nu(\Delta_{\mathcal{F}}-\Delta_{\mathcal{F}}^1)=0$ and

$$u = \int_{\Omega_0 \cup \Delta_{\overline{A}}} K_{\mathbf{x}} d\nu(\mathbf{x})$$
.

§ 6. Ordering among full-harmonic structures.

Let \mathcal{F}_1 , and \mathcal{F}_2 be two full-harmonic structures. If, for any $D \in \mathcal{N}$ with smooth boundary and for any $x \in D$, $\mu_{\mathcal{F}_1,x}^D \leq \mu_{\mathcal{F}_2,x}^D$

(i.e., $\int f d\mu_{\mathcal{J}_1,x}^{D} \leq \int f d\mu_{\mathcal{J}_2,x}^{D}$ for all $f \in C(\partial D)$ such that $f \geq 0$),

then we write $\mathcal{F}_1 \leq \mathcal{F}_2$. This is an order relation in the class of full-harmonic structures on Ω .

Theorem. If $\mathcal{F}_1 \leq \mathcal{F}_2$ then $\mathcal{F}_{1,x} \leq \mathcal{F}_{2,x}$ for all $x \in \Omega_0$.

Let $G \in \mathcal{G}$ be regular with respect to the Dirichlet problem. For $f \in C(\partial G)$, the Dirichlet solution with boundary values f on ∂G , O on the ideal boundary is denoted by $h_{O,f}^G$. Let

 $H_{o}(D) = \left\{ u \in H(D); \text{ there exists a compact set } K \text{ such that } \right\}$ $\left\{ K^{i} \supset \partial D \text{ and } \Omega - K \text{ is regular and } h_{O,u}^{D-K} = u \text{ on } D - K \right\}.$

Then, $\mathcal{F}_0 = \left\{\widetilde{H}_0(D)\right\}_{D \in \mathcal{O}}$ is a full-narmonic structure and the \mathcal{F}_0 -Green kernel on Ω_0 is the Green function $G_{\mathbf{x}}^{(0)}(\mathbf{y})$. $\widehat{\mathcal{F}}_0$ is the smallest full-harmonic structure. The corresponding ideal boundary $\Delta_{\widehat{\mathcal{F}}_0}(\Omega - K_0)$ is the Martin boundary.

Chap. II. Boundary value problems and examples of full-harmonic structures.

Let & be a Green space or a hyperbolic Riemann surface, and

let K be a compact set in Ω with smooth boundary $\partial K (\neq \emptyset)$. Let $C^1(\partial K)$ be the set of functions which are C^1 in a neighborhood of ∂K . We consider a compactification Ω^* of Ω and we shall treat the problem to find a harmonic function u on $\Omega - K$ satisfying a preassigned boundary condition on $\Delta = \Omega^* - \Omega$ and u = f on ∂K .

§ 1. Dirichlet problem. (cf. (2) and (4))

For an extended real valued function g on Δ , we consider the classes

$$\overline{\mathcal{S}}_{g} = \left\{ s; \text{ superharmonic, bounded below on } \Omega, \right\}$$

$$\frac{\lim}{x \to \xi}, x \in \Omega$$

$$\underline{\mathcal{S}}_{g} = \left\{ -s; s \in \overline{\mathcal{S}}_{-g} \right\},$$

and let $\overline{H}_g(x) = \inf \left\{ s(x); s \in \overline{\mathcal{S}}_g \right\}$ and $\underline{H}_g(x) = \sup \left\{ s(x); s \in \underline{\mathcal{S}}_g \right\}$. If $\overline{H}_g = \underline{H}_g$ and is finite, then we say that g is resolutive and we write $\overline{H}_g = \overline{H}_g = \underline{H}_g$. \overline{H}_g is a harmonic function on Ω . If any $g \in C(\Delta)$ is resolutive, then Ω^* is called a resolutive compactification.

Assumption 1. Q* is a resolutive compactification.

The harmonic measure $\mu_{\mathbf{x}}(\mathbf{x}\in\Omega)$ is a positive Radon measure on Δ such that $H_{\mathbf{g}}(\mathbf{x})=\int\!\mathbf{g}d\mu_{\mathbf{x}}$ for any $\mathbf{g}\in C(\Delta)$.

Let g be a resolutive function on Δ and let $f\in c^1(\partial K)$. Then

$$g_1 = \begin{cases} g \text{ on } \Delta \\ \\ f \text{ on } \partial K \end{cases}$$

is resolutive with respect to the compactification $\Delta U(\Omega-K)U \partial K$ of Ω - K. The solution will be denoted by $H_{\rm g,f}^{\Delta,\partial K}$. We shall write

$$\mathbf{u}_{0,\mathbf{f}}^{\mathbf{K}} \equiv \mathbf{H}_{0,\mathbf{f}}^{\mathbf{\Delta},\partial\mathbf{K}}$$
 and $\mathbf{v}_{\mathbf{g}}^{\mathbf{K}} \equiv \mathbf{H}_{\mathbf{g},0}^{\mathbf{\Delta},\partial\mathbf{K}}$.

§ 2. HD-space.

For an open set G and two harmonic functions u and v on G, let $\langle u, v \rangle_G$ be the mixed Dirichlet integral over G and let $||u||_G^2 = \langle u, u \rangle_G$. Let HD(G) be the set of all harmonic functions u on G such that $||u||_G < +\infty$.

We denote by $R_D(\Delta)$ the set of all resolutive functions g on Δ such that $H_g \in HD(\Omega)$. We know that if $g \in R_D(\Delta)$ and $f \in C^1(\partial K)$, then $H_{g,f}^{\Delta,\partial K} \in HD(\Omega - K)$; in particular, $u_{0,f}^K$, $v_g^K \in HD(\Omega - K)$.

Doob's lemma (cf. (3) and (4)). There exists M>0, depending only on K and x, such that, for any $g\in R_D(\Delta)$,

$$\int g^2 d\mu_x \le \mathbf{M} ||\mathbf{v}_g^{\mathbf{K}}||^2.$$

Corollary. $R_D(\Delta) \subseteq L^2(\mu)$.

9 3. Normal derivative on an ideal boundary.

Let $x_0 \in \Omega$ be fixed and let $\mu \equiv \mu_{x_0}$. Let A be a μ -measurable set on Δ . Given $u \in HD(\Omega - K)$ and a μ -measurable function ϕ on A, we say that u has a normal derivative ϕ on A, or ϕ is a normal derivative of u on A, if, for any $g \in R_D(\Delta)$ such that g = 0 μ -a.e. on Δ -A, ϕg is μ -summable on A and

$$\langle u, v_g^K \rangle_{\Omega - K} = - \int_{A} \varphi g d\mu$$
.

 ϕ may not be uniquely (even μ -a.e.) determined by u. But, under the following assumption, if u, $v \in HD(\Omega)$ have the same normal

derivative on Δ , then u = v + const.

Assumption 2. For any $u \in HD(\Omega)$, there exists $u^* \in R_D(\Delta)$ such that $u = H_{u^*}$.

Such u^* is uniquely determined $\mu\text{-a.e.}$ We hereafter assume Assumptions 1 and 2. The Wiener, Royden, Kuramochi and Martin compactifications are examples.

We can show that, for any $u \in HD(\Omega - K)$ such that $u = f \in C^1(\partial K)$ on ∂K , there exists $u^* \in R_D(\Delta)$ (uniquely determined μ -a.e.) such that $u = H_{u^*,u}^{\Delta,\partial K}$ on $\Omega - \overline{K}$.

§ 4. Boundary value problems.

Let A_0 be a μ -measurable subset of Δ and let $\beta(\frac{\pi}{2})$ be a non-negative μ -measurable function on $\Delta - A_0$, finite μ -a.e. We consider the following boundary condition (A_0, β) :

$$\begin{cases} u^* = 0 & \text{on } A_0 & \mu\text{-a.e.} \\ \phi = \beta u^* & \text{on } \Delta - A_0 & \mu\text{-a.e.} \text{ for a normal derivative } \phi \\ & \text{of } u \text{ on } \Delta - A_0. \end{cases}$$

If we write

$$\alpha = \begin{cases} 0 & \text{on } A_0 \\ \frac{1}{1+\beta} & \text{on } \Delta - A_0, \end{cases}$$

then α is a μ -measurable function on Δ , $0 \le \alpha \le 1$ and the condition (A_0, β) is equivalent to

(α): $(1-\alpha)u^* = \alpha \phi$ μ -a.e. for a normal derivative ϕ of u on Δ - \mathbb{A}_0 .

Given $f \in C^1(\partial K)$, if there exists $u \in HD(\Omega - K)$ such that u = f on ∂K and u satisfies the consition (α) or (A_0, β) , then u will be denoted by $u_{\alpha,f}^K$. If $\alpha \equiv 0$, then our problem reduces to the Dirichlet problem, so that $u_{0,f}^K$ coincides with the one

defined in 9 1.

Theorem 1. $u_{\alpha,f}^{K}$ is unique if it exists. If $f \ge 0$ and $\alpha_1 \le \alpha_2$, then $u_{\alpha_1,f}^{K} \le u_{\alpha_2,f}^{R}$; in particular, for any α , $0 \le u_{0,f}^{K} \le u_{\alpha,f}^{K} \le u_{1,f}^{K}$.

§ 5. Existence theorem.

Theorem 2. If β is bounded, then $u_{\alpha,f}^{K}$ exists for any K and f.

Sketch of the proof (cf. (3) and (4)): The case $\alpha = 0$ μ -a.e. (i.e., $A_0 = \Delta$) is already known. Thus, we assume $\mu(\Delta - A_0) > 0$. Case I. $\beta = 0$. Consider the family

 $\overline{\Phi}_{\mathbf{f}} = \{ \mathbf{u} \in \mathrm{HD}(\Omega - \mathbf{K}); \mathbf{u} = \mathbf{f} \text{ on } \partial \mathbf{K}, \mathbf{u}^* = \mathbf{0} \mid \mu\text{-a.e. on } \mathbf{A}_{\mathbf{0}} \}.$

 $\Phi_{\mathbf{f}}$ is non-empty, convex and complete with respect to the norm $\|\cdot\|_{\mathbf{Q}-\mathbf{K}}$. Hence there exists $\mathbf{u}_{\mathbf{o}} \in \Phi_{\mathbf{f}}$ such that $\|\mathbf{u}_{\mathbf{o}}\|_{\mathbf{Q}-\mathbf{K}} = \min_{\mathbf{u} \in \Phi_{\mathbf{f}}} \|\mathbf{u}\|_{\mathbf{Q}-\mathbf{K}}$ and we see that 0 is a normal derivative of $\mathbf{u}_{\mathbf{o}}$ on $\mathbf{u} \in \Phi_{\mathbf{f}}$.

Case II. $\beta \neq 0$ on $\Delta - A_0$ and β is bounded. Let $A_1 = \{\S \in \Delta - A_0; \beta(\S) = 0\}$ and $A' = \{\S \in \Delta - A_0; \beta(\S) > 0\}$. We may assume $\mu(A') > 0$. Using the Doob's lemma, we can prove

Lemma. Given $\phi \in L^2(\mu; \Delta - A_0)$, there exists a unique $u \in \Phi_0$ such that ϕ is a normal derivative of u on $\Delta - A_0$. Next, consider the space $\mathcal{L} = \{\phi \in L^2(\mu; A'); \int_{A} \frac{\phi^2}{\beta} d\mu < \omega \}$.

L is a Hilbert space with respect to $(\phi,\psi)_{\beta}=\int_{A}^{}\frac{\phi\psi}{\beta}\,d\mu$. By the above lemma, for each $\phi\in L$, there exists a unique $u_{\phi}\in \Phi_{o}$ such that u has a normal derivative ϕ on A', 0 on A_{1} . The

mapping $T: \phi \to \beta(u_{\phi}^*|_{A^*})$ is a symmetric, negative definite operator on \mathcal{L} , so that T-I is invertible. Let $v \in \mathbb{F}_f$ be such that 0 is a normal derivative of v on $A_1 \cup A'$ and v = f on ∂K , determined in Case I. Then $\beta(v^*|_{A'}) \in \mathcal{L}$ and there exists $\mathcal{V} \in \mathcal{L}$ such that $\beta u_{\mathcal{V}}^* - \mathcal{V} = -\beta v^*$ on A'. Then we see that $u = \mathbf{v} + \mathbf{u}_{\mathcal{V}}$ is our solution.

§ 6. α -full-harmonic structure \mathcal{F}_{α} .

Let α be a function as above for which $u_{\alpha,f}^{\alpha}$ always exists. For $D\in \mathcal{Q}$, we define

$$\widetilde{H}_{\alpha}(D) = \left\{ u \in H(D); \text{ there exists a compact set } K \text{ with smooth boundary such that } k^{i} \supset \partial D \text{ and } u = u_{\alpha,u}^{\partial K \cap D} \right\}$$
 on $D - K$.

Then, $\mathcal{F}_{\alpha} = \left\{ \widehat{H}_{\alpha}(D) \right\}_{D \in \mathcal{O}}$ is a full-harmonic structure. By Theorem 1, if $\alpha_1 \leq \alpha_2$, then $\mathcal{F}_{\alpha_1} \leq \mathcal{F}_{\alpha_2}$.

Let K_0 be a closed sphere in Ω . Let us denote the \mathcal{F}_{α} -Green kernel on Ω - K_0 by $M_{\alpha,x}(y)$. Remark that $M_{0,x} = G_x$ and $M_{1,x}$ is the N-Green function N_x of Kuramochi. Thus, if $\alpha_1 \leq \alpha_2$, then

$$0 \le G_x \le M_{\alpha_1, x} \le M_{\alpha_2, x} \le N_x$$

The ideal boundary $\Delta_{\widetilde{\mathcal{F}}_1}(\Omega-K_0)$ is the Kuramochi boundary.

Theorem 3. For any
$$\alpha$$
, $M_{\alpha,x}(y) = M_{\alpha,y}(x)$ ($\forall x,y \in \Omega - K_0$).

References.

- (1) M. Brelot and G. Choquet, Espaces et lignes de Green, Ann.
 Inst. Fourier, 3(1952), 199-263.
- (2) C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Berlin, 1963.
- (3) J. L. Doob, Boundary properties of functions with finite Dirichlet integrals, Ann. Inst. Fourier, 12(1962), 573-621.
- (4) F-Y. Maeda, Normal derivatives on an ideal boundary, J. Sci. Hiroshima Univ., 28(1964), 113-131.
- (5) F-Y. Maeda, On full-superharmonic functions, Proceedings of Symposium on Kuramochi boundary, 1965, 24 pp.
- (6) F-Y. Maeda, Axiomatic treatment of full-superharmonic functions, J. Sci. Hiroshima Univ., 30(1966), 197-215.