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SOME PROBLEMS IN THE COMPLETE CLASS THEORZIMS

by Hirokichi Kudo

Osaka City University and University of California, Berkeley

Since Abraham Wald established the theory of decision
functions, many textbooks in Statistics are written in the
language of this theory. However very few of them cited che
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complete class theorem, which I believe is one of the essentisl
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parts of his book [21]. The following difficulties la
on the complete class theorem might give the excusé for this
situation:

1) In many statistical problems, nontrivial complete
classes have not been known up to the present stage.

2) Assumptions of the genmeral class theorems are compli-
cated and restrictive.

3) Methods of construction of nontrivial complete
classes in general theory are inaccessible and indirect.

74) There is no general expression of the minimal

complete class.

5) The relacion between two important complete classes

B and i/ has not been investigated, where B 1s the
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closure, in the sense of 'regular convergence', of

B of all Bsyes solutions, and W is the class of all Bayes

solutions in



These difficulties of the complete class should be over-
come in a near future for the sake of making complete class
theorems useful,

The first difficulty is being resolved by several authors

step by step. Several complete (or essentially complete)
classes are obtained: e.g. the class of non-randomized
estimates in the estimation problem of convex loss function
[5, page 294], the class of the convex critical regions in
the problem of testing hypothesis when the sample distribution
is of exponential type [3], [6], the class of likelihood
stopping rules in some sequential analysis [16], [18], [8]
and a class of some type.of designs in the éxperimental
design problem [7], [22]. Another important application of
the concept of complete class is that to the sufficient
statistic. This can be stated as follows: A statistic T

is sufficient if and only if the class of all decision
functions through T is essentially complete in the class
of all decision functions for every sﬁaéistical problem [4],
[15], or even for a particular problem [1], [2], [1lo], [11].

The second difficulty: The most general complete classes

were given by Wald in hié book [21], and later extended by
LeCam [14]. The main part of the restrictions under which
Wald proved the completeness of B and W is as follows:

Wl) the dominatedness of the distribution space Q
by a o-finite measure A. The generalized density function 3

p(x,0) of the sample distribution with respect to A 1is




labelled by © in the parameter space &,
W2) the boundedness of the lossg function 1L(g,a), where
a 1is a point of action space A.

W3) the subconvexity of the space D of the decision

functions available to a statistician, i.e. for any ¢

[y

and &, ¢ D and for any real o« ¢ [0,1], there is a &

r(@,éa) £ ar(8,8) + (1-a) r(9,6,) for all @,

where the risk function r(8,6) is defined as

r{g,8) = i £ L(g,a) &(da,x) p(x,0) A(dx).

W4) the compactness of the action space A.

W5) the compactness of thz space D,

(W5 is an implication of W4 and closedness of D.)

The concept of convergence in D 1is first introduced by
Wald. LeCam makes this notion very clear by using the weak
topology in a space of bilinear functionals. According to
LeCam, a decision function is a bilinear positive normalized
functional on spaced CO(A) and L, where CO(A) -is the
linear space of all continuous functions on A with compact
support and L is a linear space spanned by all generalized
density functions p(x,0). The topology in the family 43’
of all decision functions defined above is defined as a weak
copology of the family of bilinear functionals. We shall call
the relative topology in D induced from the above topology
of Jfr' the regular topology, after the terminology 'regular

convergence' used by Wald [21]. The compactness in 15)
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can be interpreted as that in this regular topology. LeCam
[14] proved Wald's theorems without the restriczion W2).
His restrictions for hisicomplete class theorems are mainly
the following five:

L1l) the same as Wl).

L2) the lower semicontinuity of the loss function
L(9,a) as a function of a for each fixed value of para-
meter ©, and its boundedness from bottom.

L%) the same as W3),.

L4) A dis a é&-compact, locally compact metric space.

L5) the property (W) of D.

The property (V) of D is defined by the following

Definition. Let j:' be a family of all the non-negative
extended functions on a space © and aﬁ a subset of 5ﬂi

7 is called half-closed if, for every cluster point f

of ﬂif with respect to everyvhere convergende topology of
g: , there is an element § of 0?, such that $(8) = ;(9)
holds for all © in ©. "

The space D of decision functions is said to have
the property (¥W) if ﬁi = {r(8,8); 5 D} is half-closed
in i?r.

The property (W) is a generalization of the compactness

in the sense of weak intrinsic convergence in %ald's Book [21].
e shall give a criterion for the property (W).
Theorem 1. Suppose that T 1is a Hausdorff space and

© an arbitrary space. Let §(8,t) be a nonnegative extended



function defined ¢gn 2 x T, which is lower semicontinuous
in ¢t for any fixed © ¢ @. Then ﬂi = {¢{.,£); £t ¢ T}

is half-closed if, for any © € & and any positive number
k 1less than SUp. . flo,t), there exists a relatively com-

pact subset C9 Kk of T such that
4 Y

inf f(e,t) > k.

teC

(The notation inf f(o,t) may stand for sup £(0,t) wher
£¢C teT
L.# g,k .

T = Cg gl

From Theorem 1 we can easily see that the Wald-LeCam
theorem holds for the decision problem with a compact action
space, e.g. the problems of testing hypothesis and finite-
action problems.

However the above theorem is not able to be applied
directly to the case of noncompact action space.

Theorem 2. Suppose that WL) and L4} hold and, in

addition, the following conditions hold:

kl) The loss function L{@,a) is a Borel measurable
nonnegative real function df a for each fixeé 9.

2) &£ = {L(.,a) : a € A} 1is, in the relative sense of
pointwise convergence topology of 9:; a o-compact, locally
compact metrizable space.

3)  There is a mapping T of £, the closure of £

in the pointwise convergence topology in g:, onto &£

such that

o



a) {2 eT: (14)(0) = a) is a Borel set, in the
relative topology of £ in 97, for every fixed © € 3
and- every real positive a.b
b) (t£)(®) = 2(8) for all © ¢ @ and all £ e L.
( b) implies the half-closedness of £.)
Then £ has the property (W).
One of the applications of this theorem is as follows:
Let us consider the problem of interval estimation with the

loss function

L(6,(8,8)) = a u(]|8-9]) + 8C(0,0,5), where
9<9, a>0,8 >0, u(t) is a monotone nondecreasing,
left continuous nonnegative function of t and p(t) = 0

if t = tO for some tO > 0 and

c(e,0,8) = [ O 1f 8<0<5,

1, otherwise.

For this problem the class of the interval estimates
[0,8] of real © has the property (W).. The case stated by
LeCam [1l4, Miscellaneous remark (6), p. 80] is also an
implication of Theorem 2.

The class treated in Theorem 2 1is the whole space j?i
However there are many important problems concerning the
class D of decision functions which are not the whole dfr
but just a subset of aiT; e.g.  the class of unbiased esti-
mates, the class of level o tests, or the class of internal
estimates of confideﬁce coefficient 1 - a. For closed sub-

sets of J@K we have another criterion.



1) A is a os-compaci, locally compact metric space,
2) thz loss function L{8,a) 1is a lower semicontinuocus

function of a for every fixed 9,

%) for any positive integer n and for any € in £

4

there exists a compact Cri 0 < A such that
>

Then every closed subset D of Jj/ has the property ()

LA

From this theorem we can easily verify that the Vald-
LeCam theorem holds for every closed convex subset D of
the class qé%' of all estimates when the loss is quadratic.
And moreover Theorem 3 has an application to the sequential
problem of decision procedure. The assumption for the cost
function C(xl""%n’e) at the experimental stages Ry, "",7,
when © is true value of the parameter should satisfy
c(Ay,+++,0,,0) 2 € (0) and lm . C(8) =@

(14, Assumption 5][21, Assumption %.5.(iii)], and that in each
stage.the statistician is allowed to choose his experiments
out of a finite number of possibilities. (Both Wald and LeCam
considered the case where the cost depends also on the sample
x observed, but we shall restrict ourselves to the case of
the cost independent of x.) Let A be a set of all combina-
tions (Al,---,%n) of a finite number of experiments. Since

only a finite number of experiments is available for the

statistician up to every stage where the terminal decision



is meds, A& d1ds & countable set and so it can be regarded as

a discrete topological space. When the cost function

{1

"ni,ce+,2_9) 1s considerad as a loss function L(®,a) with
a = {>y,+*++,2_ ), the condition assumed by Wald and LeCam is

completely the same as 3) of Theorem 3, Thus the sequential

nroblem is covered by the general one-stage decision

o

sroblem a3 far as the complete class theorems are concerned.

nrove,

Theorem 4. If a class D  of decision procedures has

the property (W) and C 1is an essentially complete class
in D, then € has also the property (W).
One of the applications of this theorem is as foilows:
If the loss function L(®,a) is convex in a, and
lim_ . L(9,a) = ®, then the class of all non-randomized
estimaces is an cssentially complete class [5, page 204].
Since the class 4€r of the estimates of © has the property
7 {Theorem 3), C has the property (W).. In addition, C
is‘subconvex with respect to the loss function L(©,a).
Therefore the Wald-LeCam theorem holds for this class C.
As we have seen, the property (W) 1is an essential

condition for the completeness of B and W. Are there any

other good criteria for this property?

The third difficulty: Roughly speaking, Wald [21,
Th.‘ElEO] showed that the class B itself is essentially

complete under the additional assumption that
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7)Y pix,e) and L[3,a, are measurab
nroduct spaces X X & and T X &.

18) the class f{L{.,a) ; a ¢ A} of functions of 9
is equicontinuous.

Noticing :that any Bayes procedure can be gotten by
minimizing posterior loss, it can be understood that B is
a nontfivial cbmplete,class}easily found. However W5} and

W7) are not satisfied in the usual atistical problem,

[#+]
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in which we have to take B or W as a complete class. 1In
building up B, there is usually a problem in taking a limit
in the sense of regular convergence. The problem in getting
1 is more sefious. W is defined as the class of 50'5

such that

inf {x(¢,8,) - inf x(£,8)) = 0,
£ 5eD -

where £'s are prior distributions on  @. According to LeCam

m
W

(14, Th. 3], 65 ¢ ¥ if and only if & is not improvable
uniformly; i.e., for amy € > O and any é D there exists
at least one element © ¢ &  such that |

r(%,54) - & < r(0.8),
provided that the conditions L1} - L53) hold.

For the sake of avoiding such problems, a device is
proposed by J. Sacks [17]. If a decision procedure &

minimizes the value of t'posterior' loss with respect tO



a o-finite 'prior' measure ¢ when it remains finite, then
we call 5 as a generalized Bayes solution. Sacks showed
that the class B* of the generalized Bayes solutions con-
tains the class B and hence it is a complete class under
the assumption that the sample distribucion is of exponential
type and the loss is a convex function. Another approach in
this direction is [12]. Ve will consider a sequence {én}
of prior distributions on & and a sequence {An} of
positive numbers so that the sequence {An%n} tends to a
linear functional on the linear space spanned by the risk

functions (as functions of ©), 1i.e.

lim An [ r(e,8) £ ,(de) = F(x(+,8)) for all & e D,
n—oo

Ve shall restrict ourselves to the problems of testing a
simple hypothesis © = O, against the alternative © + 9%
in one-dimensional parameter space. In this case it is doubt-
ful if the behavior of the risk function in neighborhoods of
the infinity cf © has a great importance. TFrom this point
of view, we define a concept of locally complete class.
A class C of test functions is called locally complete if
any compact contraction of the parameter space 2 makes
the class C a complete class.

Suppose that

1) © is an open subset of Euclidean Rk, and 9,
an inner point of Q,

2) the generalized denmsity function p(x,0) is

measurable on X x ® and continuous as a function of @



for any =,

3)  the derivatives of the third order of p(x,0) with
respect to © exists and is continuous in O for almost
all x e X,

4) <for any compact subset C C £ and any positive
integer mnqy,-:*,Ty, Z?:l n; =1, there exists a function

AY - B
Ini,---,nk(x) integrable on X such that

anl’l’- . .'H'Ik

for almost all x ¢ X and for any 9 ¢ C, and let
k

2
3°+(0O
(#) L(g) =-2 Pisl 3 . - 1lim | = p.(e)( )
tin {7jo1 P Se.igej -0, ~ L1 ZPi 56, /e=9,

s p(e)i(8g) + [ 1o(@)n(de)
Cc-S
€
be a linear funciional defined on the space of all functions

£(®) Dbeing twice differentiable continuously, where (pij)
is a positive semidefinite matrix, pi(e) is nonnegative
and finite on C - Sg and Sg is the interior of the sphere
at 6° with radius e.
Theorem 4 [12]. . Under the conditions 1)6- L)y, the
class W of the test functions O(x), satisfying
1, if L(p(x,-)) <O,
P = 0, if L(p(x,-)) > O,
for some linear functional of form (#=), contains the

closure B of the class B of the Bayes solutions relative

to prior distributions assigning probability 1 to a compact



subset of ., Hence 7 15 a locally complete class.

O

The classes B*¥ and J* are obtained only by the same
procedure as the class of Bayes solutions, and any limiting
procedure in the regular topology is not needed. If we have
another method for getting nonitrivial complete classes with-

out limiting procedure, it will be a great advantage.

The fourth difficultyv: The existence of the minimal

complete class of decision procedures is implied by LeCam's
assumptions L 1) - L 5) [1%, p. 77], and so is the complete-
"ness of the class of all admissible procedures. A general
criterion for the admissibility of a decision procedure was
given by C. Stein [19]. Another criterion wasorally given
by K. Takeuchi [20] in 1961,

Theérem 5 (Takeuchi). Suppose that the parameter space
2 1is a subset of Euclidean space and the risk function
r(08,6) is continuous on & for any fixed &. Then & is
admissible if and only if there exists a sequence {gn} of
prior distributions, and a sequence {An} ,qf positive numbers
such that |

1) r(én,é) < o for any § € D,

2) for any measurable subset N U@ for which

lim inf A £ (N) = 0O
n—o 0 ’

where © - N 1is everywhere dense in O,

3) 1334325 Al {r(&n,éo) - r(En,é)} < o for any & € D,

The last condition 3) of Theorem 5 seems to have



some:;o;néﬁtion with the class W which is defined in
Theorem 4, but it has not yet been clear. This theorem is
an abstraction of the methods used by Karlin [9] for the
establishment of admissibilicy,

Though there are several criterions ofbthe admissibility
and smaller classes than B and U, it is rather difficult
to find examples of applications of these results.

The fifth difficulty: As is well known, Wald proved

first the completeness of B and W, and then LeCam proved
that of the intersection B 7 W wunder respective conditions.

However, we do not know whether Lelam's assertion about

4

B/ W adds anything new to the completeness of B and .
This is the point of the fifth difficulty. To see this, wé
shall look at the problem of testing hypothesis, in which
the null hypothesis is "® ¢ " and the alternative is
"® 4 w". If there is at least one boundary point of « in
® at which the average Eg{@] of every test function o
is continuous in ©, then every test function-is a Bayes
solution in the wide sense, i.e., W=D, and so B Y= B,
Thus W is not useful in such a case. Besides, there is a
statistical problem in which B = D.

Theorem 6 [Kusama, 13]. B =D if

1) there is a disjoint measurable partition {Ei} of
the sample space Y and a sequence {Qi} of elements of @
such that P9£Ei) =1 for all i,

2) for every © ¢ ® there is at least one element

AR



ag of the action space A such that

o) = inf L(8,a).
ach

L(9,a

Theorem 6 covers the case of the quadratic loss estima-
tion of the location parameter of the uniform distribution.
Kusama [13] obtained another interesting result.

Theorem 7 (Kusama). Suppose that

1) 2 1is a é&-compact, locally compact metric space,

2) the class {p(x,8)L{(0Q,:) ; © ¢ ©} of functions of
a e A 1is equicontinuous on A for almost all x € Y,

3) there exists a sequence {Fn} of compact subsets
of ©® such that LIFn = 3 and

lim sup ©p(x,8) L(8,a) = 0 for all a and almost all x
n—» ¢ Fn ,

4) r(6,8) is continuous on O,
Let {en} be a sequence of prior distributions for which

lim _, € (C) = O for any compact subsgt C of ©® and

let U{E ) be a class of decision functions 5 satisfying
n
inf (r(¢_,6*) - inf r(€_,8)} = O.
l=n<oo n sebr n’

Then if there is a decision procedure &*  in H{E }
n

such that ¢*(N_ :x) =1 holds for every x and some subset

N, of A, then
W = .
te,) ~ &

and hence we have

v o= 5.

14



embarrassing. Is the class ¥ too large or

topology too weak? 1In the case above .stated,

€]

is the regular

the class W

is useless. In what case does W {\B work effectively:

And, moreover, is there any case in vhich W

used for finding a complete class?

+

is effectivel:
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