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Recent Study of Semigroups )
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Some of them are already published, but some are not published vet.
Because of space the detailed proof will be omitted here., -One of the
topics is concerned with the study of the structure of S-indecomposable
semigroups; another is a new concept "general product" which is related

with the problems of extensions and compositions of semigroups.

1. Decomposition

Let p be a congruence on a semigroup S. If S/p satisfies a system
of identities or, more generally, a system J of implication, p is called
a T-congruence on S. For any‘system>T of implications-and for any
semigroup S there is a smallest T—congruende o, On S (see [2]). The
partition éf S which is due to a T-congruence p is called a T-decomposition
of S and fhe partition due to o is called the greatest T-dec?mposition
of S. A semigroup which is isomorphic with S/p is called a T-homomorphic
image of S and a semigroup isomorphic with S/pé\is called the greatest
T-homomorphic image of S. If the cardinality ]S/pol of S/pO is 1; then

o

.S is said to be T-indecomposable; othérwiseVT-decomposable.

The simplest examples of a system J of identities are:

*) This note is to supplement the materials spoken by the author at
the Symposium, Kyoto University, in June 1967.
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C={xy=yx}, d={x" =x}, 5= {xy = yx, < = x}.

Theorem 1.  In the greatest S-decomposition of a semigroup, each
congruence class is o-indecomposable.

This theorem was originally obtained by the author [17]. To prove
the theorem the following fact was used. Let S be a semigroup and let

(1y S= U S
rell A

be an H-decomposition of S which need not be greatest. Let p denote‘the
congruence on S due to the decomposition (1). Let O be an S-congruence
on Sh' Then there exists an S-congruence T on S sughrthat tbe restriction
T[Sh coincides with o. Conséquently if p is smallest, then Sk is S-
indecomposable.

In 1964 M. Petrich gave another proof of the theorem by using the
concept of prime ideals and faces [9}. At that time the author intro-
duced "content" as follows:

Let S be a semigroup and a ;@ be a finite number of elements

1,32’.-a n

of S. Consider the set C of all élements a of S which is the product of

al,-“,an admitting repeated use:
kl kz k
a=ai ai --ai
1 2 i

where the set {il,iz,-v-,im} coincides with {1,2,.--,n}. Cis a subsemi-
_group of S, C is called a content of apstrhay in S, and denoted by

C= C(al,~--,an>. It is interesting that every content is S-indecomposable.
By using this result, the author gave the third proof of Theorem 1 in [21].

If S is commutative, S is S-indecomposable if and only if it is archi-

medean, that is,



for every a, b ¢ § there are x, y ¢ S and positive integers m, n

such that

A commutative archimedean semigroup contains at most one idempotent

element (see [1]).

2. Introduction to Commutative Archimedean Semigroups

We caﬁ classify all commutative archimedean semigroups into the
four types:

Type 1. Commutative nil-semigroups (i.e. having unique idempotent

which is a zero).

Type 2. Commutative»unipotent sémigroups without =zero.

Type 3. Yl-semigroups (i.e. commutative archimedean cancellative

semigroups without idempotent).

Type 4. Commutative archimedean semigroups without idempotent.

The class of Type 4 contains the class ofAType 3. The terminology ' Y-
semigroup“ is due to Petrich [8]..

The.study of semigroups of Type 1 is reduced to that of commutative
semigroups satisfying x2 = 0 for all x. If S is a commutative semigroup
of Type 1, then for every a ¢ S‘there is a positive integer m depending
on a such that am = 0, and S is the union of ascending chaip of semigroups

S}
S.: S= US,, S
. 1

s
t i=1

S...

1 2

2
where each Si is an ideal of S and it satisfies x = 0 for all x ¢ Si’

and the Rees factor semigroup Si+l//si also satisfies xz = 0 for all x.

Wl



Tho s rustoce of Tvpe 2 is well-known as the ideal extension of

group by a semigroup -1 Twpe 1. (cf. [14], [157. [19].)

As ..~ as Type 3 is concerned,

Theorem A.7{18] Let G be an abelian group, N the set oi all non-
negative integers. Let I(&,B) be a function: G X G - N which satiscies
the following four conditions:

(2.1) I(a,8) = I(B,w.

(2.2) I(a,B) + I(aB,Y) = I(x,BY) + L(B,Y).

¢ G there is a positive integer m such that
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(2.4) I(e,€) = 1.
Let S= {(n,); n e N, « ¢ G}. We define a binary operation on S as

follows:

(D,O() (m,B) = (n+m+ I(O[9B) ’ o).

Then S is an ¥{-semigroup. Every ¥ -semigroup is obtained in this manner.
G is called the structure group of S.

When the author obtained Theorem 2 in 1957 he left the two problems
unsolved, One problem is: Under what condition on G, G', I,YI', are
(G,I) and (G',I') isomorphic? Another problem is to find all the functions
I on a given G. M. Sasaki [10] and J. Higgins [5] gave answers to the
first problem‘and Sasaki and the author [1] partially solved the second
problem. Sasaki wili diséu%sfﬁrécisei§:thé.Qf-semigroups in [127.

Type 4, the case where cancellation is not ‘assumed, has been studied
by the author [24].

At any rate, every semigroup is the set union of a special type of

subsemigroups, namely S-indecomposable semigroups. A question is naturally



raised: Are there anv other tyvpes excep: "semilattice'" for

group is the set union of a special
"semilattice'" is a unique system of
the following sense.

Let T be a system of ideatities

semigroup S has

of 8§ - if it is

a subsemigroup =

which a semi-

type of subsemigroups? 1In fact
identities with such a property in

E (X, _ee- = o . y

£, (x5 ’Xn) él<xl’ XD Any

~indecomposable.  Then T is called

an attainable system of identities om all semigroups. Of course both

on)

{x = x} and {x = y} are attainable.

They are called trivial.

The author proved the following theorem [22]:

Theorem 3. The semilattice {x

2

x”, xy = yx} is a unique non-trivial

attainable system of identities on all semigroups.

o

-

This means that if

on all semigroups, T is equivalent to {x

is a non-trivial attainable system of identities

2
X

, Xy = yx}. Thus the sig-

nificance of greatest S-decomposition is again understood in the study of

the structure of semigroups in the following sense: The study of semigroups

is reduced to the study of the structure of S-indecomposable semigroups

and the compositions of S-indecomposable semigroups,

3. Commutative Archimedean Semigroups of Type &

Definition.

set in which every two elements have a greatest lower bound).

a discrete tree if it satisfies the

Let L be a lower semilattice (i.e. partially ordered

L is called

following conditions:

(3.1) x<z,y<Z=>x<yorx2>y.

(3.2) For any b, ¢ ¢ L such that b < c, the set {x; b < x < c} is

finite.



Let P be a set and N = {0,1,2,---}. Consider a mapping P X P - N x N

(p,q) — (hp(p,q), hqu,Q))

»

satisfying
(4.1) b (p,a) 20, h (p,a) = 0 <=>p = q.
(4.2) hp(P,Q> =h _(q,p).
{(4.3) For every three alements p, q, r ¢ P, one of (4.3.1), {4.3;2)

and (4.3.3) holds:

© h (r,p) + h_(p,q) = h_(p.q) + h_(q,1),

E p(r P) q(p q) p(p q) q(q r)
(4.3.1) 1

i'i hq<Q>r> 5 ﬁq'\q>p>s hr(rsp) = hr(q>r)-

[ B, + 8 (a,1) = b (a,) + b (r,p),
(4.3.2) o 4 r 4 r

I ) r ( ) 1 = .

{ b(rep) 2B (r,9), B (p,9) = B (¥,p)

( h (q,r) +h (r,p) = h (r,p) +h_(p,1),
(4.3.3) 4 r P r P

L h?(P=Q) > hp(P,r), hq(q,r) = hq(p,Q)-

p ¢ P}. We define relations { and § as follows:

Let L' = {{(n,p); n e N,

(myq) g(nap) <=> m‘hq(qu> 5 Q: n‘hp(PaQ) § m‘hq(P5Q) .

(m,q) &(n,p) <=> (m,q) {(n,p) and (n,p)Cl(m,q).

Then L'/€ is a discrete tree with respect to a partial order (/€; it
satisfies the ascending chain condition and contains no least element
(see [16]).

Each element of the form (0,p), p ¢ P, is a maximal element, which
will be called also a prime (element), Identifying p with (0,p), p is

regarded as a prime of L.

Let Py be-any prime and P, be a fixed prime of L. Define the notaﬁions:
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[ (P

hpo(PosPa)a ﬂpO(PQ) = hpA’(PO:Pd}-

«

(5) vﬁ o N
= TT - N
| Gpo(pO} po(pa) ﬂpo(pa)

Definition. If Gp (pa) > 0 for all primes P> then the prime P,
o

is called a highest prime (highest maximal element). A discrete tree
L is called an ordinary tree if L satis{ies the ascending chain coﬁdi-
tion and has at least one highest maximal element.

Let S be a commutative archimedean semigroup without idempotent,
For a fixed element a ¢ S (we call a a standard element), we define re-

lations e, and T, as follows:

' i
Xpy <=>ax=ay for some n, m>0.
a

n -
xTay <E=> X = a v for some =n > 0,

Then S/pa is an abelian group and each congruence class modulo o, is an
ordinary tree without least element. We define a relation T on S as

follows:
n n
xTly <=>ax=ay for some n >0,

Then S/T is an ff-semigroup.
(6.1) Let G be an abelian group with I(¢,B) on G X G satisfying
(2.1), (2.2), (2.3) and (2.4),-

(6.2) {S}; L € G} a system of ordinary trees S. of infinite length

A

exac?ly one from SK'

the set of all primes

and {L); M ¢ G} a system of highest primes ¢z

(6.3) P= UP
. AeG

Suppose that a commutagive binary operation (.) is defined on P

A’

the set of all primes of S, P

A A

of PK'

such that 2z

€ is the identity element, and if o, ¢ P, and Bu € PM’ then

A A

Q}'BH € PKH and the following three conditions are satisfied: For all

~J



+h

B, all K;‘u, v,

oLy oTinoF 2y 4 IOy - T, -3 0 >h

- S
5.\‘5*7*
(6.3.2) o) + 0B ) + a(v) + ICLW + T, 2 oy B )Y ) +
\ ?J, Vv - S 4

(CZ,S 'B”.) ".\{/\J((O[;\\'. Brw) ° \{.\)3 C(;\“. (Bw' \‘/v)) °

M
{6.3.3) For any o e P\, there is a positive integer m such that

o(a™) + o@) + 100 - o™ ey >0
(m)y _ (m-1) (2) _
where aA = oy U &= ey
Then a 5-tuple ((G,I; {Sk}’ {Lk}; P}) is called a structural system.

Theorem 4. Suppose a structural system ({G,I; {SK}’ {Lx}; P)) 1is

given. Let

and

Def

Let

to_ . = e v
S}\ = {(n’a), 0 0,1, ] Of)\ € P}\}’

ine an equivalence relatiom £ on S' by

Qk € PK’ B e Pkﬁ

(n,0) E(m,B) <=> { :
: and n-ha(a,B) =-m=h

g(@8) 2 0.

S =8'/g, and let

R(2,B) = 9(o) + 0B ) + IO = 0(% B ).

A binary operation is defined on S as follows:

Let [(n,ax)] denote an element of S i.e. the g€-equivalence class in



S' which contains (n,&)).

(1) [, @B )] = [(a+m +K(2,,8 ), 4Bl
o VM

1%

Then S is a commutative archimedean semigroup without idempotent. Every
commutative archimedean semigroup without idempotent can be obtained in
this manner.

We have obtained a structure theorem, sut many guestions still re-
main. One of them is this: Given G, I and a svstem {SK}JOE ordinary trees
of infinite length with {?g assigned, does there =xist a commutative
groupoid P? If so, how can we determine all those? This problem is
still open in general except some special cases,

Theorem 5. The following condition implies (6.3.1), (6.3.2) and
(6.3.3).

(8)» U(&K) + G(BM) + I(A, W > ﬁ(ak'8u> for all Uy s BN’ all A, u,
which is equivalent to (9.1) and (9.2).

(9.1) IE =N # ¢y or BH # LM then U(ak) + G(BM> + I(A, W) - G(&K-BQ) >1.

(9.2) ?r(oz?\) = 1 for all oy # ¢z, all A ¢ G.

Definition. Ifxan ordinary tree L satisfies (9.2) then L is called
a sparse tree. If ({G,I; {SK}’ {LK}; P)) satisfies (9.1) and (9.2),
then it is called a sparse structural system.

We have the existence theorems with respect to sparse structural
systems in two ways.

Theorem 6. Suppose that an abelian group G and a function I is
given and that {SK; A e G} is a family of disjoint sparse trees of infinite

length., Let P, be the set of all primes of S

) and {LK} A ¢ G} be a repre-

A

sentative system of highest primes. Then there is a commutative groupoid

P= U P, with identity element z  such that ((G,I; {s)}, {e 35 P)) is a
reG ) "

O



sparse structural system.
Theorem 7. Suppose that an abelian group G is given and that there
is given a family of disjoint sets {P); A € G} in which a system

{25 0 ¢ G, zy € P}, is assigned. Let P = U PK' Also assume that
" : ' reG

ps

a groupoid (.) is given on P such that

for all o, ¢ P., B e€P , all A, u e G,
)3 A p o

Q
=
o
[}
w
=
Q
=
o™
g
>

=7 -Q, = QK for all o, e PA’ all X e G.

~

™
m
m
>

Then there is a function I and a family {SK; A ¢ G} of sparse trees of
infinite length such that Pk is the set of all primes of SX in which
2y is highest and ((G,I; {SK}’ {LK}; P)) is a sparse structural system.

Definition. A commutative archimedean semigroup S is called jointed
if and only if there is an element p such that for every element x of S,
pm = pnx for some m, n >0 depending on x. Related to a jointed commuta-
tive archimedean semigroup without idempotent, ((G,I; {Sk}’ {Lk}; P)) in
which G = (¢}, I(e,8) = 1, is called a jointed structural system and it
is denoted by ((S,z; P)).

Theorem 8. Let S be an ordinary tree of infimite length and let ¢
be a highest prime of S. Then there is a commutative groupoid P defined
on the set of all primes of S such that ((S,z; P)) is a jointea structural
system,

As seen in Theorem 4 the conditions seem to be complicated since the
class the theorem treats is large. 1Is it possible to improve the condi-
tions, though it might be necessary to restrict ourselves to a smaller

class?

The detailed discussion in this section will appear in [24].

10



4, Commutative Archimedean Semigroups of Type 1

Some properties of commutative archnimedean semigroups with zero

are also studied in the same way as in §3.

Let P be a set, w a mapping-P —» N\ {0}, Consider a mapping

PXP =N XN
(p,q) = (b, (p,9) 5 b (PyD))

such that hp(p,q) and hq(p,q) satisfy (&4.1), (4.2), (4.3 and (10) below:
(10) w(p) - hp(p,q> =w(@® - h,(p,q) 20 forall p, qeP.

We define L' and £ as the same as before. Define £' as follows:.
(m,q) &' (n,p) <=> either m > w(q) and n > w(p) or m = n and q = p.

Let §1 = & U E'., Then il is an equivalence relation on L'. Let L = L'/El.

il

We assume w(Q) 1 or 2 for all «o ¢ P; in particular w(z) = 1.

() = 0.

1]

(11) m(2)

l,f;(a} =1or 2 for all o # z.

]

i (@)

Consider a non-negative valued function K(w,B) which satisfies the

following conditioné:
K(o,B) = K(B,®), K(o,z) = 1 for all «,B.

(12.1) If either w(a) < w(a') = w(w-B) or w(a+B) > w(a'-B), then
K(w,B) = 1.

(12.2)  1f w(o) = w(a') and if w(w-B) = w(a'-B) = 2 and
ha-B(a'B’ a'-B) = ha'-B(a,B’ o'-B) = 2, then K(@,B) = K(a',B) = 1.
(12.3) 1If w(o) = w(a'), w(q.ﬁ) = w(a'.B) = 2 and

hy (@B, a'-B) = h . (a8, a'-B) = L or 0, then K(x,B) = K(a',B).



(12.4)  wi{{aB)-Y) # w(x (B-Y)) implies

K(a,B) + K(aB,Y) > w{ (@ B)+Y)

K(2,BY) + K(B,Y) > w(aw(B-V)).
(12.5) w((2-8)+Y) = w(a(B-Y)) implies
K(2,B) + K(a:B,Y) = K(x,BY) + K(B,V)  (mod. N

= j (mod. N

e
it

where £ = w((xB):Y) - h ({xB)Y, @ (B-Y)), and

P,
and § > 4.

(a:p)-Y

mesans that either 1 = j if i and j are less than 4 or i

ity
>

(12.6) Either a-a # o or K(a,o) > 0 for all o ¢ P.
(12.7) For any « ¢ P’K(a(n), % > 0 for some n > 0.
We choose a non-negative integer valued function K(«,B),
0 < K(w,B) < 2 such that (12.1) through (12.7) are satisfied. Define
a binary operation on S as in §3. Then S is a commutative archimedean
semigroup with zero. Any semigroup of this kind is obtained in this
_ manner. The\semigroup is determined by a four-tuple of a tree S of
finite length, a semi~highest prime z, the set P of primes, and a function

K satisfying the above condition. Then
((5,2,P,K))

is called a structural system.
We remark that a prime Py of a partially ordered set L is called
semi-highest if and only if

Oﬁo(pQ> > -1 for all primes p, in L.

As in §3, we have to consider the problems with respect to the

existence and determination of structural systems ((S,z,P,K)), but it

12



is still open in general.
As mentioned in %2, the study of commutative nil-semigroups, i.e.
commutative archimedean semigroups with zero is reduced to that of com-

mutative semigroups satisfying

xz = 0 for all x.

It is also a useful idea to study the structure of commutative semigroups

5 .
with zero 0 satisfying x = 0 for all x from the different aspect.

5. Other Studies of Commutative

Archimedean Semigroups without Idempotent

5.1 Finitely Generated 7 -semigroups. An ?{-semigroup is a com-
mutative archimedean cancellative semigroup without idempotent (§2).
Petrich [8] proved that if an ¥€-semigroup S is finitely genercted, S is

\

power=-joined:

. . . m n
For any x, v ¢ S there are positive integers m, n such that x =y .

However, we have in [3]

Theorem 9. Aﬁ ¢ -semigroup S is finitely generated if anc omnly if
the structure group Ga of S is finite for all a ¢ S. An X -semigroup S
is power=-joined if and only if Ga is periodic for all a ¢ S.

In Theorem 9, "for all a" can be replaced by "for at least one a',

The two unsolved problems, the determination of I-functions and the
isomorphism conditions, for YZ—semigroups ($2) can be solved in some
sense in the case of finitely generated € -semigroups.

A1l the I-functions for a finite abelian group G are determined.by
the method of [1]; the isomorphism condition can be described in terms

of normal standard elements and the normal form of I-functioms [5]. A4n

13



element a is called anormalstandard element of S if ‘Ga! is minimum,

The following theorem is important.

Theorem 10. A semigroup S is a finitely generated ¥¢-semigroup
if and only if S is a subdirect product of a finite abelian group and
a. positive integer additive semigroup. |

M. Sasaki will report the detailed results on finitely generated
Qf-semigroups [127.

5.2 Finitely Generated Commutative Archimedean Semigroups without
Idempotent.

Let S be a commutative archimedean semigroup without idempotent,
Apart from the tree order Ty defined in §3, we define a relation < on

S by divisibility:

x <y 1if and only if either x = yz for some z ¢S or X

it
«

If S has either a zero or no idempotent, then S is a partial order.
The order = need not be a tree but S is determined by S itself, while
the partial order Ta depends on a but Ta is of special type, namely, tree,
It seems useful to study the relationship between the structure of S and
the type of the partial order < , but we have not seen such a deep in-
vestigation except Tully's work [27].

He determined the sfructure of commutative archimedean semigroups
for which X is a tree with the ascending chain condition.

We would like to mention here that if S is finitely generated or
power-joined it has interesting properties. Levin obtained the following
. results [7}. Theorem 12 is the generalization of Theorem 9. /

Theorem 11. Let S be a finitely generated commutative archimedean

semigroup without idempotent. Then the partial order < satisfies the

14



asceﬁding chain condition, and the set of all maximal elements of ‘S with
respect to <X is finite. Also the set of all maximal elements of § with
respect to T is finite for each a ¢ S,

Theorem 12, A commutative archimedean semigroup S without idem-
potent is power-joined if and only if the structure group Ga with re-
spect to an element a is periodic for each a ¢ S, and the congruence
class SE of S modulo Py which ébntains the element a’i; power-joined,

Theorem 13. Let S be a commutative archimedean semigroup without
idempotent, Then S is power-joined if and only if every finitely gene-
rated subsemigroup is archimedean.

The property 'power=-joined" (stronger than "archimedeaness") plays
an important role in the theory of commutativebsemigroups. Let S be a
commutative semigroup. Consider equi§alences o) én S such that each
equivalence class of S modulo O is a subsemigroup. There is a smallest
o, of such 0 on S. Then each equivalence class of S modulo OO is power-
" joined. 1Im other words, every commutative semigroup is the set union
of disjoint power-joined subsemigroups.

Recently M, Sasaki [12] has obtained the following results on power-
joined 3f-semigr0ups. The following theorem is the extension of Theorem 10

Theorem 1l4. S is a power-joined Jf—semigrqup if and only if it is a
subdirect product of é periodic abelian group and an additive positive
rational semigroup.

For the readers we define here subdirect product:

If S is a subsemigroup of the direct product of A aﬁd B and if the
projection of S to A is equal to A and the projection of S to B is equal

to B, then S is called a subdirect product of A and B.



We would like to add the results of locally cyclic semigroups [6].
Definition. A semigroup S is called locally cyclic if for every
two elements a and b of S there is an element ¢ of S and there are posi-

tive integers m and n such that

A locally cyclic semigroup is commutative archimedean, power-joined,

and if it has no idempotent, it is power-cancellative:

A locally cyclic semigrﬁup is characterized by the set union of an
ascending chain of cyclic semigroups. More important is that locally
cyclic semigroups are related to the additive semigroup of all positive
rational numbers. For example a locally cyclic semigroup without idem-
potent can be embedded into the additive semigroup of all positive rational

numbers; more generally

a power-cancellative, power-joined commutative semigroup can be
embedded into the additive semigroup of all positive rational

numbers.

We can easily see that a commutative, finitely generated, power-joined
power-cancellative semigroup is isomorphic with a positive integer semi-
group with addition; we already know in [20] ghat the positive rational
semigroup with addition is also studied from the property 'power-

divisibility", namely, for any element a and for any positive integer m

there is an element b such that



It would be interesting that the system of numbers, from positive integers
to positive. real numbers, may be systematically investigated from the

semigroup~theoretical point of view,

6. Generalized Archimedean Semigroups

In this section we will report the results on the séudy of archi-
medean semigroups in generalized sense.’ These results are due to
J. Chrislock [3].

Definition. A semigroup S is called *-archimedean 1f, for every

a, b ¢ S there are elements u, v, X, y S and positive integers w, o

[0}

such that

m

a = ubv, b = xav,

S is called right *%~archimedean if for every a, b ¢ S there are x, v ¢ S

and positive integers m, n such that

A (xright) *?ar&himedean semigroup is S-indecomposable but the
converée is not true.

Theorem 15, A semigroup is a *-archimedean semigroup with an idem-~
potent if and only if it is an ideal extension of a simple semigroup with
an idempotent by a nil-semigroup.

Theorem 16. A semigroup is a right *;archimedean semigrou» with

idempotent if and only if it is an ideal exten

m
]

“

icn of 2 righ: group
by a nil-semigroup.

Definition. 1If S satisfies

17



xaby = xbay for all x, a, b, vy € S,

As archimedeaness is equivalent tec S-indecomposability in commu-

tative semigroups, we have

. Let S be a medial semigroup. S is S-indecomposable

1y

is *=~=archimedean.

(S

n case of medial semigroups, Theorem 15 is specialized as follows:

heorem 18. S is.a medial *-archimedean semigroup if and only if

[¥5
-
63
45
o
fae
o
03
o
[p]
W

tension of a rectangular-abelian group by a nil-semigroup
- — P Heals o ~ U . - £

where a rectangular-abelian zroup is the direct product of a rectangular

band and an abelian group.

o

Definition. A semigroup S is called left separative if S satisfies

az = ab and b2 = ba imply a = b.
S is called right separative if
2 2 .
a =ba and b = ab imply a = b,

s both left and right separative.

e

S is called separative if it

Let S be a medial semigroup and define a relation ¢ on S by
x0y if and only if there is a positive integer n

such that

n n+l n o+l
Xy =X and y X =y .

Then ¢ is the smallest left separative congruence on S.

We have the results for medial semigroups similar to those for



commutative semigroups by Hewitt and Zuckerman (see [1}}.
Theorem 19. Let S be a medial semigroup. Then S is left separative
if and only if each of its *-archimedean components is left cancellative.
Theorem 20. A medial semigroup S can be embedded into a semi-

lattice of groups if and only if S is separative.

[
w

Hh
-t

Definition, A semigroup which is separative -
archimedean and nas no idempotent is called an ¥ *-semigroup.

We have a construction-method for J{¥-semigroups similar co that
for ??-semigroups.

Theorem 21. Let E be a right-abelian group (i.e. the direct product
of a right zero semigroup and an abelian group), I be a non-negative
valued function defined on H x H satisfyving the fcllowing properties:

(13.1)  I(B,¥) + I(x,BY) = I(2,B) + I(aB,Y)

I(8,2) + I(Ba,Y).
(13.2) For any « ¢ H, I(dn,a} > (0 for some m > 0,

(13.3) I(e,&) =1

h

or some left identity €.

Define a binary operation on N x H = {(n,®); n=0,1,+--, o ¢ H} as follows:
(n,)(m,B) = (n +m + I(xB), B).
hen N X H is an H¥-semigroup. Every W¥-semigroup is obtéined in this
manner,
7. Finite S-indecomposable Semigroups

We can easily treat finite S-indecomposable semigroups in comparison
with the general case. The result is published in [23].
Let S be a finite simple or O-simple semigroup. If S is simple,

S is always S-indecomposable; if S is O-simple, S is S-indeéomposable

}_,J
Vel



if and only if S contains zero-divisor except zero.

Accordingly we may restrict our studv to the case of finite non-
simple 5-indecomposable semigroups. All such semigroups are classified
into 16 classes as Table 1, 2 shown below. In the tables the example

of $ with minimal order will be shown in each case.

Explanation of Notations

Q

is a smallest C-congruence (commutative congruence) cf S,

T is a smallest d-congruence (idempotent congruence) of S,

F
owed.
2]

a finite simple semigroup,

M is the union of all O-minimal ideals of S:

UT, Ueew U

M= 2

5 Kk?

where 11,-*~5£k are O-minimal ideals of S and each one is either a null-

semigroup or a O-~simple semigroup and

M is called the O-amalgam of I,,¢++,I, .

1’ k ‘ .

"e-ind" is "c-indecomposable'',

""c-dec™ is "c-decomposable't,

"mil" is "nil-semigroup'’,

is "unipotent semigroup without zero',

“rect" is "rectangular band",

"null" is "null-semigroup',

A5 is the alternative group of degree 5,

C5 is a O-simple semigroup of order 5 with zero divisor except O,

Ni is a null-semigroup of order i,



Non-simple 3

is the cyclic group of order 2,

Table 1

R, is the right zero semigroup of order 2

" ¢_ is the O-amalgam of N, and Cs

.

A. X R, is the direct product of A5 and R,
A 4

~indecomposable Semigroups without Zero

g | ? | . Example Min, Class
I | T | S o s/ei s/r e |
! | : : I T Order No. |
\ { | t ¢ i
g ; ! : . o
| b ceind O\ N P . e
i c-ind | c-ind | : \\\\\ A_ C. 64 1.1
; ; - i-ind ‘ . 5 >
] ; T : ; e -
: [ c-dec ™~ i
i 3 - ' nil . ™. A N 9 i
. group | c-dec . . . o nil ~_ A5 Nz 61 1.2 %
. . c=-ind . N , E <
c~ind c-ind ~. 1 7rect | A_xR, C. 124 Po1.3
Do i-dec ~ S R S : |
i i=-dec : i - -
| simple | c-dec c-dec | nil rect = A_XR, N 121 1.4
;\— 4 ) - 1-dec £ \ )1.5 \4.2 L:Z e i e
] L e c-dec - - - -
C=-aec c=1ind $-ind group &32 \.;: o] L2
5 rou , c-dec | c-dec r : £
g:. p vw aeg i i—ind 4 y = » U
: , : . I c-dec | ! o ) i
i c~dec | c~ind | . | . grecup | rect | G XR. C. IS i
v i { i-dec ° 27275 !
[ i~dec - : . i 5 . .
" simple | c-dec : c-aec | u.g. | rect G.XR. N 5 i i
| g ; | i-dec | =0 2 2 - V. }
Table 2
Non-simple S-indecomposable Semigroups with Zero
T i ( [ s 5
; Examp! Min. | a
M T 3 . s/c xample Tn f Class
M T Order | VNo,
| O-amalgam c-ind | c~-ind. \\\\\\ C. C. 9 Lo2.1
of U-simple sgs c-dec c-dec | nil C. N7 6 2,2
; 5 2 z
» | ¢c~-ind x\\\\‘ N ' 7 |
-ind - -
| Null i c-dec pil | N,
: c-dec " c-dec | nil | N,
' O-amalgam of ¢c-ind | . N]c. ¢ 11 2.6
3 & c-ind ; ~., 3 75 75 N
O-simple and c~dec ; nil NCo C_ i1 27
| ; 3 5 75 * —
| Null sgs c-dec | c-dec | nil NJC_ N, 7 Co2.8
' i 2 5 2 .
4




Thus the construction of finite non-simple S-indecomposable semi-
groups is reduced to the construction of ideal extensions of an S~
indecomposable semigroup by an S-indecomposable semigroup with zero.
This principle can be discussed from more general point of view [23].
Let T be a system of identities.

Theorem 22, Let I be a J-indecomposable semigroup and T be a
J-indecomposable semigroup with zero. Then every ideal extension S of
I by T is T-indecomposable.

Theorem 23, Let I be a T-decomposable semigroup and O be the
smallest JT-congruence on I. Let T be a J-indecomposable semigroup.

If S is an ideal extension of I by T and if S has a JT-congruence p such
that the restriction p|I of p to I is equal to ¢, then p is the smallest
T—congruenée on S.

Finally we shall review the study of finite nil-semigroups.

The construction of finite nil-semigroups was studied by the author
by using the homomorphic image of certain free semigroups [19]. Yamada
[28] constructed all commutative nil-semigroups of order n by using the
ideal extension of a-null semigroup of order 2 by a commutative nil-
semigroup of order n-1. On the other hand all commutative nil-semigroups
o£ order n can be constructed as ideal extensions of commutative nil-
semigroups of order n-1 by a null semigroup of order 2., Especially we
can explicitlyldetermine all the non-isomorphic commutative extensions
of a cyclic nil-semigroup by a null semigroup of order 2, and all the
non-isomorphic commutative extensions of a finite null semigroup by a
null semigroup of order 2, These results were obtained by Yamada and

the author [29].

22



8. S-indecomposable semigroups

It would be difficult to characterize or construct S-indecomposable
semigroups as a class of semigroups because the class is very large.

The following statement is clear from the definition.

A semigroup S is S-indecomposable if and only if for every two

contents A, B in S, there is a sequence of contents in S

such that
Ci N Ci+1 ¢ ¢ (i=1,---,n-1),.

The concept of "content'" may be useful in the study of S-indecomposable
semigroups.

The greatest C-homomorphic image of an S-indecomposable semigroup
is archimedean and the greatest J-homomorphic image of an S-indecomposable
semigroup 1is a rectangular band. A subdirgct product of a rectangular
band and a commutative archimedean semigroup is S-indecomposable, but
all S-indecomposable semigroups are not subdirect products ofwa rectangu-~
lar band and a commutative archimedean semigroup, though they are homo-
morphic onto a subdirect product.

The deep study of S-indecomposable semigroups is left for the future,

9. Subdirect Product

So far the concept of subdirect product has been used frequently

to describe the structure and to construct certain class of semigroups.

23



Although the direct product of A and B is uniquely determined by A and
B, subdirect products of A and B are not necessarily uniquz. How can
we concretely construct all subdirect products of given A and B? Of

se the following statement is clear.

Let g and C be congruences of a semigroup S. S is isomorphic

with a subdirect product of S/ and S/c if and only if p N o= 2,

We have nct studied the construction of subdirect products in general

fremy
o~

I.

case except z special case

[}

Theorem 24, A subdirect product of an S~indecomposable semigroup
and a rectangular band is S-indecomposable.
. Theorem 25. Let S be a semigroup and B = L x R be a rectangular

band, If £ is the set of all left ideals of S and R is the set of agll

(]

[
mn

sat

ta
w

right ideals of 5, then two mappings ©: L — R and §: R — sfying

where

Moreover ‘the correspondence (up,¢; — D is cne-to-cne ontc the set of all

subdirect products of § and B. -

-

We remark that the direct product of &

semigroups is S-indecomposable, but the direct product of an infinite numbet

of S-indecomposable semigroups need not be so. Also a subdirect product




of two S-indecomposable semigroups need nct be so.

‘10. General Products

We frequently meet with the problem: Find semigroups S which are
homomorphic onto a given semigroup T. The problem in this form seems

too vague to treat. 50 let us rvestrict the problem as follows:

™

Given T, £ind § such that S is homomocrphic onto T under a map
£ and such that thzs cardinal number of the inverse image set

of each element of T is comstant, i.e. given .mc

general product of a set A by a semigroup

1]
o

T by using the system of gzroupoid

]
Lat B he a set and .35'3‘,_ ne S oY &l
ta
cn E Tet %, v 2 5. 8 ¢ & _ and lec x 8 fenote the
i e Ll s N Ty ToT oS dlI LR w A T wilio oo Ll
v by &, A groupoid wi g defined on £ is cenoted by
s
) o, - PRI - 1 A LI
define the equalily oIr 2iemenis 0L «
B3 - =
5
O - T = =S e F R . P . < ~ T
¥ = i 1T and oniy LI Loy = Xy Ior aii X, < K.
w fagi] TS o _ . a Yo oA B . . e
Let a2 ¢ E be fixed. Two binary operations a* and ¥a are defined in & _
IL

as follows:

"
M
<
®
L

O
I



(15) =x(® a* Ty

(x @ ayny,

x 8 (a Ty

il

7

(16) x(8 *a T)y

i

Then & _ is a semigroup with respect to a* and *a for all a &

(17.1) &_{a*) ~ F_{b¥) for all a, b
£ = E

m
ed]

(17.2) #_(*a)

e

£E<*b) for all a, b = E,
(17.3) &_(a*) is anti-isomorphic with :ﬁg(*a),
(17.4) E(®) is a semigroup if and only if & a* 8 = 6 *a 6
for all a ¢ E.
10.2 -Basic Properties of General Product. Let S be a set and T

be a semigroup. - Let

" Consider a mapping T of T x T into ng
(2,B)8 = 9:’8 (z,B) 2T xT
satisfving
{(18) elaﬁ a¥ GQB,Y = e&’sy *a eB,Y for ail a ¢ 8, all «, B, v ¢ T.

Given S, T, O, a binary operation is defined on S x T as follows:

(19) x,0(y,B) = GQ’By, aB).

Then S x T is a semigroup with respect to (19),
Definition. The semigroup, S X T with (19), is called a general

product of a set S by a semigroup T with respect to €, and is denoted by
s Xg T.

If it is not necessary to specify 8, it is denoted by



Definiticn., Let g be 2 homomorpnism of & semigroup D onto a

semigroup T: D= _ 2 . D g= g If D | = %DBE for all «, B ¢ T,

then g is called a homogeneous homomorphism (h-homomorphism) of D or
D is said to be h-homomorphic onto T. If [Da} > 1 and [T! > 1, then
g is called a preper h-homomorphism,

Definition. If a semigroup D is isomorphic onto some S %- T, then
D is called geperal product decomposable {gp—decomposable). if fSt > 1
and !Ti > 1, then D is called properly gp-decomposable,

Theorem 26. A semigroup D is (properly) gp-decomposable if and
only if D has a {(proper} h-nomomorphism.

Theorem 27. A semigroup D is gp-decomposable if and only if there
is a comgruence ¢ on D and an equivalence T on D suéh that

{26) peo=w, w=2D xD

(21) o No=2, z={(x,x); x D}
in which (20) can be replaced by

(20') C.o = w.

Then D ;g(D/G) g (D/o).

We know many examples of general product: direct product, semi-direct
product, group extension, Rees' regular representation of completely
simple semigroups, the representation of & -semigroups and so on.

10.3 Left General Product.

Definition. A general product S X@ T is called a left general pro-

duct of S by T if

8 = ea depending only on «.

27



4 right general product of S by T if

e =8 depending only on B.

CZ,B ‘B

Theorem 28. A semigroup D is isomorphic onto a left general
product of a set S by T if and only if there is a congruence g on D

and a left congruence © on D such that
D/p~ T, ilD/'gi = !Si:

and

Tt can be proved that éiE(a*) can be described as a left general pro-
duct of S by T where T is the full transfcrmation semigroup cover E.

ciection
cf U ¢ X7
&

s z
Theovem 29, If = T
yndey a mapping g. D S T,
i fey - . e
.
i
[
iois
. . F el ; _
either the minimum of 3| We do not know vet
,-_h S 1 [ TS S, ey 1
that E can be s 1 13 aiwavs minimal,
o' -

T

h

T.T - o Qi 4 2
we did not assume this,

The above remark on
Theorem 29 would be trivial, because if D is homomorphic onto T, then D

is isomorphic with a subdirect product of D and T,

N
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10.5 Examples and Remark,

et T be a right zero semigroup. To find all left general products

-

of given S and T, we may find 6 ; « ¢ T; such that the following equa-
tions are satisfied:

(21) all ©_ are semigroup operations

(22 8 a® & = 8 %a 8 for all a ¢ S, all o, B ¢ T.

Oie B . e B.
As simplest examples, the author's students have computed all left general
f : ’ o ¥

products of S by T where %S{ < 3, !Tl = 2, and they are computing all
general products of S by T, ‘Sl < 3, 1T§ = 2,

Let T be a right (left) zero semigroup, and suppose that a system
of semigroups, D ; « & T, is given. If 3 semigroup D is a set union

104

of D_ and the operation within each D_ is preserved, D is called a r-
W

(4-Ycomposition of {D ; & ¢ T}

1307, The following two questions are open:

semilattice,
x e T,
The same questions are raised for S=-composition.
If we speak of the problems bv using Theorem 29, an S5-{4-, r-)

composition D of {Dw; % ¢ T} exists if and only if a general product

S %5 T exists for some S and some @ such that iS* > EDQl and D can be
embedded into S R@ T. We do not know, however, if this idea will be
practically useful for the theory of compositions, but we can sayv at least
that it would be theoretically interesting, The development is expected,.

The results in this section §10 will be more precisely reported in [25],

&

[26].
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Unsolved Problems on Semigroups

By T. Tamura

A commutative archimedean semigroup without idempotent is determined

by a structural system ((G, I; {S;g, {z.}; P)). Solve the existence
problem and the construction problem of structural systems. (For

example under what condition on {Saj,

S

{Ll}, G, I does there exist a
commutative groupoid P such that ((G, I; {SA}’ {ak}; P)) is a struc~-
tural system?) (See T. Tamura, Recent study of semigroups, ibid.)
Alsc solve the isomorphism condition.

The same problem for a commutative nil-semigroup. In this case

{(Sg, Ze s P)) is a structural system.

Study the structure of commutative semigroups S with zero 0 such

that Xz = 0 for all x ¢ S. Especially try it without using the notion
"tree', Can we determine the structure of S from the standpeint of
the partial order defined by divisibility? The same question for 1.
Let S be a semigroup and suppose that £: S — L is a homomorphism of

S onto a semilattice L. Let @ be a right translation of S. Then

it is known that xf = yf, x, y ¢ S, implies (x9)f = (yp)f. TFor o,

a translation @ of L is well defined by
(=g = (xP£.

Then the mapping ¢ - & is a homomorphism of the right translation
semigroup R(S) into the translation semigroup T(L). (T{(L) is a
semilattice.) A question: 1Is @ - & a homomorphism of R(S) onto

T(L)?
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Let SS denote the symmetric group over a set S, and G be a groupoid

defined on S. Let P be a permutation group over S, that is, a

subgraup of SS’ and G(¥) denote a groupoid whose automorphism group
is $ . What is a necessary and sufficient condition on "B for G(®)
to exist? Consider the same problem when G(ﬁ) is restricted to
semigroups, We know that G(B) exists if one of the following con=+
Jitioms is satisfied: (1) $= 3., (2) B = {&¢} (the identity mapping

alone), (3} & is a cvclic subgroup, (4) every permucation group

over S, 18 < 4, On the other hand G(#) does not exist if {S% > 5,
L £ 3, and if "B is {See T. Tamura, Groupoids

eir automorphism groups (to be published}.)v
Similarly te >, consider the problem: What is a relationship be-
tween a groupoid G and its endomorphism semigroup?
"Attainability" is defined in Jour. of Algebra, 3(1966), 261-276.
(7.1) Determine all non-trivial attainable system of identities
{admitting constant letters) on all semigroups.
(7.2) Dstermine all non-trivial attainable system of»implications
on all semigroups.
(7.3) 1Is there non-trivial system of identities on all groupoids?
(It is known that there is no such system of identities on all rings.)

2 2
X = Xy =y =>XxX=y;: (separative) is attainable on all commutative

semigroups; weak reductivity is attainable on all semigroups.
] 1 . . .
(7.4) Is {x = xy =y =>x =y} attainable on all semigroups?

(7.5) Is {{x" = x, v° =y} =>x =1y} attainable on all semigroups?

All the identities containing at most three letters in bands were

determined by M, Yamada and N. Kumura., Determine all the identities

containing at most four letters in bands. What about the general case?



A semigroup S is called totally orderable if a total order < can be

defined in S such that
a <b=>ax < bx, xag xb.

Find a necessary énd sufficientc condition on S for S to be ctotally
orderable.

Let S be a semigroup? and "B (S) be the set of all non-empty subsets
of S. A binary operation is defined in 35(8) as follows: For X,

Voz ﬁé(S)

Then ‘A (S) is a semigroup. It is called the power-semigroup of S.

A question is this: Is it true that

4

if CE(S) x By, S

)
[9)]
N
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