ABSTRACT PROPERTIES P SUCH THAT ANY SEMIGROUP WHICH IS A SEMILIATION OF COMMUTATIVE SEMIGROUPS WITH P IS COMMUTATIVE

By Miyuki Yamada

Let P1 (G) and P2 (G) be abstract properties pertaining to computative semigroups G in the sense of P. M. Cohn[3]. $P_1(G)$ is said to be weaker than or equal to $P_2(G)$ and denoted by $P_1(G) \ge P_2(G)$ if and only if, for any commutative semigroup S, $P_{\eta}(G)$ is satisfied by S (i.e., $P_1(S)$ is true) whenever $P_2(G)$ is satisfied by S. If $P_1(G) \ge P_2(G)$ and $P_2(G) \ge P_1(G)$, then $P_1(G)$ and $P_2(G)$ are said to be equivalent and denoted by $P_1(G) \equiv P_2(G)$. If $P_1(G) \equiv P_2(G)$, we regard $P_1(G)$ and $P_2(G)$ as the same property. When S is a semigroup which is a semilattice of commutative semigroups S_{ξ} , $\xi \in \mathcal{X}$, S is not necessarily commutative. However, there is an abstract property P(G) pertaining to commutative semigroups G such that any semigroup which is a semilattice of commutative semigroups with P(G) is commutative. Such an abstract property is called a fully c-invariant property (abbrev., f.c.i.-property). For example, it is well-known that the property P(G) "G is a group" is an f.c.i.-property. There is no greatest (i.e., weakest) f.c.i.-property with respect to the ordering relation defined above, but there is a maximal f.c.i.property. Further, a maximal f.c.i.-property is not unique. The main purpose of this paper is to obtain maximal f.c.i.-properties, and some relevant results. All results are given without proofs.

- § 1. Introduction. A commutative idempotent semigroup [is called a semilattice. Define an ordering relation on [as follows:
 - (1. 1) $\alpha \leq \beta$ if and only if $\alpha \beta = \beta \alpha = \beta$.
- Then, it is obvious that Γ is a partially ordered set with respect to \leq . If $\alpha \leq \beta$ and $\alpha = \beta$, then we shall denote it by $\alpha < \beta$. If Γ

is a totally ordered set with respect to \leq , then Γ is called a chain. Now, let $\{S_{\gamma}: \gamma \in \Gamma\}$ (Γ : a semilattice) be a collection of semigroups S_{γ} . Then, each S_{γ} is called the $\underline{\gamma}$ -component of this collection. If γ is not a minimal element of Γ (i.e., if there is an element $x \in \Gamma$ such that $x \in \Gamma$), then the corresponding S_{γ} is called a <u>multiple-component</u>. Let $S = \sum \{S_{\gamma}: \gamma \in \Gamma\}$ (hereafter, \sum and $\widehat{\tau}$ denote disjoint sum). If \circ is multiplication in S such that

(1. 2) $S(\circ)$ is a semigroup, and each S_{τ} ($\gamma \in \Gamma$) is embedded in $S(\circ)$, i.e., $x \circ y = xy$ for all $x, y \in S_{\tau}$.

and

(1. 3) $S_{\alpha} \circ S_{\beta} \subset S_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, then the resulting system S(c) is called a composition of $\{S_{\gamma}: \gamma \in \Gamma\}$ (with respect to ___). Further, next we shall generalize this concept as follows : Let $\{S_{\xi}: \xi \in \chi\}$ (χ : a set) be a collection of semigroups S_{Ξ} . Define multiplication * in X and multiplication o in S= $\mathbb{Z}\left\{\mathbf{S}_{\S}:\S\in\mathcal{X}\right\}$ such that $\mathcal{X}(\divideontimes)$ is a semilattice [chain] and $\mathbf{S}(\circ)$ is a composition of $\{S_{\xi}: \xi \in \mathcal{X}(*)\}$. In this case, $S(\circ)$ is called a semilattice [linear] composition of $\{S_{\bar{s}}: \bar{s} \in \mathcal{X}\}$. Let $\{S_{\gamma}: \gamma \in \Gamma\}$ (\Box : a semilattice) be a collection of commutative semigroups S_{γ} . Then, sometimes there exists a composition $S(\circ)$ of $\{S_{\gamma}: \gamma \in \Gamma\}$ which is commutative. In this case, we shall call S(°) a commutative composition of $\{S_{\gamma}: \gamma \in \mathbb{T}\}$. Similarly if a semilattice [linear] composition S(°) of a collection $\{S_{\S}: \S \in X\}(X: a set)$ of commutative semigroups S is commutative, then S(0) is called a commutative semilattice [linear] composition of $\{S_{\xi}: \xi \in \chi\}$. In general, for a given collection $\{S_{\gamma}: \gamma \in \gamma\}$ (γ : a semilattice) of semigroups S_{γ} . there is not necessarily a composition of $\{S_r : r \in \Gamma\}$ (see Yamada [4] If there exists at least one composition of $\{S_r : r \in \Gamma\}$, then the collection $\{S_{\Upsilon}: \Upsilon \in \Gamma\}$ is said to be <u>composable</u>. If Γ is a chain,

then it is well-known that $\{S_{\gamma}: \gamma \in \Gamma\}$ is necessarily composable (e.g., see Clifford [1]). For any given collection $\{S_{\gamma}: \gamma \in \Gamma\}$ (Γ : a semilattice) of commutative semigroups S_{γ} , a composition of $\{S_{\gamma}: \gamma \in \Gamma\}$ is (even if it exists) not necessarily commutative. This can be seen from the following simple example:

Let $\Gamma = \{\alpha, \beta\}$ ($\alpha\beta = \beta\alpha = \beta, \alpha \neq \beta$) be a chain, S_{α} a commutative semigroup, and S_{β} a null semigroup containing at least two elements. Let $S = S_{\alpha} + S_{\beta}$, and define multiplication \circ in S as follows:

$$x \circ y = \begin{cases} xy & \text{if } x, y \in S_{\times} \text{ or } \in S_{,S} ,\\ y & \text{if } x \in S_{\times}, y \in S_{,E},\\ 0 & \text{if } x \in S_{,E}, y \in S_{,E}, \end{cases}$$

where 0 is the zero element of $S_{\mathcal{S}}$. Then $S(\circ)$ is a non-commutative composition of $\{S_{\mathcal{X}}, S_{\mathcal{F}}\}$ with respect to Γ . In § 2, we shall give a necessary and sufficient condition for a collection $\{S_{\mathcal{F}}: \gamma \in \Gamma\}$ (Γ : a semilattice) of commutative semigroups $S_{\mathcal{F}}$ to be composable. Further, in the case where $\{S_{\mathcal{F}}: \gamma \in \Gamma\}$ is composable, we shall give a method of construction of all compositions of $\{S_{\mathcal{F}}: \gamma \in \Gamma\}$. We also give a necessary and sufficient condition for $\{S_{\mathcal{F}}: \gamma \in \Gamma\}$ that every composition of $\{S_{\mathcal{F}}: \gamma \in \Gamma\}$ (if it exists) be necessarily commutative. Let P(G) be a proposition pertaining to commutative semigroups G. As in Cohn[3], P(G) is said to be an abstract property (pertaining to commutative semigroups) if and only if P(G) is invariant under isomorphism, i.e.

(1. 4) for any commutative semigroups S_1 , S_2 such that $S_1 \cong S_2$ (S_1 is isomorphic with S_2), $P(S_1)$ is true whenever $P(S_2)$ is true and vice-versa.

If P(S) is true for a commutative semigroup S, then we shall say that S satisfies P(G). In this case, we also say that S is a commutative semigroup with P(G). For example, the properties " G is a group " and " G is cancellative " pertaining to commutative semigroups G are

abstract properties. Let $P_1(G)$ and $P_2(G)$ be abstract properties. Then $P_1(G)$ and $P_2(G)$ are said to be <u>equivalent</u> (denoted by $P_1(G) \equiv P_2(G)$) if the following is fulfilled:

(1.5) For any commutative semigroup S, $P_1(S)$ is true if and only if $P_2(S)$ is true.

Hereafter, we shall consider $P_1(G)$, $P_2(G)$ as the same property if they are equivalent. Define an ordering relation on the set \widetilde{F} of abstract properties as follows: Let $P_1(G)$ and $P_2(G)$ be abstract properties. $P_1(G) \leq P_2(G)$ if the following (1. 6) is fulfilled:

(1. 6) For every commutative semigroup S, $P_2(S)$ is true whenever $P_1(S)$ is true.

If $P_1(G) \leq P_2(G)$ and $P_1(G) \neq P_2(G)$, then the property $P_2(G)$ is said to be <u>weaker</u> than the property $P_1(G)$ and denoted by $P_1(G) \leq P_2(G)$. It is obvious that $\widehat{\mathcal{H}}$ is a partially ordered set with respect to this relation \leq (when we regard properties $P_1(G)$ and $P_2(G)$ as the same property if $P_1(G) \equiv P_2(G)$).

Next, consider the following propositions concerning an abstract property P(G):

- (1.7) For any collection $\{S_{\gamma}: \gamma \in \Gamma\}$ (Γ : a chain) of commutative semigroups S_{γ} , where each multiple-component S_{α} satisfies P(G), every composition of $\{S_{\gamma}: \gamma \in \Gamma\}$ is commutative.
- (1.8) For any collection $\{S_{\gamma}: \gamma \in \Gamma\}$ (Γ : a semilattice) of commutative semigroups S_{γ} , where each multiple-component S_{∞} satisfies P(G), every composition of $\{S_{\gamma}: \gamma \in \Gamma\}$ (if it exists) is commutative.
- If (1. 7) or (1. 8) is true for P(G), then P(G) is called a <u>linearly c-extensible property</u> (abbrev., 1.c.e.-property) or a <u>fully c-extensible property</u> (abbrev., f.c.e.-property) respectively. For example, the abstract property "G is a group "pertaining to commutative semigroups G is an f.c.e.-property. By the definitions an

f.c.e.-property is clearly an l.c.e.-property, but the converse is not true (see Remark below). In § 3, we shall show existence of the weakest l.c.s.-property and the weakest f.c.e.-property and try to determine these properties.

Next, consider also the following propositions concerning an abstract property P(G):

- (1. 9) For any collection $\{S_{\S}; \S \in \mathcal{X}\}$ (\mathcal{X} : a set) of commutative semigroups S_{\S} , where each S_{\S} satisfies P(G), every linear composition of $\{S_{\S}: \S \in \mathcal{X}\}$ is commutative.
- (1. 10) For any collection $\{S_{\xi}: \xi \in \mathcal{X}\}$ ($\mathcal{X}:$ a set) of commutative semigroups S_{ξ} , where each S_{ξ} satisfies P(G), every semilattice composition of $\{S_{\xi}: \xi \in \mathcal{X}\}$ is commutative.
- If (1. 9) or (1. 10) is true for P(G), then P(G) is called a <u>linearly c-invariant property</u> (abbrev., l.c.i.-property) or a <u>fully c-invariant property</u> (abbrev., f.c.i.-property) respectively. It is obvious from the definitions that an l.c.e. [f.c.e.] -property is an l.c.i.[f.c.i.] -property. In § 4, we shall show existence of maximal l.c.i.-properties and maximal f.c.i.-properties and determine some of them.

Remark. Let $P_{\mathbf{u}}(\mathbf{G})$ be an abstract property as follows :

(1. 11) G is universal, i.e., $G^2 = G$.

Then it is easy to see that $P_u(G)$ is an l.c.e.-property (this will be shown later). Now, let T be a universal commutative semigroup which has a zero element and whose annihilator A contains a non-zero element. (Existence of such a semigroup T can be proved). Now, let $L_3 = \times, \beta, \gamma$ be a semilattice such that $C < \gamma$, $\beta < \gamma$, $A \triangleq \beta$ and $\beta \triangleq A$. Let S_A and S_B be infinite cyclic semigroups generated by a and b respectively: $S_A = (a)$ and $S_B = (b)$. Let $S_{\gamma} = T$. Then $S = S_A + S_B + S_C$ becomes a non-commutative composition of $\{S_A, S_F, S_{\gamma}\}$ with respect to L_3 by multiplication \circ defined as follows:

$$xy$$
 if $x,y \in S_{\alpha}$, $\in S_{\beta}$ or $\in S_{\gamma}$, $x \in y = \begin{cases} u & \text{if } x = a \text{ and } y = b, \\ 0 & \text{otherwise,} \end{cases}$

where 0 is the zero element of T (= S_{γ}) and u is a fixed non-zero element contained in A. Hence $P_{u}(G)$ is not an f.c.e.-property.

Notation. Throughout this paper, if $\{S_{\frac{1}{8}}: \xi \in \mathcal{X}\}$ is a collection of ecamutative semigroups $S_{\frac{1}{8}}$, we shall denote elements of $S_{\frac{1}{8}}$ by small letters $a_{\frac{1}{8}}$, $b_{\frac{1}{8}}$, $c_{\frac{1}{8}}$ etc. having ξ as their subscripts.

- § 2. Composition theorems. Let $\Omega = \{S_{7} : r \in \Gamma\}$ (Γ : a semilattice) be a collection of commutative semigroups S_{7} . For every pair (α, β) of $\alpha, \beta \in \Gamma$ with $\alpha \leq \beta$, let $\mathcal{M}(\alpha, \beta)$ be the set of mappings of S_{α} into S_{β} . Let $C(\alpha, \beta) = \{S_{\beta} : \xi \in \Gamma, \alpha \xi = \beta\}$. Clearly $S_{\beta} \in C(\alpha, \beta)$. For every $S_{\xi} \in C(\alpha, \beta)$, let $\psi_{\xi}, \mathcal{G}_{\xi}$ be (not necessarily distinct) two mappings of S_{ξ} into $\mathcal{M}(\alpha, \beta)$. Put $\psi_{\xi}(a_{\xi}) = \overline{a_{\xi}}^{(\alpha, \beta)}$ and $\mathcal{G}_{\xi}(a_{\xi}) = \overline{a_{\xi}}^{(\alpha, \beta)}$. Let $\mathcal{M}_{\underline{L}}(\Omega) = \mathcal{M}_{\underline{L}}(S_{7} : r \in \Gamma) = \{\overline{a_{\xi}}^{(\alpha, \beta)} : \alpha \leq \beta, \alpha, \beta \in \Gamma, a_{\xi} \in S_{\xi}, S_{\xi} \in C(\alpha, \beta)\}$, and $\mathcal{M}_{R}(\Omega) = \mathcal{M}_{R}(S_{7} : r \in \Gamma) = \{\overline{a_{\xi}}^{(\alpha, \beta)} : \alpha \leq \beta, \alpha, \beta \in \Gamma, a_{\xi} \in S_{\xi}, S_{\xi} \in C(\alpha, \beta)\}$. If
- (2. 1) $\mathcal{M}(\Lambda) \equiv \mathcal{M}(S_{7}: r \in \Gamma) = \mathcal{M}_{L}(\Lambda) + \mathcal{M}_{R}(\Lambda)$ satisfies the following condition (C), then $\mathcal{M}(\Lambda)$ is called a <u>set</u> of composite factors on Λ :
 - (C) $\begin{cases} (1) \ \overline{a}_{\alpha}(\beta,\alpha\beta) \overline{c}_{\gamma}(\alpha\beta,\alpha\beta\gamma) = \overline{c}_{\gamma}(\beta,\beta\gamma) (\beta\gamma,\alpha\beta\gamma), \\ (2) \ \overline{a}_{\alpha}(\beta,\alpha\beta) \overline{a}_{\alpha}(\alpha,\alpha) = \text{the inner translation} \int_{a_{\alpha}}^{b} \text{on } S_{\alpha} \text{ induced} \\ \text{by } a_{\alpha}, \\ (3) \ \overline{a}_{\alpha}(\beta,\alpha\beta) \text{ and } b_{\beta}(\alpha,\alpha\beta) \text{ are conjugate to each other in the} \\ \text{following sense : } \overline{a}_{\alpha}(\beta,\alpha\beta)(b_{\beta}) = b_{\beta}(\alpha,\alpha\beta)(a_{\alpha}). \end{cases}$

Theorem 1. Let $\Delta L = \{S_{\tau} : \tau \in \Gamma\}$ (Γ : a semilattice) be a collection of commutative semigroups S_{τ} .

(i) Λ is composable if and only if there exists a set of composite factors on Λ .

- (ii) Let $\mathcal{M}(\Omega)$ of (2. 1) be a set of composite factors on Ω . Then $S = \sum \{S_{\tau} : \tau \in \Gamma\}$ becomes a composition $S(\circ)$ of Ω by multiplication odefined by
- (2. 2) $a_{\alpha} \circ b_{\beta} = \overline{a_{\alpha}}^{(\beta, \alpha\beta)}(b_{\beta}) (= \overline{b_{\beta}}^{(\alpha, \alpha\beta)}(a_{\alpha})).$ Further, every possible composition of Δ is found in this fashion.

The composition $S(\circ)$ in (ii) of Theorem 1 is called the composition of A induced by $\mathcal{M}(A)$.

Corollary 1. Let $\Omega = \{S_{\tau} : \tau \in \Gamma \}$ (Γ : a semilattice) be a collection of commutative semigroups S_{τ} , and $\mathcal{M}(\Omega)$ of (2.1) a set of composite factors on Ω . Then, the composition $S(\circ)$ of Ω induced by $\mathcal{M}(\Omega)$ is non-commutative if and only if the following condition is satisfied:

(2. 3) $\overline{a}_{\alpha}^{(\beta, d\beta)} \neq \widetilde{a}_{\alpha}^{(\beta, d\beta)}$ for some $a_{\alpha} \in S_{\alpha}$, $\alpha, \beta \in \Gamma$.

Corollary 2. Let $\Omega = \{S_{\tau} : \tau \in \Gamma\}$ (Γ : a semilattice) be a collection of commutative semigroups S_{τ} . Then, every composition of Ω is commutative if and only if there is no set, $\mathcal{M}(\Omega)$ of (2. 1), of composite factors on Ω which satisfies the condition (2. 3).

Now, as a special case, we consider a collection $\mathcal{M} = \{S_{\tau} : \tau \in \Gamma \}$ of commutative semigroups S_{τ} having a chain Γ as its index set. Let $\mathcal{M}(\mathcal{M})$ of (2. 1) be a set of composite factors on \mathcal{M} .

Then, we have the following lemmas:

Lemma 1. For $\alpha, \beta \in \Gamma$ with $\alpha \leq \beta$, each of $\overline{a}_{\alpha}^{(\beta, \alpha\beta)} (= \overline{a}_{\alpha}^{(\beta, \beta)})$ and $\overline{a}_{\alpha}^{(\beta, \alpha\beta)} (= \overline{a}_{\alpha}^{(\beta, \beta)})$ is a translation on S_{β} .

Lemma 2. For $\alpha, \beta \in \Gamma$ with $\alpha \ge \beta$, $\overline{a}_{\alpha}(\beta, \alpha)(b_{\beta}) = \widetilde{b}_{\beta}(\alpha, \alpha)(a_{\alpha})$ and $\widetilde{b}_{\alpha}(\beta, \alpha)(a_{\beta}) = \overline{a}_{\beta}(\alpha, \alpha)(b_{\alpha})$.

Putting $\overline{a}_{\alpha}^{(\beta,\beta)} = \beta_{\alpha\alpha,\beta}$ and $\widehat{a}_{\alpha}^{(\beta,\beta)} = \delta_{\alpha\alpha,\beta}$ for $\alpha \leq \beta$, we have

the following lemmas:

Lemma 3. $f_{ad,\alpha} = f_{ad,\alpha} =$ the inner translation f_{ad} on S_{d} induced by a_{d} .

Lemma 4.
$$\int_{a_{d,\gamma}}^{a_{d,\gamma}} \int_{b_{\beta},\gamma} = \int_{b_{\beta},\gamma}^{a_{d,\gamma}} \int_{a_{d,\gamma}}^{a_{d,\gamma}} \int_{a_{d,\gamma}}^{a_{d,\gamma$$

By Lemmas 3 - 6, we obtain the following result: Let $\Omega = \{S_{\gamma} : \gamma \in \Gamma\}$ $(\Gamma : a \text{ chain})$ be a collection of commutative semigroups S_{γ} , $\mathcal{M}(\Omega)$ of (2. 1) a set of composite factors on Ω . Let $S(\bullet)$ be the composition of $\{S_{\gamma} : \gamma \in \Gamma\}$ induced by $\mathcal{M}(\Omega)$.

Then, there exists a system

(2. 4) $\mathfrak{S}(\mathfrak{A}) = \{ \beta_{a\alpha,\beta} : a_{\alpha} \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma \} + \{ \delta_{a\alpha,\beta} : a_{\alpha} \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma \}$, where $\beta_{a\alpha,\beta}$ and $\delta_{a\alpha,\beta}$ are mappings of S_{β} into S_{β} , such that

(1)
$$\beta_{a\alpha,\beta}$$
 and $\delta_{a\alpha,\beta}$ are translations on S_{β} ,

(2) $\beta_{a\alpha,\alpha} = \delta_{a\alpha,\alpha} = \text{the inner translation } \beta_{a\alpha} \text{ induced by } a_{\alpha}$

(3) $\beta_{a\alpha,\gamma} \delta_{b\beta,\gamma} = \delta_{b\beta,\gamma} \beta_{a\alpha,\gamma}$,

(4) $\beta_{b\beta,\gamma} \delta_{a\alpha,\gamma} = \begin{cases} \beta_{a\alpha,\beta}(b_{\beta}),\gamma & \text{if } \alpha \leq \beta \leq \gamma, \\ \beta_{b\beta,\alpha}(a_{\alpha}),\gamma & \text{if } \beta \leq \alpha \leq \gamma, \end{cases}$

(5) $\delta_{b\beta,\gamma} \delta_{a\alpha,\gamma} = \begin{cases} \delta_{a\alpha,\beta}(b_{\beta}),\gamma & \text{if } \alpha \leq \beta \leq \gamma, \\ \delta_{b\beta,\alpha}(a_{\alpha}),\gamma & \text{if } \alpha \leq \beta \leq \gamma, \end{cases}$

(6) $\delta_{b\beta,\gamma} \delta_{a\alpha,\gamma} = \delta_{b\beta,\alpha}(a_{\alpha}),\gamma & \text{if } \alpha \leq \beta \leq \gamma.$

Further, the multiplication • in S(•) is represented by

$$(P) \quad \text{adob}_{\beta} = \begin{cases} \overline{a}_{\alpha}(\beta, \beta) & \text{if } \alpha \leq \beta, \\ \sum_{\beta} (\alpha, \alpha) & \text{if } \alpha \leq \beta, \end{cases}$$

$$(2) \quad \text{adob}_{\beta} = \begin{cases} \overline{a}_{\alpha}(\beta, \beta) & \text{if } \alpha \leq \beta, \\ \sum_{\beta} (\alpha, \alpha) & \text{if } \alpha \leq \beta. \end{cases}$$

In general, let $M = \{S_{\gamma} : \gamma \in \Gamma\}$ (Γ : a chain) be a collection of commutative semigroups S_{γ} . For each pair (a_{α}, β) , where $a_{\alpha} \in S_{\alpha}$, $\alpha \leq \beta$ and $\alpha, \beta \in \Gamma$, let $f_{2\alpha, \beta}$ and $f_{2\alpha, \beta}$ be (not necessarily distinct) two mappings of S_{β} into S_{β} . If $G(M) = \{f_{2\alpha, \beta} : a_{\alpha} \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma\}$ satisfies (T) of (2.4), then G(M) is called a factor set of translations on M. From this definition and the above-mentioned result, we can conclude as follows:

Let $M = \{S_{\gamma} : \gamma \in \Gamma\}$ (Γ : a chain) be a collection of commutative semigroups S_{γ} . If $S(\circ) = \sum \{S_{\gamma} : \gamma \in \Gamma\}$ is a composition of M = $\{S_{\gamma} : \gamma \in \Gamma\}$, then there exists a factor set of translations on M, say $G(M) = \{f_{2\alpha, \beta} : a_{\alpha} \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma\}$ $f_{3\alpha, \beta} : a_{\alpha} \in S_{\alpha}$, $\alpha \leq \beta, \alpha, \beta \in \Gamma\}$ $f_{3\alpha, \beta} : a_{\alpha} \in S_{\alpha}$, $\alpha \leq \beta, \alpha, \beta \in \Gamma\}$ $f_{3\alpha, \beta} : a_{\alpha} \in S_{\alpha}$, $\alpha \leq \beta, \alpha, \beta \in \Gamma\}$, and α in $S(\alpha)$ is represented by α .

Conversely, let $G(\Lambda) = \{ f_{\alpha\alpha,\beta} : \alpha\alpha \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma \} + \{ f_{\alpha\alpha,\beta} : \alpha\alpha \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma \}$ (Γ : a chain) be a factor set of translations on a collection $\Lambda = \{ S_{\gamma} : \gamma \in \Gamma \}$ of commutative semigroups S_{γ} . Then, we can prove that $S = \sum \{ S_{\gamma} : \gamma \in \Gamma \}$ becomes a composition of Λ by multiplication of given by (P).

Summerizing the results above, we obtain the following

Theorem 2. Let $\mathcal{A} = \{ S_{\mathcal{T}} : \mathcal{T} \in \Gamma \}$ (Γ : a chain) be a collection of commutative semigroups $S_{\mathcal{T}}$. Let $\mathfrak{S}(\mathcal{A})$ of (2.4) be a factor set of translations on \mathcal{A} . Then $S = \sum \{ S_{\mathcal{T}} : \mathcal{T} \in \Gamma \}$ becomes a composition $S(\bullet)$ of \mathcal{A} by the multiplication \bullet defined by (Γ). Further, every composition of \mathcal{A} is found in this fashion.

This result is a special case of Theorem 2. 1 given by Yoshi a [5]. $S(\circ)$ in Theorem 2 is called the composition of Ω induced by $S(\Omega)$. From Theorem 2, we obtain immediately the following Corollary 1. Let $\Omega = \{S_{\tau} : \tau \in \Gamma\}$ (Γ : a chain) be a collection of commutative semigroups S_{τ} , and $S(\Omega)$ of (2. 4) a factor set of

translations on \mathcal{A} . Then, the composition $S(\bullet)$ of \mathcal{A} induced by $\mathcal{E}(\mathcal{A})$ is non-commutative if and only if

(2.5) $P_{\alpha\alpha,\beta} \neq \delta_{\alpha\alpha,\beta}$ for some $\alpha\alpha \in S_{\alpha}, \alpha,\beta \in \Gamma, \alpha < \beta$.

Moreover, the following is obvious from Corollary 1:

Corollary 2. Let $\Lambda = \{S_{\tau} : \tau \in \Gamma \}$ (Γ : a chain) be a collection of commutative semigroups S_{τ} . Every composition of Λ is commutative if and only if there is no factor set, $\Xi(\Lambda)$ of (2.4), of translations on Λ which satisfies (2.5).

In the case where every composition of a collection $\Lambda = \{ S_{\tau} : \tau \in \Gamma \}$ (Γ : a chain) of commutative semigroups S_{τ} is commutative, we have another construction theorem for the compositions of Λ which is somewhat simpler than Theorem 2:

Theorem 3. Let $\Delta = \{S_{\tau} : \gamma \in \Gamma \}$ (Γ : a chain) be a collection of commutative semigroups S_{τ} every composition of which is commutative. Let $S = \sum \{S_{\tau} : \gamma \in \Gamma \}$. For each pair (a_{\varkappa}, β) , where $a_{\varkappa} \in S_{\varkappa}$, $\omega, \beta \in \Gamma$ and $\alpha \leq \beta$, let $\beta_{\alpha,\beta}$ be a mapping of S_{β} into S_{β} . Let $\overline{S}(\Delta) = \{\beta_{\alpha,\beta} : a_{\alpha} \in S_{\alpha}, \alpha \leq \beta, \alpha, \beta \in \Gamma \}$. If $\overline{S}(\Delta)$ satisfies the condition

- (1) $f_{a,\beta}$ is a translation on S_{β} ,
- (\overline{T}) (2) $f_{ad,\alpha}$ = the inner translation f_{ad} on S_{α} induced by a_{α} ,
- (3) $\int_{a_{\alpha}, \tau} \int_{b\beta, \tau} = \int_{b\beta, \tau} \int_{a_{\alpha}, \tau} = \int_{a_{\alpha}, \beta(b\beta), \tau} \text{ if } \alpha \leq \beta \leq \gamma$, then S becomes a composition $S(\bullet)$ of Δ by the multiplication \circ defined by
- (\overline{P}) $a_{\alpha} \circ b_{\beta} = b_{\beta} \circ a_{\alpha} = \int_{\alpha_{\alpha}, \beta} (b_{\beta})$ if $\alpha \leq \beta$.

 Further, every composition of Ω is found in this fashion.

Next, we present some results concerning a factor set of translations on a collection $\mathcal{L} = \{S_{\tau}: \tau \in \Gamma\}$ (Γ : a chain) of commutative semigroups S_{τ} .

- Lemma 7. Let $\Lambda = \{ S_{\Upsilon} : \Upsilon \in \Gamma \}$ (Γ : a chain) be a collection of commutative semigroups S_{Υ} . Let $\mathfrak{S}(\Lambda)$ of (2. 4) be a factor set of translations on Λ which satisfies (Υ) in (2. 4). Then,
- (i) for any $a \in S_{\alpha}$, $\alpha, \beta \in \Gamma$ with $\alpha \leq \beta$, $y_{\beta} P_{a\alpha,\beta}(x_{\beta}) = \delta_{a\alpha,\beta}(y_{\beta})x_{\beta}$, i.e., $P_{a\alpha,\beta}$ and $P_{a\alpha,\beta}$ are linked, and
 - (ii) $\mathcal{S}_{\alpha\alpha,\beta} \mid S_{\beta}^2 = \mathcal{S}_{\alpha\alpha,\beta} \mid S_{\beta}^2$.

A commutative semigroup S is said to be reductive if it satisfies the following abstract property $F_{\mathbf{r}}(G)$:

Reductivity $P_r(G)$: ax = bx for all $x \in G$ implies a = b. Lemma 8. Let A and G(A) be as in Lemma 7. If each of the multiple-components of A is universal or reductive, then $P_{a\omega,\beta} = P_{a\omega,\beta}$ for every $a\omega \in S\omega$, $\omega,\beta \in \Gamma$ with $\omega \leq \beta$.

By using Lemma 3 and Corollary 2 to Theorem 2, we obtain Corollary. Let $\Lambda = \{ S_{\gamma} : \gamma \in \Gamma \}$ (Γ : a chain) be a collection of commutative semigroups S_{γ} . If each of the multiple-components of Λ is universal or reductive, then every composition of Λ is commutative.

Remark. This result will be more generalized in the next section.

§ 3. The weakest f.c.e. [l.c.e.] -property. In this section, we investigate l.c.e.-properties and f.c.e.-properties.

Let us consider the following abstract property $P_{q}(G)$ pertaining to commutative semigroups G:

(3. 1) There is no system $\{\mathcal{C}, \mathcal{C}\}\$ of distinct two translations on G such that (1) $\mathcal{C}\mathcal{C} = \mathcal{C}\mathcal{C}$ and (2) $\mathcal{C} \mid \mathcal{C}^2 = \mathcal{C} \mid \mathcal{C}^2$.

This property $P_{\mathbb{Q}}(G)$ is called <u>quasi-reductivity</u>. As is shown later, reductivity implies quasi-reductivity. However, the converse is not true.

Lemma 9. Let $\{6', 9\}$ be a system of distinct two translations $\{6', 9\}$ on a commutative semigroup S such that $\{6', 9\} = 9 \}$ and $\{6', 9\} = 9 \}$. Then there exist distinct two elements $\{6, 9\} = 9 \}$ and a prime element $\{6, 9\} = 9 \}$ such that (1) $\{6, 9\} = 9 \}$ and (2) $\{6', 9\} = 9 \}$ and $\{6', 9\} = 9 \}$ and (3) $\{6', 9\} = 9 \}$ and (4) $\{6', 9\} = 9 \}$ and (5) $\{6', 9\} = 9 \}$ and (6) $\{6', 9\} = 9 \}$ and (7) $\{6', 9\} = 9 \}$ and (8) $\{6', 9\} = 9 \}$ and (9) $\{6', 9\} = 9 \}$ and (1) $\{6', 9\} = 9 \}$ and (2) $\{6', 9\} = 9 \}$ and (3) $\{6', 9\} = 9 \}$ and (4) $\{6', 9\} = 9 \}$ and (5) $\{6', 9\} = 9 \}$ and (6) $\{6', 9\} = 9 \}$ and (7) $\{6', 9\} = 9 \}$ and (8) $\{6', 9\} = 9 \}$ and (9) $\{6', 9\} = 9 \}$ a

(Note: An element of $S \setminus S^2$ is called prime)

It is easily seen from Lemma 9 that reductivity implies quasireductivity.

Example. Let $S = \{a, a^2, \ldots, a^n\}$ be a cyclic semigroup of order n such that $n \ge 2$, $a^{n-1} \ne a^n$ and $aa^n = a^n$. Define mappings $P, \delta: S \to S$ as follows: $P(a) = a^{n-1}$, $P(a^i) = a^n$ if i > 1; and $\delta'(a^i) = a^n$ for all i. Then P, δ' are translations on S such that $\delta' = P\delta'$ and $\delta' \mid S^2 = P \mid S^2$. Hence, of course, S is not quasi-reductive.

By using Lemma 9, we can prove the following theorem: Theorem 4. $P_{\rm c}(G)$ is the weakest l.c.e.-property.

In general, it is easy to see that if P(G) and $P_1(G)$ are abstract properties such that $P_1(G) \leq P(G)$ and if P(G) is an 1.c.e.-property, then $P_1(G)$ is also an 1.c.e.-property. For abstract properties $P_1(G)$ and $P_2(G)$, denote the property " $P_1(G)$ or $P_2(G)$ " by $P_1(G) \vee P_2(G)$. It is obvious that $P_1(G) \leq P_1(G) \vee P_2(G)$ and $P_2(G) \leq P_1(G) \vee P_2(G)$. Now, it is easy to see that $P_1(G) \vee P_1(G) \leq P_1(G) \vee P_1(G)$. Since $P_1(G) \leq P_1(G) \vee P_1(G) \vee P_1(G)$ and $P_1(G) \leq P_1(G) \vee P_1(G)$, we have $P_1(G) \leq P_1(G)$ and $P_1(G) \leq P_1(G) \vee P_1(G)$ and $P_1(G) \leq P_1(G) \vee P_1(G)$ is an 1.c.e.-property, each of $P_1(G)$, $P_1(G)$ and $P_1(G) \vee P_1(G)$ is also an 1.c.e.-property.

Thus, we have the following result as a corollary to Theorem 4:

Corollary. Each of reductivity, universality and the property

"reductive or universal" is an l.c.e.-property.

Remarks. (1) Moreover, the following is obvious from Theorem 4:

Let $\Lambda = \{S_{\xi} : \xi \in \mathcal{X}\}$ (\mathcal{X} : a set) be a collection of commutative semigroups S_{ξ} , where $P_q(S_{\xi})$ is true for all $S_{\xi} \in \Lambda$. Then, every linear composition of Λ is commutative.

(2) For a special collection $\mathcal{M}=\{S_{\gamma}:\gamma\in\Gamma\}$ (Γ ; a chain) of commutative semigroups S_{γ} , every composition of \mathcal{M} is commutative even if there exists a multiple-component S_{γ} which does not satisfy $P_{q}(G)$. For example, let $L=\{0,1\}$ be a chain with respect to the usual multiplication, $S_{1}=\{e\}$ a semigroup consisting of a single element e and $S_{0}=\{a,a^{2},\ldots,a^{n-1},a^{n}\}$ a cyclic semigroup of order n (n>2) such that $a^{n-1}\neq a^{n}$ and $aa^{n}=a^{n}$. Then, it is easy to see from the above-mentioned example that $P_{q}(S_{0})$ is not true. However, there is no non-commutative composition of $\{S_{1},S_{0}\}$ with respect to L.

Hereafter, for any element x of a commutative semigroup S, the inner translation on S induced by x will be denoted by \int_{x}^{x} .

Now, let us consider the following abstract property $\mathbb{P}_{\mathbb{T}}^*(G)$ pertaining to commutative semigroups G:

(3. 2) There is no system $\{u,v; \xi, \ell\}$ of distinct two elements u,v of G and (not necessarily distinct) translations ξ, γ on G such that (1) $\xi \gamma = \ell \xi = \beta_u = \beta_v$ and (2) $\xi(u) = \xi(v)$ and $\gamma(u) = \gamma(v)$.

At first, we have

Lemma 10. Let $\{u,v; \xi, \dot{\gamma}\}$ be a system of distinct two elements u,v of a commutative semigroup S and translations $\xi,\dot{\gamma}$ on S, satisfying (1), (2) of (3. 2). Then, uz=vz for all $z \in S$.

The following lemma was shown by R. Yoshida, though the result is not yet published:

Lemma 11. $P_r^*(G)$ is equivalent to $P_r(G)$.

By using Lemmas 10 and 11, we can prove the following theorem which is one of the main results of this paper:

Theorem 5. $P_r(G)$ is the weakest f.c.e.-property.

Corollary. Let $M = \{S_{\xi} : \xi \in \mathcal{X}\}$ (\mathcal{X} : a set) be a collection of commutative semigroups S_{ξ} , where $P_{T}(S_{\xi})$ is true for every $S_{\xi} \in M$. Then, every semilattice composition of M is commutative.

- Remarks. (1) It is easy to see that if $P_0(G)$ is an f.c.e. [1.c.e.] -property and if P(G) is an abstract property such that $P(G) \leq P_0(G)$, then P(G) is also an f.c.e. [1.c.e.] -property. Let $\mathcal{F}(Q) = \{P(G): P(G) \text{ is an abstract property such that } P(G) \leq P_0(G) \}$ and $\mathcal{F}(R) = \{P(G): P(G) \text{ is an abstract property such that } P(G) \leq P_1(G) \}$. Then, $\mathcal{F}(Q)$ and $\mathcal{F}(R)$ are the set of all 1.c.e. properties and the set of all f.c.e.-properties respectively.
- (2) As was shown in §1, there exists a universal commutative semigroup S which has a zero element 0 and whose annihilator A contains a non-zero element. Since $P_q(S)$ is true and $P_r(S)$ is not true, $P_q(G) \neq P_r(G)$. Hence, $P_q(G) > P_r(G)$. This also means that quasi-reductivity does not imply reductivity.
- (3) Since $P_r(G)$ is weaker than each of separativity (see Clifford & Preston [2]) and cancellativity, the following results immediately follow from the above-mentioned Corollary:
- (i) A semigroup which is a semilattice of commutative reductive semigroups is commutative and reductive.
- (ii) A semigroup which is a semilattice of separative commutative semigroups is separative and commutative.
- (iii) A semigroup which is a semilattice of cancellative commutative semigroups is separative and commutative.

The converse of this result also holds (see Clifford & Preston [2]); i.e., a separative commutative semigroup is a semilattice of cancellative commutative semigroups.

§ 5. Maximal f.c.i. [l.c.i.] -properties. Let $\mathcal{F} = \{P_{\lambda}(G) : A \in \mathcal{F} \}$ $\lambda \in \Lambda$ be the set of all f.c.i.-properties $\mathbb{P}_{\lambda}(G)$. Then \mathcal{F} is clearly a partially ordered set with respect to the ordering relation ≤ defined by (1. 6). (Recall that equivalent two properties are regarded as the same property). Let $\mathcal{T} = \{P_{\tau}(G) : \tau \in \Lambda_0\}$ be any totally ordered subset of \mathcal{F} . Define an abstract property T(G)as follows: $T(G) = \bigvee_{\tau \in \Lambda_0} P_{\tau}(G)$, i.e., T(G) = the property "beingat least one of $\{P_{\tau}(G) : \tau \in \Lambda_0\}$ ". Hence, a commutative semigroup S satisfies T(G) if and only if S satisfies at least one of the properties $\{P_{\tau}(G) : \tau \in \Lambda_0\}$. Now, let $\Lambda = \{S_{\xi} : \xi \in \mathcal{X}\}$ ($\mathcal{X} : a$ set) be a collection of commutative semigroups S_{ξ} such that every S_E satisfies T(G). Suppose that there exists a non-commutative semilattice composition $S(\circ) = \sum \{ S_{\xi} : \xi \in \mathcal{X}(*) \}$ of A. Then there exist a, b such that $a \in S_{\tau}$, $b \in S_{s}$, $\gamma, s \in X$ and $a \circ b \neq$ boa. Clearly, both a o b and boa are contained in Symc. Put $S_{\tau} + S_{\delta} + S_{\tau * \delta} = M$. Then $M(\circ)$ is a subsemigroup of $S(\circ)$ and is non-commutative. Since $T(S_{\gamma})$, $T(S_{\delta})$ and $T(S_{\gamma * \delta})$ are all true, there exist $P_{\alpha}(G)$, $P_{\beta}(G)$ and $P_{\epsilon}(G)$ of $\{P_{\tau}(G) : \tau \in A_{0}\}$ such that $P_{\alpha}(S_{\gamma})$, $P_{\beta}(S_{\delta})$ and $P_{\epsilon}(S_{\gamma*\delta})$ are true. Let $P_{\gamma}(G)$ be the weakest property in $\{P_{\alpha}(G), P_{\beta}(G), P_{\xi}(G)\}$. Then $P_{\gamma}(G)$ is of course an f.c.i.-property and $P_{2}(S_{\tau})$, $P_{3}(S_{\delta})$, $P_{4}(S_{\gamma*\delta})$ are all true. Hence, the semilattice composition $M(\circ)$ of $\{S_{\tau}, S_{\delta}, S_{\tau * \delta}\}$ must be commutative. However, this is a contradiction since M(o) was noncommutative. Consequently, every semilattice composition of Ω must be commutative. Therefore, T(G) is an f.c.i.-property and hence $\mathtt{T}(\mathtt{G})\in\mathcal{F}$. Since $\mathtt{P}_\mathtt{T}(\mathtt{G}) \leqq \mathtt{T}(\mathtt{G})$ for all $\mathtt{T}\in \varLambda_\mathtt{G},\ \mathtt{T}(\mathtt{G})$ is an upper bound of \mathcal{J} . Thus, \mathcal{F} is an inductively ordered set. Hence, there exists a maximal f.c.i.-property in F. Existence of maximal l.c.i.properties is also proved by a similar method.

Hence, we have

Theorem 6. There exist a maximal l.c.i.-property and a maximal f.c.i.-property.

Corollary. For any f.c.i. [l.c.i.] -property P(G), there exists a maximal f.c.i. [l.c.i.] -property $P_m(G)$ such that $P(G) \leq P_m(G)$.

In fact, the following three theorems show that quasi-reductivity is a maximal l.c.i.-property and both universality and reductivity are maximal f.c.i.-properties:

Theorem 7. $P_q(G)$ is a maximal l.c.i.-property.

Theorem 8. Pr(G) is a maximal f.c.i.-property.

Theorem 9. Pu(G) is a maximal f.c.i.-property.

From Theorem 9, we also have immediately

Corollary. A semigroup which is a semilattice of universal commutative semigroups is universal and commutative.

Remark. Let \mathcal{F} [\mathcal{L}] be the set of all f.c.i. [l.c.i.]-properties. For $P_1(G)$, $P_2(G) \in \mathcal{F}[\mathcal{L}]$, let us define an abstract property $P_1(G) \wedge P_2(G)$ as follows:

(4.1) $P_1(G) \wedge P_2(G) =$ the property "being both $P_1(G)$ and $P_2(G)$." Then, it is easy to see that $P_1(G) \wedge P_2(G) \in \mathcal{F}[\mathcal{L}]$ for any $P_1(G)$, $P_2(G) \in \mathcal{F}[\mathcal{L}]$ and $P_1(G) \wedge P_2(G)$ is the greatest lower bound of $P_1(G)$ and $P_2(G)$. Further, in fact $\mathcal{F}[\mathcal{L}]$ is a semilattice with respect to this operation Λ .

Since $P_u(G)$ and $P_r(G)$ are non-equivalent maximal f.c.i.-properties, it is obvious that there is no greatest f.c.i.-property,i.e., there is no weakest f.c.i.-property $P_g(G)$ in the following sense:

THE .

(4. 2) $P_g(G) \ge P(G)$ for any f.c.i.-property P(G). However, the author can not solve the following two problems and leaves them as open problems: Problem 1. Is there a maximal l.c.i.-property except $P_q(G)$? That is: Is $P_q(G)$ the greatest (weakest) l.c.i.-property? Determine all of the maximal l.c.i.-properties.

Problem 2. Is there a maximal f.c.i.-property except $P_u(G)$ and $P_r(G)$? Determine all of the maximal f.c.i.-properties.

As a partial solution of Problem 1, we obtain the following result: Let C be an infinite cyclic semigroup : $C = \{a, a^2, ..., a^n, ...\}$ Let C^{\perp} be the adjunction of an identity element to $C: C^{\perp} = C + \{1\}$. Let $Z^* = \{P(G) : P(G) \text{ is an abstract property such that } P(G) \leq L(G),$ for some l.c.i.-property L(G) satisfied by $C^{\frac{1}{2}}$. Then $\mathcal{Z}^* \ni P_{G}(G)$, $P_r(G)$, $P_u(G)$, since each of $P_q(C^1)$, $P_u(C^1)$ and $P_r(C^1)$ is true and each of $P_{g}(G)$, $P_{g}(G)$ and $P_{g}(G)$ is an 1.c.i.-property. Further, \mathcal{K}^{*} $\supset \overline{\mathcal{L}}=\{P(G): P(G) \text{ is an l.c.i.-property which is comparable with } \}$ $P_r(G)$ or $P_n(G)$. In fact, let P(G) be a property of $\overline{\mathcal{Z}}$. If $P(G) \leq$ $P_r(G)$ or $\leq P_u(G)$, then $P(G) \in \mathcal{L}^*$ since each of $P_r(G)$ and $P_u(G)$ is an l.c.i.-property and is satisfied by C^1 . If $R(G) > F_n(G)$ or > $P_n(G)$, then $P(C^{\underline{l}})$ is true since each of $P_r(C^{\underline{l}})$ and $P_u(C^{\underline{l}})$ is true. Since $P(C^{1})$ is true and P(G) is an l.c.i.-property, P(G) is also contained in \mathcal{L}^* . In any cases, $P(G) \in \mathcal{L}^*$. Therefore, $\overline{\mathcal{L}} \subset \mathcal{L}^*$. Especially, cancellativity, separativity, regularity and the property " being a commutative semigroup G with 1 " are all contained in &. Now, we have

Theorem 10. $P_q(G)$ is the greatest (i.e., weakest) l.c.i.-property in \mathcal{Z}^* .

References

- 1. A. H. Clifford: Naturally totally ordered commutative semigroups, Amer. J. Math. 126 (1954), 631 646.
- 2. A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, vol. 1, Providence, R. I. (1961).

- 3. P. M. Cohn: Universal algebra, Harper and Row; New York, Evanston and London (1965).
- 4. M. Yamada: Compositions of semigroups, Kodai Math. Sem. Rep. 8 (1956), 107 111.
- 5. R. Yoshida: Ideal extensions of semigroups and compound semigroups Mem. Res. Inst. Sci. Engrg., Ritumeikan Univ. 14 (1965), 1 12.

Department of Mathematics
Shimane University