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0. Introducticn. The present note is concerned with the boundary

value problem of the form
(0.1) X = X(x,t), f(x) =20,

where x and X(x,t) are n-dimensional vectors and f£(x) is an

n-dimensional vector-valued functicnal,. First the Newton method

"

C

wiil be established for egquations in linear normed spaces and then

the results will be applied to the equation
{C.2) F(x) = (5% - X(x,t), f(x))} = O.

The thecrem obtained for boundary value problem (0.1) is a eneral-
ization of the theorem obtained by the author in his previous paper

‘23, Lzstly the theorem newly obtained will be applied te the per-

-

turbation method and the author will give an explicit bound of the
small parameter within which the perturbation method is really

effective.

1. The Newton method for functional equations.  We consider a

1inear normed space E, a Banach space B, and a function F(x) .

open set D of E into B. For F(x), we assume that

for @ e ©, there is an additive homogeneous operator J{x)

@
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i

mapping E into B such that

HF(x + h) - F(x) - J(x)hgi / ilhlg —» O as Eihf{ —» 0.
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In the sequel, such J(x) will be called the weak Fréchet derivatiy

of F(x).
Now we suppose the weak Fréchet derivative J(x) of F{x) is con-=

tinucus on D. Then applying the Newton method to the equation
(1.1) F(x) = 0O,

we get the following theorem.

Theorem 1. Suppose the equation (1.1) has an approximate solu-

tion x = x € D for which there are an additive operator L map-

ping E into B, a positive number J‘, and a ncn-negative number

X < 1 such that

{1.2) L has a linear inverse operator L—l,
(1.3) pg={x 1| llx-%ll ¢d, xeefcn,
(1.4) lo(x) -L]] ¢ Xx/M on Dy,

(1.5) Mr/(1 - x) ¢4 .

Here x(2 C) and M(> 0} are the numbers such that

(1.6) |IF(x)]| & =,

(1.7) |IL7td < M.

Then the Newton iterative process

. -1
(1.8) Xp41 = Xp T~ L F(Xn) {(n =0,1,2,...)

with X, T % vyieldska fundamental sequence {Xn} (n =0,1,2,...)

in D& and we have
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1.9) e, - =[] ¢ Mr/(1 - X)) (n = 0,1,2,...).

it

Tf the above fundamental sequence {xn} {n 0,1,2,...) is

‘ ) ~
onvergent in E, namely, there is an x € E such that
conve o=~ suLi that

l1.10) Flx -%ll 50 as n- e,

“ithen X is a unique solution of (1.1) in Dy and we have

Aualeiumttey

A - P
(1.11) [l - x|] ¢ Mo/(1 = X)),
T this theorem, evidently the latter conclusion holds iF ¢
ic complete, namely, B is a Banach space.
The proof of the theorem can be carried out similarly to that

of the theorem for the equation in Euclidean space {see Urabe [11).

Remark 1. By the condition (1.4), I. 1is an additive operator
close to J(x). Hence, in practical applications, it will be usu=
ally convenient to take J(x) for L, .
Remark 2. Conditions (1.3), (1.4) and (1.5) are related with

the accuracy of the approximate solution x = x. In fact, suppose

L = J(x) and x is accurate. Then, as seen from (1.6), we can

‘take small r and hence we can take small & satisfying (1.3)

and (1.5) for any fixed X . Since J(x) is continuous in x,
(1.4) will he then satisfied ~utomatically for such snmall ERN £
surh a sencse, conditions (1 3), (7.4) and (1.5) are related with

the  mceuracy of the noprowimate solution and it dindeed provides

+

i

i

the arcuracy of the approwimate solution to which Theorem 1 can

be applied.



and the space CLI)
continucus on the interval I = [a,bl). For any x(t) & C{I}, we

A

A b 03 It H
define its norm by sup |ix(t}l] and denote it by {ix(t)![.. In
gerine s § 3 [ AL W 7 C
I

also srace B =ClI} x R and, for
R T - ™ . g D e e Py o Ty
AN SR S wWe a€@xXine Lts norm R B oy .

linear operator mapping C{I] into K . Bvidently L mapps B

into B where C'(I} dis the set of

vector-functions continuously differentiable on I,

The operater L is evidently additive, but it is not bounded
on E with respect to the norms 1%;..}}C and 3},.,338.
Now corresponding to matrix A(t), we consider an arbitrary

fundamental matrix $(t) of the linear homogenecus differential

and, by ﬂ{ii (t)), we denote the matrix whose column vectors are
(

=1,2,...,n) where iii(t) are the column vectors
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of the matrix :é(t)a

Then for the inverse operator of L, we can prove the following

lemma.
Lemma. If the matrix G = [{:§>(t}] is non-singular, namely,
(2.4) det G = det ﬂ[@ (t)) % 0,

H

then the operator L defined by (2.2} has a linear inverse operato

Lt and, for f!L_li}C, we have

(2.5) HL™H e ¢ max ¢ HImgl e, Ty ).

Here H; 1is a linear operator mapping C{IJ] dinto E = C'{I)}C ClI]

such that
: T T T ;
(2.6) H P =0(t)] BT (s)P(s)ds - P(r)GTHIF(t)[ P (s)p(s)as)
R a2 : a

2

and’ H is a linear operator mapping R" intc E such that

(2.7) Hyv = $etyet

v.
Proof. Put

Lx =y ‘_"-(594 V),

then, by (2.2), we have

(2.8) - a(t)x= P(t),

-(2.9) ﬂ,x =y,

¢

The general solution of (2.8} is

(2.10)  x(t) =B(t)e + @(t)/ 3 7M(s) P(s) as,
‘ a :
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where c¢. is an arbitrary constant vector. To determine ¢ so
that (2.10) may satisfy (2.9), we substitute (2.10) into (2.9).

Then we have
(éJl) écé(ﬂcj+[t§(t)af§‘Hs)$(gd§1=v.
By (2.4), we then have

c=6"v - G—1Z[@(t)Lt§—l(s)§0(s) dsJ.

If we substitute this into (2.10), then we have

a

t | t
x(t) = d(t)c v —é(t)e‘%@(t)/ 7 (s)p(s)ds) +§<t>/ @“1(5);”9(3)(3
o a ‘

By (2.6) and (2.7), this shows that

. Sy s
(2.12) x = L7y = H ¢+ Hyv,

which evidently implies the existence of the linear inverse operator

-1

L

Now, from (2.12), for any y = (§, v), we have
ey lle & My e 1P + iyl lae ol ]

< max (l!Hch,‘ Hay )@ Tle + vl
= max ([, e, Hayllo) Tyl

This clearly implies {2.5) and hence this completes the proof.

Q. E. D.

Remark 1. As easily seen, condition (2.4), linear operators

Hl and H2 are all independent of choice of the fundamental
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3. An existence theorem of nomnlinear boundary value problems.

I the present section, we consider the nonlinear boundary value

©

problem of the following formsg
{3.1) 55 = X(x,t), f(x) =0,

where x and X(x,t) are n-dimensional vectors and £ is an

. S n
perator mapping some set of C[{I{a,b]} intoc R .

T

ret {2 be the domain of the tx-space intercepted by two hyper-

il

planes t a and t = b (the boundary poinés of {2 on the hyper-
planes t = a and t = b are supposed to be included in {2 and

to make an open set on each hypérplane). Put
D = '{x(t) | (t, x(t)) e for te I, x(t)e E = C'(I]} )
pr ={x(t) | (t, x(t))ef2 for te I, x(t)e CLI}} .

Then it is evident that D C D' and D and D' are open respec-
tively in E and C(I].

In (3.1), we assume that X(x,t) 1is defined and continucusly
differentiable with respect to x on {2 and f(x) is defined
and continuously Fréchet differentiable on D'. By X (x,t) and
fx(x), let us denote‘respectively‘the Jacobian matrix of X(x,t)
with respect to x and the Fréchet derivative of f£f(x).

Now we consider an additive operator L mapping E into B

= ClI> x R’ of the foliowing form:



dh N

/ -

5\3,2) Lh = -\aﬁg - ('t)h, ’ghj,

where A(t) dis an n X n matrix continuous on I and L is a

linear operator mapping CLIJ into rR". By ®(t), let us denote

=

an arbitrary fundamental matrix of the linear homogenecus system
(3.3) = = A{t)z.

Then, by the lemma of the preceding section, the operator L has

. . -1 .
a linear inverse operator L if

(3.4) det 0C& (t)) % o.

Now let us apply Thecrem 1 to our boundary value problem (3.1).

Then we have the following existence theorem.

Thecrem 2. Suppose the boundary value problem (3.1) has an

approximate solution x = x(t) € D for which there are an additive

operator L of the form (3.2) mapping E into B, a positive

nunber é‘, and a non-negative number X < 1 such that

(3.5) det LC®(t)l $# 0 for L,

(3.6)  pp={x1| llx-3%ll.¢&, xe ccnfc r,

(3.7) [ Got) = Al + 1le 60 =L 1T ¢ xm on Dy,
(3.8) M;/(l -x) < $ .

Here «r(2 O0) and M(> O) are the numbers such that

ch_{

(3.9) o x(z )l + R g x
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(3.10)  [IL7H L ¢ M

Then the boundary value problem (3.1) has one and only one solu-

and, for this solution, we have

(3.12) % - Rl ¢ Me/(1 - X ).

By the lemma of section 2, condition (3.5) implies the existence
. 5 . -1 cs . . .
~»f a linear inverse operator L and hence it implies the exist-

ence of a finite number M satisfying (3.10).

Proof. From (3.6) and (3.11), we have

(3.13) DgC D'NE =D.
Now put
; ' - (dx ' \
(3.14) F(x) = 3 "~ X(x,t), f(x)J,

then evidently F(x) mapps DC E into B. It is easily seen that
such F(x) has a weak Fréchet derivative J(x) of the following

forms

cdh

(3.15) J(x)h = (55

- X (x,t)h, fx(x)h],

where h  1s an arbitrary element belonging to E. From (3.15),
it is clear that J(x) 1is continuous on D. Now let us compare

(3.15) with (3.2). Then, by (3.7), we readily see that



(3.16) Fo(=x) - LHB £ X/M on DgC DY,

Now, For the approximate soluticn x = X € D, from (3.9), we
have
- % - -
(a7 HEGEHE = HE - xGealle » He il ¢ x

Thus we see that, for the equation

(3.18) F(x) = 0

and given x = x, the conditions of Theorem 1 are all fulfilled.

Then by Theorem 1, we have a fundamental sequence ixﬁ% (n = O,
L itz
1,2,...) in Dy produced by the Newton iterative process
(3.19) x =x_ - L_lF(x ) (n =0,1,2,...;5 % = X).
7} n+1 n n 9 LsLy o s 25 ;

However, by (3.2) and (3.14), the above iterative process can be

written as follows:

Lx

il
l—'i
k]

n+1 ““n ~ F(Xn)

i

[X(Xn,t) - A(t)x, Z-xn - f(xn)].
Hence we have

(3.20) X 41 = L_1[X(xh,t) = A(t)x, th - f(xn)] (n =0,1,2,...).

Now {xﬁ } {(n = 0,1,2,...) 1is a fundamental sequence in E
= C'{I> C, C[{I] with respect to the norm ]I.G.EIC. Hence, by
the completeness of the space C[{I], there exists a vector-func-

A
tion x € CII) such that

A
(3.21) Hxn - XHC >0 as n - .
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Then, since x, € Dy , it is evident that

< 4 .

(3.22) k- Rl g

Then by (3.6), Q € DL € D'. Hence we have
X(%,t) - A(t)x € (1) and L% - £(%X) e R

Then letting n = e in (3.20), we have

' (5.23) %= L_l[X(;c\A,t) - A(1)%, /l 2 - £(X)).

Since L_l is a.linear operator mapping B = C[IJ X R” into E

= C'(I]}, the eguality (3.23) implies
' A
(3.24) x € E.

A .
Then by Theorem 1, we see that ~x = x . is a unique solution of
{(2.18) in Dp , namely, the unique solution of the given boundary

value problem (3.1) in Dg , and further that
A _: L
[ % = xl!c £ Mr/(1 - X).
This completes the proof. Q. E. D.

A
Remark 1.  For the solution x = x(t) obtained in Theorem 2,

we can easily prove that

: A - .
dx dx - KM
(3.25) l!a{ - agl!c £ (1 + 5= )5,

where K is a non-negative number such that

(3.26) ,[lxx(x,t)llc ¢ K ‘on DL. o

Remark 2. As in Theorem 1, in practical applications, it will

i
et
ek

i
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(o

f(x) = Azox -7,

n . . . <~ . n
where A is a linear cperator mapping C(IJ dinto R and ¥
o I
. . n e
is a constant vector belonging to R . In such a case, evidently

A
we can take ,Z for 4 of L. Then Theorem 2 turns to the theoren

o
that is & slight gereralization of the one cobtained by the zuthor

Remark 4. For the boundary value problem (3.1), we shall call

A > o
the solution x = x{t) € D the isolated solution if

(3.27) det fx(§)[<§(t)] $ o,

where P(t) is an arbitrary fundamental matrix of the linear

homogeneous system

dz _ A
3% - Xx(x,t)z.

The terminology comes from the fact that there is no other solution
of the boundary value problem (3.1) in a sufficiently small neigh-
borhood of the solution x = Q(t) satisfying (3.27). |

It can be easily proved that the solution x = Q(t) obtained

in Theorem 2 is an isolated solution.

0

4. Application to the perturbation method. Let the perturbed

system of (3.1) be

(4.1) 9X = X(x,t) + AR(x,t,0), £(x) +Ad(x,A) = 0,

- 12 -



63

where A d1is a small parameter such that

(4.2) A€ /\:’{;\g I/\lgf} (P> 0).

In (4.1), we suppose R(x,t,A) is continuously differentiab137With
respect to x on .fzxﬂA and d(x,}) is continuously Fréchet
differentiable with respect to x on prx A, By Rx(x,t5A): and
dX(x,A), we denote respectively the Jacobian matrix ofv R{x,t,A)

with respect to x and the Fréchet derivative of d(x,A) with

respect to X.
Let us assume {3.1) has an isolated solution x = xo(t). Then

" . c s r -
there is a positive number . o o such that

N

0 ={(t,><)'[ Hx == ()l ¢ I, te I}CQ.

Putting

b1 = {x(t) | (tx(t))e Q, for te 1, x(t)ecln},

let us assume

;

(4.3) LIx(x, 1) - X (e e) [+ L (xt) = £ (e [] g K [xr = x]
for any .x', x'' € Dé;

HR (x,t,A) Lo+ Ha M) ] ¢ X,
(4.4) o

l!R(th!/\) - R(Xstyo)ltc + IId(X,)\) - d(X90>[~E < K2[)\%,

on D'xA .
o

If we put

F(x) = (5 - X(x,t), £(x))

- 13 -
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and denote the weak Fréchet derivative of F(x) by J(x), then,

by the isolatedness of x = xo(t), we have the linear inverse

1 . s
operator J (xo) and consequently we have some positive number

M. such that

(4.5) ltJ“l(xo)l{C < M.

Now, if we apply the common perturbation method to the boundary
value problem (4.1), then we get the first approximate solution

x = x(t) of the form
(4.6) }-( =0 e /\ Uy
o
where
= 51 ~ = -
u=J (xO)U(xo) and U(xo) = [- R(xo,t,O), d(xo,O)].
: Take,/J(xo) for L  of Theorem 2 and suppose

(4.7) lullg g @ o
Then we easiyfsee that the conditions of Theorem 2 are all satis-
fied‘by_system (4.1) and the approximate solution x if

§+ !)\iréé\o, :

- (4.8) ‘KO(S + Ale) + MK ¢ xm,

M(%Komz

+ Klo'+ K2) > ¢
]____,K é ’

for some d and  X < 1. If we put

X = é\‘/{/\{”

- 14 =
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we can simplify the condition (4.8) and finally we see that the

conditions of Theorem 2 are all satisfied if
(2.9) Al & A(x,)0,
where

U VS X
(4.10) /\O(O(,X) = min kf?, P Mﬁo(x TE)E Klj’.

(1 -k )x
M(%KOO‘Z + KT+ Ky)

By Theorem 2, this implies that for any positive number o .= and

any positive number X} less than 1, the quantity ,AO(«,K} given

by {4.10) gives a bound of the parameter A within which the
2Y0% g P ‘

perturbation method is really effective, in other words, the

perturbation method really produces an approximate solution. By

Theorem 2, it is easily seen that for A satisfying (4.9), the
approximate solution (4.6) obtained by the perturbation method is
within the error
' 1, 2
K T +
M(2Ko Kl
1 - X

T+ K2)

O(A?) = A2

Remark. Consider the special case where
Q,={(tx) L te1 = llxll <o} =0

and the unperturbed system (3.1) is linear with respect to x.
In such a case, we may suppose that
§ =ew and K = O.

o

o

Then from (4.10), we see that

- 15 -



L X (1 - X%
A, K} = i 5
Aol#X) = min L £, MK ' M(KT * Ky)

However we can take as large as we desire. Hence we finally

see that, in the special case under consideration, the bound of

the parameter A can be given by
min (ﬁ , X /MK, ),

where X is an arbitrary positive number less than 1.
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