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ON THE DISTRIBUTIONS OF THE MAXIMUM LATENT
ROOTS AND TRACES OF TWO POSITIVE
DEFINITE RANDOM MATRICES
TAKESI HAYAKAWA
1. Summary
Recently, T. Hayakawa [4] and T. Sugiyama [9] have given

the density functions of the maximum latent roots of some pbsi-tive definite
random matrices which appeare in multivariate analysis, We give here»
some exact densit‘y functions of the maximum latent roots of a multivariate
quadraticrform in normsl sample and of a non-central Wisﬁért ma‘trix with
Z = Im. We also give a density function of t‘races of tﬁem. To derive these
density functions we introduce a generalized Hermite polynomial, discuss
some properties.and give a generating function of generélized Hermite poly-

nomials,

2. Notations and preliminary results

Let S be an mxm positive definite symmetric matrix.‘ There exists
a zonal polynomial C,(S) which is given by A. T. James [6] corresponding

to ea iti = >eead >
ch partition K (kl’ , km), kl" 2 km_,_.O of integer k not more



than m parts.
The following integrals are used in the sequel, which are fundamental

properties of the zonal polynomials :

. __Cx(A) Cx(B)
) (—)k 1
(2) & (T_XH) d(H) =) C— XX,
r X ()
O 2 'K .

where the invariant orthogonal measure d{(H) is normalized to make the
volume of the orthogonal group O(m) unity, and A and B are mXm

symmetric matrices, and

(3) (aly, = TT(a-—3-G-0), , (a) =alat1):(a+k-1).
L= i

The most important r’-type integral (Laplace transform) of zonal

polynomial which was given by A. G. Constantine [1] is,

(4) £ etr (-R2) (det Rf' P Cy(R) dR
? . [7 @ x)(det z)'uc/,h(z'l),
where
§CEY =x‘l"‘""’°ﬁ [P+ k- 5 (1)
and Re (ot)’+ km> p-1., p=*%'(m+ 1).

.

If & is such that the gamma functions are defined, then the binomial type

coefficient is

(5) M)y =7 i) /7o),

(9}
<



where

|
7 G Ay i
M) =TT - == (-1,
m

SRS
Constantine [2] has defined the generalized Laguerre polynomials as

follows. Let A‘[(R) be a Bessel function, that is, for ¥ v-1,

(6) A(R)z__l____}ofz__%iﬁL: FO(Y+P: -R) - ——
Y P +p) i35 (repkt 00100 A

then the generalized Laguerre polynomial corresponding to a partition X of

an m¥Xm matrix S is defined as

(7) etr (-3) L(S) = j Ap(RS)(det ) etr (-R)C, (R) dR.
B0 |

It should be noted that (7) is same as the Yy -Hankel transform of a function ;
etr (—R)C)L( R), [ Herz, 5]

Constantine has discussed some properties of a generalized Laquerre
polynomial.

(i) The Laplace transform of a generalized Laguerre polynomial.

J etr (-RS) (det S)X LL(S) ds
S0 '
, B ) -¥-p -1
= fm<y+p ) (det R) C)L(I—R )

. Y _
(ii) L, (0 =(y+p) Cy(l ).
(iii) |LLS)] £ (r+p),C,01 ) etr(s) -
Pt = 27X "m ’
. ¥ . . . .
(iv) L,(S)'s are orthogonal polynomials with respect to the weight function
- 4
etr(-S)(det S) , that is,
y 1 Y
S; etr (-S)(det S) L)i(S) L.6)ds
>0
= ! .
wr 9a KU _(repsk) 1 ),
where k and l are degrees of Lf; and L;(: , respectively.
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{v) The generating function of the generalized Laguerre polynomials

det (1-2) P S etr (-SHZ(I-Z)_IH') d(H)
o(m) .
L,,(8)C,(2)

s

) \zli<1,
i T kIGUL) !

where ||Z] means the maximum of the absolute values of the characteristic

roots of  Z.

3. The generalized Hermite polynomials

C. S. Herz [5] defined the generalized Hermitepolynomial of matrix

argument as

od
(1) = 2

tr (-TTHH = = tr (-2iTU") etr (-UU"(U) dU,
etr ( ) ) —Fan jver( iTU") etr ( m(u)

where U and T are mxn (m¢n) matrices and 7 (U) is a homogeneous

polynomial of degree d. Here we define the generalized Hermite polynomial

(g. H.p) Hk(T) as

(8) etr (-TTH,(T) = *—(';L J etr (-21TU')etr(—UU')C)C(UU')dU,

}—C’T”’L"b
U ;
where C,(UU') is a zonal polynomial of degree k with a partition k .

It should be noted that (8) is a Fourier transform of a fuﬁction etr(—UU')Ck(—UU').
Hence the Fourier inversion formula of a g,.H.p. is.

1 -
(9) T J
75 T

The following lemma which gives a relation between the Fourier transform

etr (2iTU"etr (-TTHH (T)AT = etr (-UU)C,(-U).

and the Hankel transform is very important.
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Lemma, Let f(U) = f(UU') be a real valued function defined for a
positive semi definite matrix UU' where U is an mxn {mgn) matrix, If

f(UU') is square integrable over UU', that is,

2 14 ]
X!f(R)I (det R) dR < & | [ =_g__p’
R>0
then we have for a Fourier transform

L
=z g(TT") =J etr (-2iTUN(UU")dU,
U

the ¥ -Hankel transform of f{, i.e.

g (TT") =S A,(TT'R) (det R) £(R) dR.
R>0

Proof. This lemma is a special case of Herz [5] = We here show that
the Fourier transform of f(UU') can be reformulated by the Hankel transform

of f(UU").

1

g(TT") —Zan j etr (-2i TU") £ (UU")dU
U

- %—j dUJ etr (-2i THU") f(UTU")d (H) -
T 0w ’

From (2) and (8), : N

N

e
7 2

g(TT") J Ag_?(TT'UU') f(UU")dU
U 2

' TP
S A, (TT'R)(det R)  H(RIdR .
R0 .

The second equality is shown by the Hsu's lemma, Hence the R.vH‘: S. is

a (-2— -p) Hankel transform of f(R), which completes the proof,

Theorem 1,
n

| e
(10) H(T) =(-1)° Ly (TT".
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Proof. Let f{(UU"') = etr(—UU')C)L(—UU') in lemma, then from (7)

and (8) we have (10) immediately.

Corollary 1,

T) = =
(11) H,(T) H)D(HIT) HK(THz),
where HIE O(m) and Hze O(n), respectively.

Proof. The invariance with respect to H, is clear from (8) by a

1

simple calculation. The invariance with respect to H2 is also clear from

theorem 1,

Corollary 2.

k n
(12) H)c(o) = (-1 ( 5 ))ch(lm)
Proof. (12) is obvious from theorem 1 and (ii) when = ——rzl~ -p.
(12) is also given by a direct calculation of (8) when T =0,
Remark : From corollary 2 we can consider that the g.H.p. H(T)

corresponds to the generalization of a univariate Hermite polynomial of even

degree,

Corollary 3, The g.H.p!s are orthogonal functions with respect to a
weight function etr (-TT").

’ —/—m-ﬂ/ .
Letr (-TT")H,(T)HAT)dT =g;ﬂ 5: 7 k!(—g—),tch(lm),

. where H, (T) and HZ(T) are g.H.p. corresponding to k degrees and
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[ degrees zcnal polynomials C,(UU') and C(UU'), respectively.

Proof. From theorem 1 and (iv),

j. etr (-TT') H, (T)H(T) dT
F-f

P 3
(TTHL_ (TT"HdT
k T

T 7
=(-1)k+g j etr (-TTY L
T

7,7”""” { T-p Z-p =P
= B (-1)k+ J etr (-2Z)(det Z) Lk (Z) Lk (z)dz
yA

>0
3" n
= 34 e T k! (), C(L ),

where the second equality is shown by the Hsu's lemma,
Corollary 4.
‘ n
(13) | 5(D)| < (570, Call,y) etr (T,

Here we consider the generating function of the g. H. p.. In the univariate

case the generating function is given by

H, (1)
.2 & k k
e:v.(p(-s + 2ts) :,ZZ_;TS

Herz [5] has given the generating function of the g.H.p.'s H}Z_(T) by the
using the extension of a Hilbert schmit kernel of a generalized Weber function

etr (- —é—TT')H{(T). Here we can give it in the following way.

Theorem 2. . Let S and T be mxn (m¢<n) matrices, then the generat-

ing function of g.H.p.'s is given by

(14) etr (-SS' + 2H1TH2S')d(H1)d(H2)
0(» ~ 0



i Z H);(T)Ck(SS')
i T RERC)

where Hlé O(m) and H2€—O(n) , respectively.

Proof, We prove this theorem by the uniqueness of a Fourier {ransform.
Let multiply etr(+ 2iTM')etr(-TT') on both side and integrate term by term

over T. Using (1) and (2), the left hand side of (14) becomes

L.H.S. etr(ﬂ»-‘ZiTM'_)etr(_fTT')v

J( etr(-SS' + 2H, TH,S)d(H )d(H,)
o i)

etr (-8 | etr (-TT' + 2T(H| SHy, + iM)")dTd(H, )d(H,)

I(my O0em)
=" etr(-MM") f f etr (2iH! SH2M )d(H )d(H )
O(m>" O(m)
San . n
=T Metr (MM f oF (B -H)SS'H MMY)d(H,)

=¥ " "etr (-MM") OF?‘)(—%—; -SS', MM').

On the other hand, the right hand side becomes, using (9),

50 H,(T) C, (SS")
R. H. S.= f etr (2iTM") etr (-TT") J_ > K (®). C.(I ) dT
_r . b0 X . —2~)f. k(m
o C,(SS"
= etr(21TM')etr( TT’)H (T)dT
2 il r’lm MM")C, (-MM?
ﬁg‘; k' (_201)& C)I’.(Im) - ‘ etr (- ' )"(- )
k T p(m)
=L etr( MM") 1m( ‘2‘ -SS', MM?),

which equals the previous expression, Q. E. D.



o
[,

Remark : Corollary 1 is obvious from the orthogonal invariance of

the orthogonal measure and theorem 2.

Corollary 5. -

V( mn mn

. = in .- '

(15) }: H,(T) =(- 1) etr (TT") ~S/ mm ‘-7(,,%) i 1( 5tk TrTT')
6 (5 C (L
(16) (5 G k
X

Proof, To prove (15), we need the following equality which is given

by Khatri [8]
. o -p k

(17) S etr (-R) (det R P (1r$)* C_(SR)AR

k>0

- I—’ @ :7) [7(ma +k+{)
m?

Plmu 4 ) C,(8),

where »C_C(s) is a zonal polynomial of j degrees with partition T . Now

. from the definition of a g.H.p.

k
Y OH (T) —(—.”m etr (TT) | etr (-2iTUetr (-UU) TIC (UUY) dU
X ~ = - x

_ﬁ_zl)___ etr (TT‘)J (etr( 2iTHUYetr(- UU')(TI'UU') d (H)du

rina
T o

k ¢
=(Tc'7l)ﬁ_-etr(TT')j oF (5 -TT'UU) etr (-UU)(Tr UU) AU .

Applying the Hsu$ lemma, we have

I (TT ),( F (-2 -TT'R)(d RI);-P (-RN(TrR)*
= ——— etr ! —5—; -TT'R)(det etr (- r dR
I, () 2 00k1 2 ooert=n
(-0 W&t f 3P
-l;—metr(TT?l ,(g‘)t etr(- R)(detR) (TrR) "G (TT'R)dR.

o)



Hence from (17},
L (2 it g)
k & (-1) 2
={-1 1

(-1) etr(TT )!; ; ﬂ‘ I__l(%,,} 1)

C)C(TT')

mm
(= +k)
) Z P (mn +k; mn
P(L"zﬁ) 11 2 2

= (-1)ketr(TT' ;-TrTT!")

where lFl is a univariate hypergeometric function.

If we set T =0 in (15), from (12) and 1F1=1, we obtains

n -
T Cully) = (P

Corollary 6.

(23] H)((T) _ 1

1 1
(18) E % Kl = 2%2, etr(—2—TT)

oo HK(T) ‘ n
(19) E}; T(%_){ =efcr(—1m) OFI(“:Z"'; TT').

Proof. (18) can be shown from the definition of a generalized Hermite

polynomials, (19) can be shown when we set SS' = Im in (14).

4. The density function of the maximum latent root

Here we give the useful transformation and related Bata type integrals.

Lemma, Let S be an mxm positive definite (p.d.) random symmetric

«

matrix, We decompose S as follows,

M
S=‘H v H',

“where H is an mxm orthogonal matrix which has only (m-1) independent
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variables and V is an (m-1)x(m-1) p.d. symmetric matrix which ranges

7\‘ Im_l)V> 0. Then the Jacobian of this transformation is given by

J(S——>7\1, H, V) = det(K]Im -V) I

-2

L=X

Proof, See Hayakawa [4]

The following corallary is very impoftant to give the density function of the

maximum latent root.

Corollary 7.

NI T 1
(20) j (det WP det (1-W) C, w) aw
In>wW>0
)] (p) my ()
e GRK ;) (@ m+k) === C, (I )
r'm(ﬁ +p) T2 (d+p)){, m
- m m 'wz "
(21) - g (T w ) JT(1-w. ) (w‘;-w-)Ck( " dw,
t=2 i=2 v AKigjem ¢ WO =2
170 Onr0 W7 @) @)
=T7m m m_ﬁzz“ Om+k) —=— C (I )
; r)m((y+p) T3 (oH-p)& < m
‘Proof, It is well known that the following integral holds,
_ : - )T (P
(22) J (det'S) Péx(s) as -1m Jf‘ ) :al" 5 CAL).
Lm.)s?o rm P p)(.z m

To prove (20), we have decompose S as
A0
S = H H',
0 AW

where W is an (m-1)X(m-1) p.d. symmetric matrix which ranges

Im-l > W>0. Then the Jacobian is given by

'
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TUmo1) (Mr2)
J(s—A,, W,v H) =A det (I_

W) = '2
! fl-—Z_sz,
i=2

Hence the left h_and side of (22) becomes

!
_ omef~1 o« -p 1 ] 9 d
L.H.S. = J A d?\,J (det W) © det(I-W) cx( w>‘/——_—ﬁ_2 H
0 In-17W>0 !—.‘Zﬂi/
i =2
-1 x & -p 1
T T f (det W) P det (1-w) €, (© ) W,

Im17 W20

m
j‘ X" e L g S dLH s
\ '~ dm+k 28 w3 m
’ - _’%ﬁ%s Vi- .LZ:ZJ’LL, Y (%)
L:

To prove (21) we decompose further W =H A H.' where Hle 0(m-1)

since

; 17w 1
and /‘w=diag(w2, +++,w,), then the Jacobian is
WAy H1) = T (@, -w),

2% is)6m
Hence inserting these results to (20) we obtain (21) since

— Tm-®,
__1__ J dH = L_______
m- - m=l .
2 0 (m-1 T8

(21) is the same result as Sugiyama [9],

4, 1. The density function of the maximum latent root of a multivariate
quadratic form.

Let X be an mxn (m¢n) normal sample matrix with mean 0 .and
covariance Z , and A be annxn p.d. symmetric matrix. Hayakawa [3]
has given the density function of a multivariate quadratic form Z =XAX' ‘as

follows

‘ | -1

| 2P oo G (-z X 2)C(A)

i T oo A% (det 2) REZ
[(nE)det 27)* (det A) foe X% k.Cx(In)

12
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The joint density function of the latent roots A= diag(x, , --+,A, ) of Z

is given by

1 2

M -
Ot
g Tt (B )det 25)7 (det AY ey
! -1
o C, (N C -7 T C AT
= 5 KIC, (1 )Cu(I )

To give the density function of the maximum latent root A, we set 2\\t= /\le

(i=2,---,m) in (23) and integrateit with respect to 1> W,> ++:> W, > 0.

G) r:n(%)(detZZ)%(det AR ,F k!

| &7 -1 =—p ] m
Cil-ZTFICxA ) | BT 0, >
w; 1-w, we-ar)CoL Y dew,,
e C (L )C, (1) (e Tl c)‘,l;w‘ PO, I
12w 2 Wp >0 )
Hence from - (21), we have
(24) Vm“’) . ' 7(';"""’““'
T (F+p)det2y)2 (deta)s M
o (mm (2) c(-—~prhcah
(—z‘ +k) 78& Z 25 w2 I3 ]
f=0 k! "X (F P, C (L)
Theorem 3, Let X be distributed with a density function
1 1 -1
e t - — X 1

then the density function of the maximum latent root of XAX' is given by (24),

Corollary 8. The cdf of the maximum latent root A, of the multivariate

quadratic form XAX' is given by

13
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N I m® Lomm
. m'=2
bt -1
fﬂ 1 (2) Gl zZIGEA D
= X —
k=0 k! )t (F +p), C)c(In)
Corollary 9, If we set A= In in (24) then we have the density function

of the maximum latent root K, of a central Wishart matrix, which is the

same as Sugiyama [9],

4, 2, The density function of the maximum latent root of a noncentral Wishart
matrix with ¥, =1
m N
The joint density function of the latent roots . /A = diag ()\.l , ,Alm) of 2

non-central Wishart matrix with r =Im was given by

2

8

-4
JLJ

\ ! ‘ P
(26) _z-_ etr (-zMM')etr (- %/ Ndet/]) TT(A -2
TS “po b
= C, (-34)C (MM
$= % k!(’") C,(I )

However, (26) is not an appropriate form to derive the density function of
the maximum latent root 7L| when we use (21). Hence we give an another

form of the joint density function of the latent roots A which is appropriate

to discuss.
Lemma. Let X be distributed with a density function
(27) —L— etr(- — XX' + XM') etr (- —— MM)),
(272"

then the joint density function of the latent roots N of XX is given by

14



7P
(28) — etr (- —— MM')(det /)) T -2

H(,— M) C, (5 A)

Sy

A0 % k(T C (1)

Proof, We here decompose X in (27) as follows
, 1
2
(29) X = H, AL

where Hl is an orthogonal matrix with positive element in the first column

]
and /| “isa diagonal matrix of square roots of latent roots AR Am of
XX' in descending order and L is a nxm Stiefel matrix satisfying LL =Im

The Jacobian of this transform is

3 ('mwn)m.

2 % (detA) ) 'T()\ -2, d A d(H ) (L),

GG ik

where d(L) is a normalized Stiefel invariant measure with volume unity. Thus

dX =

inserting (29) to (28), we obtain the joint density function of /l , H1 and L,

tr (- +vm) 2 7"
(30) = (det/\ T (A -2)

2T () <}
| | ,

0
etr (- —é—/‘lz LL A+ HlA2 L'M!').

Hence we only integrate (30) with respect to H1 and L. If we set L-?Hz' L,

H éO(n) then L‘H2H‘2 L =1L'L = I and the Stiefel invariant measure d(L)

is unchanged.

Thus
) v
= ( ( etr(——-——/\ L'LA+H AL'M)d(H)d(L)
a¢m> LIL' *Tom

N

I'5
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! ) !
1 1 4 z EA
= — R + [ 1
L) — ‘( etr (-——/ L'L A"+ H A L'H, M) JAH,y)
L'L=Im Oy “0m)
Hence we can see that the integral with respect to H1 and H2 is the same .
!

- I 2 , .
L - — [ = == i
form as theorem 2 if we set S J——/‘ L' and T ?——M in (14), thus

M [
H(=) C (=A)
S aw

/ e

M !
H,(3F) Cn(-g/l )

o T kNF )N C (1)
which completes the proof.

Now we derive the density function of maximum 1a'§ent root A, . Ifwe
set l;‘ =2, w (i=2,***,m) in (28) and integrate it with respect rto 1>w, >
<+ 7¢% by the use of (-21), thefx we have

(p)

m

‘z‘ml/‘ /n
2 l:’n(z +p)

)

mm L
Lo & (THK) A Hig M
etr (- —I—MM')A Z__.z'_'.._ —ZLk ____/;{L__‘_Z’__

2 ] £=0 k! K (= +p))c

(31)

Theorem 4, The density function of the maximum latent root A, of a
non-central Wishart matrix of n degrees of freedom with Y= Im is given

by (31).

Note : Hayakawa [4] has given the density function of the maximum
latent root l‘ by the use of two expansions of zonal polynomial such that

. ; Ls
Cy(A+B) =6§ a, Cg(A)C(B),

’ and

CAMICUR) = I by, Cula).

16
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However (31) is more exact form than Hayakaﬂv‘a [4,(33)].
5. On the distribution of a trace of a non-central Wishart matrix with =l

Let /A be distributed as. (28). We derive the density function of T =Tr XX

=Tr A from the inversion formula of a Laplace transform 50(1:)

Let (1) = E(etr(-t/ )) ;
\ 2 . M ' k
Tm oo H (= N5
. o etr (-—— MM") ) el
23 ]”( G keo X kI(Z),Cll )

5 etr(-t/\)(det/‘)—;-r \W(/\"’\')C (A)dA
A .

2= 5o v<s
- H (5°) Loan-
1 o= T: k I - ok
22_'»\11 o ZTan etr (’ _MM')ZZ k' ., 2 . .
If we use the well known formula
C+‘;oo mm —z"‘ﬂt"\* k"‘
S Y B T T A
27 Mz +k)
C-c 00
then the density of T is given by
!
(32) 1 R YV
T T e ST ’
2* g
e 1 T .k M
(=) L H (=),
PRI 2 el A
. mn mn
since [7( +k) = ( )k [
Theorem 5, Let /| be distributed with the density function (28), thén

the density function of T =Tr/l is given by (32),

(7
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Corollary 10, If we set M =0 in (32), then we obtain the density

2
function of L with mn degrees of freedom since
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