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Consider a uniformly elliptic differential equation
with not necessarily continuous coefficients aij‘ Properties
of solutions of such an equation were studied by many authors;
cf. [11]}, [12], [13], [8] and [14]. Using them, R.-M. Hervé
[6], [7] developed a potential theory with respect tc this type
of équation on a bounded domain in the Euclidean space. It was
shown that almest all basic results in the ciassical potential

theory are generalized to this case.

In this paper, we show how to extend Hervé's results to a
potential theory on a differentiable manifold wifh respect. to
a differential equation which is locally of the form (1.
Since the classical approach is no longer valid in this case,
we employ a different approach, which is essentially due to
Hervé (and to G. Stampacchia; cf. [8], [14]). In the last
part (sections 10 and 11) we alsc give fundamental results
which are necessary in the discussior on boundary value

problems with respect to an ideal boundary (cf. [9], [10]).
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1. Metric tensor.

We consider a connected non-compact Cl—manifold Q of
dimension d > 2 and a symmetric covariant tensor (gij) on {
which satisfies '

{G): On each relatively compact coordinate neighborhood U,

each g.. 1s a bounded measurable function on U and there exists

>
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I 83500858,
for all x e U and real numhers 61,...,€d.

Let G be the determinant of (gij). av = /G dxl...dxd
defines a measure on U. Thus dV is defined to be a positive
measure on . Let LZ(dV) (resp. L%OC(dV)) be the space of
square summable (resp. locally square summable) functions on Q

with respect to d4V.

The space Q@ with cuch a metric tensor (gij) is a locally
compact metrizable space, and hence it is countable at
infinity.

We dencte by CI(Q) the space of continuously differenti-
able functions on @ and by Cé(Q) the subspace consisting of

furnctions with compact support,
2. The spaces <£&(R) .and *96(9)'
. 1
Given f € CT(Q),

. ij 3f 3f



. . ijy . s
is well-defined, where (g 3) is the inverse matrix of (g..).
1
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Let Cé(ﬂ) = {f € C°(Q); D[f] < »;. Obviously C () ¢ Cé Q).

Let Uo be a fixed relatively compact cocrdinate neighbor-

hood in Q and let

for f ¢ L (dV) For f ¢ C%(Q), we define a2 norm
Ie] = prert/2 « el .

LEMMA 1. (cf. [4]) If £ e CL() and D[£_] + 0, then
there exist constants c_ such that |[f_+ c_ || - 0.
_ n n n'lo

LEMMA 2, If Ul is another relatively compact coordinate

neighborhood, then [[f]| and p[e1/? « (fy e2av) /2 are
1

equivalent norms on C%(Q}.
DEFINITION.
LQ(Q) = the completion of C (Q) with respect to “f”
490(9) = tﬂe closure of CO(Q) in &09).

For any f e (@), D[f] and ||€]| are well-defined; in fact

we see ;

(i) £ is identified with a function in L (dV)

{ii) There corresponds a covariant vector grad f

_ (af S f ; (s ij 8f € |1/2 ._
= §§I"“’ 5% such that ‘orad f| = 5' 3] X; is ¢

function in L2(dV) and D[f] = j lgrad £]%av.
Q
2

By (i), we may regard as (2)CLj_ _(dV). Thus L)

(93]
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consists of elements f in Lioc(dV) for each of which there

. , 1 - L . 2 . )
exist @ne CD(Q) such that ¢ > f in Lloc\dV) and D[cbn ¢m] >0

(n, m - «J,
Also for any £, g e J5(Q),

ij 3f 2
D[E, gl = ( I g" 5;7’3%7 av
A i 7%

is well-defined. J%¥(2) is a Hilbert space with respect to the

inner product D[f, g] + IU fg dv.
0

By Lemma 1, we have

LEMMA 3. If 1 £ §,(Q), then [£]l is equivalent to D[f]l/2

on ‘gb(g); in fact there exists My > 0 such that fU fzdv
0

A

M_D[f] for all f € 4@0(9).

3. The space $ﬁOC(Q).
If w is a subdomain of Q, then it is a C1=manifold and we
may restrict (gij) to w. Then we have thc spaces [$(w) and

d§b(w) relative to w.

DEFINITION.

2 for any relatively compact subdcmain
;SIOC(Q) = {f e Lloc(dv); w, there exists fw € o w) such that}.
fw = f (a.e.) on w

It is easy to see that £(2) €5, (Q); for any £ ¢ £(Q),

loc
its restriction fm to w is well-defined and fw e S(w).

The following results are proved as in the classical case:

- : 1 .
LEMMA 4, If f ¢ ,&loc(g) and ¢ € C(Q), then ¢f ¢ ,&O(Q).



COROLLARY. If f ¢ 4&10C(9) and £ = 0 (a.e.) outside a

compact set in Q, then f ¢ 490(9).

LEMMA 5. If £ e 0y _(2) and |grad £| e L?(), then

£ e ).

4. The lattice structure of J$(Q) and K%b(ﬂ)-

PROPOSITION 1., (cf. [2], [4]) If f, g € {3(Q), then
max(f, g), min(f, g) & &(Q) and D[max(f, g)] + D[min(f, g)]
= D[f] + D[g].

PROPOSITION 2. For f e A (Q), let £ = max(min(f, n), -n).
Then [£ - £ [[+ 0 (n =),

LEMMA 6. (cf. [6]) If f e H(Q) and £ > 0 (a.e.) on Q and
if g e 490(Q), then min(f, g) ¢ ASb[Q).

.Sketch of the proof: Choose o, € Ci(Q) such that ”¢n - ¢
+ 0 (n » «). Then min(f, ¢n) € 4?0(9) by the corollary to
Lemma 4. We can show that ||min(£, ¢,) - min(f, gl = 0 (cf.
[61, [21). Hence min(f, g) € 490(9).

COROLLARY 1. For f e ), f ¢ 490(93 if and only if
'[f! € A&o(ﬂ).

COROLLARY 2. If f ¢ 5(Q) and £

(A

0 (a.e.) onQ and if
f < g (a.e.) outside a compact set in Q for some g ¢ ,6%(9),

then £ e &, (2).

LEMMA 7. - If g ¢ 496(9) and g > 0 (a.=.) on @, then there

exist ¢P € Cé(ﬂ) such that ¢n

Hv

0 on @ and H¢n - g{!+ 0 (n > ).
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5. Solutions and supersolutiaons of Au = 0.

_DEFINITION. (i) u € «Sioc(ﬂ) is cal'ed a solution of

Au = 0 on @ if D[u, ¢] = 0 for all ¢ ¢ Ci(ﬂ).

(2) 1is called a supersolution of Au'= 0 on Q

(i1) u ¢ Xgloc
if D{u, 9] z 0 for all ¢ e Co(R) suzh that ¢ 2 0.

By Lemma 7, we see
LEM#A 8, TIf u is a supersolution on Q and u ¢ J&(Q), then
Dfu, gl > © for all g e & (@) such that g > 0 (a.e.) in Q.

LEMMA 9. Suppose 1 ¢ x&o(ﬂ). If u e () is a supersolu-
tion on Q@ and if u > g (a.e.) outside a compact set in Q for

some g € é%(Q), then u

(=4

v

0 (a.e.) on Q.

Proof: Since u < g outside a compact set in Q, u-sq9o(9)

by Corcllary 2 to Lemma 6. Hence, by Lemma 8, D{u, u ] > 0.

Therefore 0 < D[u”, u”] < D[u”, u”] = 0, which implies u” = 0

(a.e.) on Q.

DEFINITION. X () {ue H(Q); u is a solution of Au = 0

on Q.
PRCPOSITION 3. (Royden decomposition) (i) For any ue Jf(Q)

and g ¢ }Eb(a), Dlu, gl = 0.

(ii) Anv £ ¢ A&(Q) has a decomposition £ = u + g with
u e W

:(Q) and
g L.

[¢fe]

€ d?b(Q). This decomposition is unique if

Hereafter we shall assume that 1 ¢ J§b(ﬂ). The function

u € #£(Q) detcrmined by f in the above proposition is denoted
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_ .9
by he= he.

PRCPOSITION 4, The mapping f - hf is continuous linear

and non-negative on J}Q).

Procf: The linearity is cobvious. If £ > 0, then hf > -g.

A

Hence hf > 0 by Lemma 9. Obvionsly, D[hf] D[f] and D[g]

A

D[£]. By Lemma 3, ||g]’ < M _D[g] ¢ M_D[£f]. Hence |h|_

/M;D[f] + ”f“o, so that ”hf“ < /1+M0”f“. Thus the mapping

A

is continuous.

Now we shall extend Lemma 9 to supersolutions which do not
necessarily belong to J[¥Q). We first prove the following two

lemmas which are due to Hervé [6]:

LEMMA 10. ULet f ¢ {9(9) and let w be a subdomain of Q.

{h? on w

Then £ =
v f on - w

belongs to {HQ). Furthermore there
exists M1 > 0 independent of w such that
“fm" < MlquL

Proof: It is easy to see that fw - fe GC%TQ). Hence
fe Q). By Lemma 3, ”fw - f”é

I, - £l

A

M D[f - f].. Hence
0 w

ItA

(1+M_)D[f - f] = (1+MO)Dw[h°§ - ]

WA

(1+M)D,[£] £ (L+M)D[£].

Therefore,
e 0l s o AR

LEMMA 11. Let f € J(®) and let {w } be an exhausticn of



Ju

. Then fm tends to.hf weakly in 49(9}.
n

Proof: - By the above lemma, {fw } is bounded, so that it is
n

weakly relatively compact. Let u be any weak limit of {fw }.
n

For any ¢ eCi(Q), D{u, ¢] = lim D[fw , 9] = 0. Hence'u e M ().
n-co n

€ 49b(9), u-fe 490(9). Thus, u = h; by

t+

Since fw -
n
Proposition 3. Hences we have the lemma.

Now we prove

PROPOSITION 5. (cf. [6}) If u is a supersolution on Q@ and

[[AV4

if there exists g € c,SLO(Q) such that u g (a.e.) outside a

compact set in Q, then u > 0 (a.e.) on Q.

Procf: Choose an exhaustion {wn} of @ in such a way that

u > g (a.e.) outside a compact set in w, for each n. Since

W w

n n . .
u - hg £ 49(mn) and g - hg £ Qyo(wn), Lemma 9 implies that

W

n .
u - hg 2 0onw . By Lemma 11, gwn + 0 weakly in J&%(Q),
since. g € d§b(9)' Hence, for any ¢ ¢ Cé(Q) such that ¢ > 0,
we have

0 = lim.!'g ¢ dv < [u¢ av..
n->w “n

Hence u > 0 (a.e.) on Q.

COROLLARY. If u is a supersolution on Q and if

1imx+id(ﬂ)u(x) > 0, thenu > 0 (a.e.) on Q.
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6. The harmonic structure.

PRCPOSITION 6. (See [11], [12], [13]) Any solution of

Au = 0 on a coordinate neighbcrhocd is H&lder continuocus.

PROPOSITION 7. (See [13]) 1If u is a non-negative solution
of Au = 0 on a coordinate neighborhood U, then for any compact

set ¥ in U

sup u g c inf u
K K

with ¢ depending only on U and K.
From this proposition we obtain

PROPOSITION 8. If u is a non-negative solution of Au = 0

0 on w or u > 0 everywhere on w.

on a domain w, then either u
DEFINITION. For any domain w of @, let
H(w) = {u; continuous solutior of Au = 0 on w}

and for any open set w with decomposition w = iji into com-

ponents, let
H(w) = {u; ulw; e H(w;) for all i}.

THEOREM 1. (cf. [6]) {H(w)} gives a harmonic

w:ropen
structure satisfying the axioms 1, 2 and 3'(= 3) of M. Brelect

(1.

Axiom 1: {H(w)} is a sheaf of linear spaces of continuous

functions (Definition and Proposition 5).

Axiom 2: Regular dorains form a base of open sets; in fact

any ball in a coordinate neighborhood is regular (cf. [8], [11],



)
[ gV

[141).
Axiom 3': The statement of Proposition 7 is true and
{ue H(w); u >0, u(x,) = 1} is equi-continuous at x = x, for

anv domain w and X, e w (shown by Hervé [6] (using Proposition

6) in case w is a cocordinate neighborhood).

Thus functions in H(w) are called harmonic on w and we
have noticns of superharmonic functions and potentials with

respect to this harmonic structure (see [1]).

7. Superharmonic functions belonging to Jﬁioc(ﬂ).

PROPOSITION 9. (Hervé [7]) 1If u is superharmonic on Q

and if u ¢ °@10c(9)’ then u is a supersolution of Au = 0 on Q.
Conversely, for any supersolution v on @, there exists a uni-

que superharmonic function u on @ such that u = v a.e. on Q.

LEMMA 12Z. 1If u is superharmonic on Q and ifue 496(9),

then u is a potential.

“Proof: By Proposition 9, u is a supersolution. Hence by
Lemma 9 u > 0 on ©. Let h be the greatest harmonic minorant of

u. Them 0 ¢ h ¢ u. By Proposition 5, we conclude that -h > 0.

v

Hence h = 0, se¢ that u 1s a potential.

Now the fcllowing thecrem is an immediate consequence of

this lemma:

THEOREM 2. 1If u is superharmonic on @ and u ¢ H(2), then
u has a harmcnic minorant in Q and hu is the greatest harmonic

minorant of u.

10



COROLLARY. If u;, u, ¢ A(), then the least harmonic
majorant v of max(ul, uz) and thec greatest harmonic minorant w

of min(ul, uz) both belong to H.(Q) and

D[v] + D[w] < D[u + D[u

1] 2]'

(Cf. Proposition 1)

8. Measures associated with supersolutions.

Let u be a supersolution on Q. Ther there exists a non-

negative Radon measure p on  such that
plu, ¢1 = [o a

for all ¢ € Ci(ﬂ). We call p the measure associated with u.

LEMMA 13, Given ¥ ¢ Ci(ﬂ), ¢ 2 0, there exists a
continuous potential gy belonging to ﬂé%(ﬂ} such that ¢dV is

its associlated measure,

o

Proof: Since the linear functional g - [gw dv is
continuous on é%(ﬂ) (Lemma 3), there exists gw £ J;O(Q) such
that Dlg,, g = ng dv for all g ¢ H, (). If g » 0, then

D[gw, gl > 0. Hence gw is a supersolution on Q. On each

cocrdinate neighborhood, ) is a solution of
1 5 & i du ] .
=Z o = e i o
v j j i i

Therefore, by the results in [11] or in [14], we may assume
that gy is continuous. Then gy is superharmonic, and hence

it is a potential by Lemma 12.

11
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REMARK. By the above lemma, we see that there exists a
positive potential on Q. Note that this fact essentially

relies on the assumption 1 ¢ X}b(ﬂ).

9. Green functions.

It is shown in [7] that for any coordinate neighborhood U
in @, there exists the Green function gg(x) on U, uniquely

determined by the following two conditions:

(iy For each y €. U, gg is a potential on U and is harmonic
on U - {y};
(ii1) If u € q&(U) and is a supersolution on U and if u is

the associated measure, then

a0 = [ 8o+ me

Also it is shown that if py is a measure on U such that
w(U) < «, then J ggdu(y) € Ll(U).
U
From this result'we obfain

PROPOSITION 10. There exists a uniquely determined

function gy(x) defined for x € Q, y € Q such that

i) For each y ¢ @, gy is a potential on Q and is harmonic

on Q - {y};

(1i) For each coordinate neighborhood U, gy - gg is

harmonic on U.

Furthermore, we have

12
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(ii1i1) (x, y) ~ gv(x) is lower semi-continuous on  x Q,

continuous on 2 x Q - {(x, x); x & Q}.

Sketch of the proof: First remark that there is a posi-
tive potential on Q (cf. the remark after Lemma 13). The
uniqueness of gg for each coordinate neighborhood U implies
the proportionality of two potentials supported by {y}. Hence,
by Théoréme 18.1 in [5], there exists a function pv(x) on xQ
such that for each y € @ p, is a potential supported by {y} and
the mapping y - py(x) is continuous on Q - {x} for each x e Q.

On each coordinate neighborhood U, we can write
p, () = 2 glx) + h (x)
y YTy Y

for x, ye U, where hy is harmonic on U. It is easy to see that
y - xy is continuous on U and Ay does not depond on U as long
as yre U. Then gy(x) = py(x)/xy satisfies (i) and (ii) of the
proposition and y - gv(x) is continuous on Q - {x} for each

x € Q. The uniqueness of gy(x) is easy to see. The property

(iii) follows from Proposition 18.1 in [5].

PROPOSITION 11, If u is a superharmonic function on Q
having the greatest harmonic minorant h on @, then there

corresponds a unique measure p such that

u(x) = jQ g, (x)du(y) + h(x)

for all x ¢ Q. If, furthermore, u ¢ dﬁioC(Q), then py is the

measure associated with u.

The integral representation follows from Théoréme 18.2 of

13
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of ¢

1
Lloc

the

The last assertion of this proposition is a consequence

ondition (1i) for gU and g_.
Y y

COROLLARY. Any superharmonic function on £ belongs to

(av).
PROPOSITION 12. gy(x) = gx(y) for any x, y & Q.

Proof: Let Yy, by € CO(Q), Vs ¥y 2 0. By Lemma 15 and

above proposition we have

D[gwl, ng] = fgwlwz dv

[Je, 0w, 1wy aveaven.

Since D[gwl, ng] = D[ng, gwl] and wl’ wz are arbitary, we

have g (x) = g, ().

Using this proposition, we obtain the following result as

in the classical case:

LEMMA 14, If ; is a non-negative measure on  with

finite total mass, then ( gy(x)du(y) is a potential.
Q

10.

j.

Dirichlet problem with respect to an ideal boundary.

Let Q* be a compactification of Q. For an extended real

“S#falued function ¢ on I = Q% - Q, let

superharmonic on Q, bounded below)

z@ = {u; U{=}
limx+gu(x) > (&) for all £ € T
and:§¢ = {-u; u e,§:¢}. By a general theory (cf. [1], [3]) it
is known that each of ﬁ¢ = inf E@ and §¢ = sup;§¢ is either

14
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harmonic on £, = + « or ¥ - « and that §¢ < H¢. If E¢ = H¢

and are harmonic, then ¢ is called resolutive and the common

function is .denoted by H Let R{(T) be the set of all resolu-

6
tive functions on I'. We have ([1], [3]; cf. [2])

PROPOSITION 13. (i) R(Tr) is a linear space and the
mapping ¢ - H¢ e H(Q) is non-negative linear on R(T); H1 = 1.

(ii) H

max(¢1,¢2) = the least harmonic majorant of

H
maX(H¢l, ¢2),

Hmin(¢1,¢2) = the greatest harmonic minorant of
vmin(H¢1, H¢2).
If every finite continuous function on I' is resolutive,
then we call Q* a resolutive compactification (with respect to

(gij)). In this case we have the harmonic measure w on T for

each x € 2, which is defined by
j¢ dmx = H¢(x)
for all ¢ € C(T). Obviously mX(F) = 1.
11. The space RD(E).
We assume that Q* is a resolutive compactification. Let
Ry(r) = {0 e R(D)5 Hy e J()].

This is a linear subspace of R(T).

PROPOSITION 14. TIf ¢;, ¢, e Ry(r), then max(¢;, ¢,),

min(¢l, ¢2) € RD(F) and

15



D{ ] D[H, ] + D[H

Hnax(o,0,00 * Plnince 0,01 € Py,

in particular, if ¢ € RD(F), then |¢]| ¢ RD(F) and D[H|¢!]

< D[Hé]. (C£f. the corollary to Thecrem 2 and Proposition 13;

also cf. [101])

PROPOSITION 15. For ¢ ¢ RD(F), let ¢, = max (min(¢, n), -n),

n=1,2,... . Then D[H¢ - H¢] + 0 (n » ), (Cf. Proposition

n
2; alsc cf. [10])

THEOREM 3. (Doob's lemma) For fixed X, € Q, there exists

a constant M > 0 such that for any ¢ ¢ RD(F)

f¢2dwxo < M,

The proof of this theorem is similar to the classical case

(see e.g., [9], [10]) once we obtain the following lemma:

LEMMA 15. If u ¢ H(Q), then the superharmonic function

- u2 has a harmonic minorant and

wl(x) - 2,] g, () |grad ul*(»)av(y) + R,
Q

where h is the. greatest: harmonic minorant: of - uz;

Proof: Since u is. continuous, we easily see that’ - uz:
3(-u?) Ju 1
< ———— . D - m—— - - :
e*»loc(g) and Sxi 2u 3xi . Hence, for-any ¢ ¢ CO(Q),

D[-u’, ] = -2 [Zgij du_ [M’ u]dV

oX .
J

-2D[u, o¢u] + Zjlgrad u|2¢dV.

Since ¢u ¢ ”90(9) (Lemma 4), D[u, ¢u] = 0. Hence u

16
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2|grad u|2dV is the measure associated with -u2. Since

e L), u(Q) < ». Therefore, by Lemma 14, p(x)

[+

2 . . .
ZJ gy(x)]grad ul“(y)dv(y) is a potential on Q. Obviously,
Q
-u” - p is harmonic on Q. Thus we obtain the lemma.

COROLLARY 1. {H¢;
H).

COROLLARY 2. If A is an w-measurable subset of T such

¢ € Ry(T)} is a closed subspace of

that w(T - A) > 0. Then there exists a constant MA > 0 such

that

2, R
J¢ dw, < M; D[H,]

o
for any ¢ € RD(P) such that ¢ = 0 w-a.e. on I - A.. Thus

{H¢; ¢ € Ry(T), ¢ = 0 w-a.e. on T - A}

is. a closed subspace of }t{Q). (€f. [91, [10])

17
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