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An Application of the 2IX-lethod for Second-Order
Nonlinear Ordinsry Differential Equations
3y Ken-1til Takahasi
( Tokyo University of Azriculture and Technology)

81. Introduction. In 1949, H.J.lighthill [1] prooosed a new

method for nonlinear differential equations known as <LK-method. In
order to construct a uniform reoresentation of the solution of the

initial value problem:

. & mg du S m \
(1.1} {x*'%;5.¢mﬂx‘u)}3; *q(x)u=r(x)+g£§ Hm(x,u), u(l)#c

over the interval 0 £ x &1 for every & ( 0 ¢ € iéé, 50 70

being sufficliently small), he substitutes

o0 o0
(1.2) = 3 €M (8., x=1% +3 £’ (&)
w=0 SRR m=1
into the equation of Problem (1.1) and determines um(g) and xm(§)
in a suitable manner. In 1966, Y. Sibuya and X. Takshasi [4]
proved the uniform convergence of the formal solution (1.2) of the
initlal value problem: (x+ €u) du/dx + q(x)u = r(x), u(l) = b.
In 1955, W.A.Wasow mentioned in his paver [3] that Lighthill's
method can be j&stified if Ph(x,u) and Bm(x,u) are polynomials of
degree not greater than m with respect to u. In 1667, the author

mentioned in his paper [6] that Lighthill's method can be justi-

fied for the problem of the form:

[3 o du s’ m
X+ £ u+ € P (x,u)} — +q(x)utr(x)+¥ £"R _(x,u)=0, u(l)=b
{ Z‘::=?- " } dx 2;1 o

under some assumptions, even if ?m(x,u) and Hm(x,u) are polynomials

of degree greater than m with respect to u . In this paper,
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(2.1 x == =a{x! ~— +s{zlv = r(x), v{1l) = &,
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ax
du
[ o = e gixiu - 3(xiv o+ r{x),
AN j dx
(2.2} { av
% = 1 aiiio= B, ER

form:

(2.3) o= @(x) =
m=0

in the neighborhood of x = 9
the equation o7 Zroblem (2.2), we have

£ (n+g_ a2 = i“(ajg o N ;o)
(2.4y A

{ . -

Lolarlie o o=a . {(1=20,1,2, Y,
where ;3 is a ocolynonial of a_, . 2 1P
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Inserting the series (2.3) into

. Since we
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assumed that q_ ) 0, we can comstruct a solution of the equation

o]
of Zroblem (2.2) which ig analytic and reasl-valued in the neighbor-

hood of ¥ = 0. Since (2.2} is linear, wu = Pix}, v = ¥ (x}) 1is
< < - T3 A G e e e ) miF e Y
analytic ovt 0 =2 x = 3 2t 1is evident thsat Yixs, WX} are

{A
3

< o N 5 P e A
real-valued cn 0 = x = 1. Thus the solution of (2.2} is given by
u o= 13 {X\ = ’: Cg‘g {K}%CZK-

A

(2.5) ﬂ
{

i
e
4
§

= ClWV1CX)+sz“q01F2(x)+ #f(x),

re | -q ( -q vy ner-
where ( gl(x),wyi(x}). {x™ "o gbz\x), x ‘o yfzix,, is a fundamen
tal systsem of solutions of the following system of homogeneous

zauations:

du av
T === g{xzhn - 5{x)v, w— =g
dx dx
and 7, =and 2. ar v, v.o{i} = 1.
<~ < [s)

Qur main )

THEOREM 1.

(I} olx}), a(x), s(x) and ri{x) are resl-valued and analytic -

<
x = 1:

[LTa

fuanctions of x for O

(ID) a, =a(0) 1is a positive non-integer.

Then there exist functions x(%,%), u(%,3) and v(g,5) defined by

the power series

(3.5 = g+ 2 x (557,

i

(2.6) u(,x)

v(g.,5) =

such that (a) the vower series x(£,5), u(f,5) and v(£,5) are uniform-

» 1 o~
> 4 7 - 5
ly convergent for 0 St =¢ , {320 beinz sufficiently small)
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with coefficients x_{(%), u_(%) and v_(&) functions real-valued and
o m s s

<

analytic for 0<% 1; (b)) =(1.,%)=1, u{l.,%)=b', v(1,%)=b;

x(%, € £ %), u=u(g, €€ %), v=v(E, €& %) 1is a para-

P el

(¢) x

metric reosresentation of the soluticn u(x), vi(x) of the following

“roblem:
du
{x+ £(v+p(x)u)} — 4+ g{x)u + s(x)v = r(x),
dx
(2.7 av
— =, u(]_) = bt, v(l) = b.
dx

THEOREN 2, Assume the same assumptions (I) and (II) as in

Theorem 1 Then there exist positive constants § and SO such

that

(1) 1if C,p(0)@,(0) > 0, (a) the function

(2.8) P = x(%, €87 %)+ E4v(E, €8 %) +o(x($, e85 %) )u(g, Eg'qo)}

never vanishes in the interval

< <
(2.9) (£/8)/9, = 5 =1

for every ¢ in the interval

(2.10) 0 < & S€E,

A
(b) the equation x(§, €% ~%) = 0 has a unique solution E=%(8)

in the interval (2.9) for every g in the interval (2.10) and

N
the function ¥ (&) behaves asymototically as

1/(a_+1)
A C,p(0) (0) o
(2.11)  }(8) = el/(qo*“{( 220 %2 ) +o(1)§,(£->+0),

a, + 1

and, consequently, the value of the solution u(x), v(x) at x =0 is

a——
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4" Al
given by u( g (€)), v(E(&)) foer 0 < £ € ; {c) the solution

u(x), v(x) defined by
(2.12) xz=x(%, £% "%0), u=u(§, €5 o), v=v(3, €& ~%o)

does not have any singular point on the interval O T x

<
S € ).
every £ (0< E o)’
~ .
5 (&)

(11) if C,p(0) $,(0) < 0, the function F has a zero ¥ =

in the interval (2.9) for every €& in the interval (2.10), hence

the solution u(x), v(x) defined by (2.12) has a singular point with

respect to X on the interval O £y 21,

§ 3. Construction of a Formal Solution of Equation (2.7). ~utting

x = §+m.,
(3.1) u= %% (G, (%) +71),
v=13t% (¥ (5 +7¥ )
in {2.?). where u (3) = g?ouo(g), v, (%) = g% v, (%), we have

.. _ du -
[§+°l+5{?o+?+p(§+“‘l) (w,+1 )}][-q (3)u,-s(z)v + gor(y) —qoﬁ+§g—§- ]

an
(3.2){  +3fa(547) (G +2)+8(3+0) (F,+7)- for (3+1)] (1+ i

av _ _ - - dﬂ. , =-q
ggg = su+q v+ (G +1) el (3= ¢g o).

In order to satisfy the equation (3.2), it is sufficlent to determine

> U, v such that
4 ,
ggg='Q+§{Vo+§+p(§+1)(ﬁo+ﬁﬁ.
(3.3) ;_E_( -q(5+47))0~-s(3+)7-(a(8+1)-a(%))u
7% a(3+7 )v-ta : o
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k , -~(S(§+*L)-S(§))*76+>‘§q0(r(§+’z)—r(§)).
| aw

g;g—= EQ + qo?:+(ﬁo+a) (v‘:-eS{?oﬂ_r*p(;-f’L) (Eo+ﬁ)}] .
Putting

(g +%) = iopm(% n™ alg+)= éoqm(i)’lm.

se)= £ s (97 r(5+D= Tz (5)7”

w=g o
in {3.3). we have
dn o
( I =1rE (505,
da _ _ o
(3.8) gg = (q_~q,(§))u~s_(3)v+g,(§,1.1,7,5),
dv _ ~ _
;d_{»_ §u + q v + 83-(3"1'—‘1"”;)'
where
= == .=y & | m
=Y .—.givowﬂuo«m) éo pm(i)‘t } ,

g, = - ii{ﬁo+ﬁ)qm(§)+(ﬁo+ﬁ)sm(§)- dor_(9)j 1%,

o0 - _
M= T R (% (F,(1) =0, mel,2,....),
m=q T
(3.5)4 w = B a8 (@) =0, m1,2,...0),
me
(vo= 3T ()57 (5.(1) =0, m=1,2,....).
Yo 4 ’

Denote these series by S¢%,5), 5(%,3), 5(5,5) and let
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m_'l ,"f, ’ - "'-.v i )g*‘

st 1 Jut SN

;_1= - f:; - peet ;:II .
gB(g,s,b,s,S) D! (xl....xm,ul,...,um_l,vl,..,fm_l) ,

v
130

where the quantities Hm, = are polynomials of their arguments

m

b4

m

with coefficients analytic in a suitable sector SO in the complex
§ - plane such that the vertex of So i1s §=20, SD contains the

line segment 0 < % 21 in its interior. In particular

"

B

Go(s} + ﬁo(i)po(i).

i)

]

y=- 5®]8 00w (515, (5)- g% @)}

o

L =88 {3+ T 8) + 8, () (8)} .

i Wi X, u. and Vv
Hence we determine Xpr Uy nd Vo by

3
m_ - s b ooy > !/ -
EEET"(mqo+l)xm+ﬁm(xl""'vm-l)’ x (1)=0,

du, _ - - _ _
(3.6) 2f:{(}nﬂ)qc-qo(i)}um-so(“s).vmﬁm(xl,. e Vg ) U (1)=C,

av =
235 T +H (% e ng = = 5
§d§ ‘gumql”(m-"l)qovm-*ﬁm‘xl"‘“’vm-]_)" Vm(l)—o,(m-—l,z,.,, j

The solution of Problenm (3.6)1(m=l) is given by

g
(3.7) X = g+ J t"qo‘zﬁl(t)dt,
1

where H, (t)= ¥ _(t) + & _(t)p (t), snd the integral may be taken
along any vath from t =1 to t =% within the sector Sé. Noti-

eing that ( §%% ¢.(5), %% ¥ (8), ( o 9,(5), g% ¥, (E)) 1s

a fundamental system of solutions of the following system:

-7 -
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- du, _ —

3 g;;— = (2q -9, (§))u;-s_(3)v,,
dﬁl

i g-&—;——— gu, + 2a,vq

we get the following solution of Problem (3.6)2 o(m=1):

 uy = "0 2 dt
1 =% ?4 TS
B =910 (v)
+3% (£) g 1 a¢,
(3.8) 5 %2 1 W(t)
3.
ﬁ _ 2q {2 t'zqo"lwl(t)
v, = 870 ﬂyl(i)Ji e0) dt
L q E t-qo—l ﬁl(t)
IR £ frrean ¥
where
(£) (t) H,(t) (t)
wm:!% $28)1 wl(t)___’=li P2
Yp (8 yplt) [ 31(8) p(t)
~ (t) H,(t)
V() 5 (t)

3, (5)= - & (6) { 3 (0)ay ()47 (8) sy (8)-tT0ry (0],

|

7y (8) = 8, (6) { %) ()47 (£)4, (8D (8)] .

Assuming that we can get the solutions of Problem (3.6)(m=1l,...,k=1);f

_the solution of (3.6);(m=k) is given by i

(3.9) %, = o't j £75972 g _(t)as,
1
“where j
- 8- e
ﬁ
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g, (t) = Hk(il(t),,..ik_l(t).ﬁl(t),...uk_l,?rk_l(t)),

and then the solutions of Froblem (3.6)2 A{m=k) are given by%'

g
-{k+l)q -1
t o~ W, (t)
roa, = g(fk“‘l)"-o Sol(g)l K __ gt
1 w(t) .
¥ . -kq -1
+ 5% @z(g)g o )
(3.10) ﬁ 1 W)
3 t‘(k+1)q “lw,‘{ (t)
- (k+l)q ° |
v, = o (i)y dt
k=8 | A 4! . W)
| 5 pmkagm1y (e
\ + £ 59 (g) j kK__ at,
> Y2 . W(t)
where
EMCIE N0 . IR
) wk(t) = = *» wk(t) = i = ! 9
Hk(t) \yz(t) ]\}fl(t) Hk(t){
H (6) = B (R (6) 0. T (8).3 (), oy o (6), 7y (8),. 07y 4 (6)),
3 (6) = HL(R, (8) . T (6.8, (8) e By o (8),7 (8) 10Ty g (8)).

Thus, by mathematical induction, we can get the solutlons of Probtlem
(3.6).
§ 4. Estimates of the Coefficients x (3), u (5) and v (5). In

this section we shall prove the followlrng lemma:

IEMMA 1. There exists a positive constant ¥ such that

gteusaoixm(i){ =u gggct‘:fm(*;)l :

sup [G_(g)|, sup|¥ (8) = M{sup[ﬁ (8)| + sup|H (Eﬂ} .
*zes‘,l n 5€S; | zeS, ses, °
PROQF. We shall prove the first inequality, since the others

-9 -
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can be proved in the same manner. Since the quantities Cpl(‘g) ,
P,(8), YV, (8), Y,(8) and l‘d(%)!'l are all bounded on the closure
of S, . there exists a constant C such that --\‘
‘ . : I
| £,(8)] 2 o g%t sulem(t){]j. £ m=2q¢ +|{ £-2972 qg } 4
' t€3 C C _
o’ 1 2 1
where the paths-of integration C1 and Cz are respectively the line

o
segment 1,|8| and the circular arc '?l,% . On the other hand, we

‘can prove the following inequality in the same way as in [al:

| Scl £™572 at | + Uczt‘mqo‘z at| € cr |zl ‘mqo“l in s,

where. C' 1s a sufficlently large constant. This proves our lemms,

8 5. Construction of Majorant. = Since p(3+1), q(§+1).s(5+7%)

and r(¥+7]) are anslytic for l'q_l-f- So( So 7 0 1is sufficlently small) .

and % € SO, there exists a constant K such that
|5, | . |5,09] £k,
|2n(® > |ag®) |s | 5(8)] o |rp®)|= /8" . -

Let us consider

M = G, (7,u.%),
(5.1) '
| u =7 = e, (L.E.3)46,0L8.5)) . |
where |
XKé K M (2u+2K+1 31
G1= §(K+ﬁ) (1+ Q ) , G2= "Z u + ) ) [
-1 8o =M

: K §
GB = (K+u) {"24- S (K+u) (1+ ———0—)}
do-M

‘and M is the constant in lemma 1. Notice that Gl* Gz and G3 are

- 10 -




respectively majorants of 8185 and 53 uniformly for § in So’

Equation (5.1) has a solution

M =8(8) = z‘;:ismsm,
(5.2) -
=% =23(8 =2

such that S S Z 0 and these series converge for ,S l§<§. if

m* m
§7 0 is sufficiently small. Let

o0

s m
G,(5(3).8(5),3) = = K 57

It 1s easily seen that Sm =.MKm, Sm =_MKm' in parﬁicular

S, = MK, = MK(1+K),
5, = MR, = k(1K) {M(142K)+ S (1410} /5 .

Next we shall prove

(5.3) gsgglfm@[:- S ;gglu ). zs?gfm(mé 5, (m=1.2, .).

In order to prove (6.3), first of all let us consider the case m=l.

We have.
sup |x,(3)|= XM (BY|=4 sup|v_(5)+u_(¥)p (%)
mrR®[En e @[ER o0 Gm |
S MK(14K) = S;.
sup |u,(3)|= sup |7, (%) S ¥ {sup 1(x)|+ sup [H, (8) }
e [wls @ s ool g
- ‘1[suplxl(§){u (S)ay (847, (B3 (3)- Fory (M)}
O

- 11 -



v o [5,00 %, (8)+7, (5)+5_(§)o, (5} ]
- 3e
o

;«fzfgirxz(lﬂc) (1+2K)/ 8 , + K2 (1+K) (1+M)}

A

i

2 (14) {m(1e2K)+ §_ (1) | /8

Assuming that
sup |x (§)|2 s, supla (8)|E£5., supf.(8)|=3_, (n=1,...,.m-1),
Eesoln |25, ieslngi n ses!n =S,

we have

sup[Hm<z)[é K., ;égo{ﬁm@)h sup fm("’léim ,

%eso
because Gl‘GZ and G3 are respectively majorants of 8185 and 53.

Therefore from Lemma 1 it follows
supiim(g)ié MK = S, supiﬁm(%)l, sup(?ﬁ(%)&

Thus, by mathematical induction, we complete the proof of (5.3).

§6. Z2ropertiles of X,(5). In Section 3, we derived the

differential equation of El(i):

‘ dil _ i
(6.1) §E= (q°+l)x1 + :11(5).

whose solution satisfying the initial condition Ei(l) =0 1is given

by
— q +1 E -q =2
(6.2) %5 = g% |7 7% i (1) ar.
1 -

Noticing that

g 1 & 1 5 aH

St‘qo'zﬁl(t)dt= - —-—-——-[t-qc'lfil(t)] + ———-—J £=%~1 La¢

{ q, +1 1 9,1 Jy at

- 12 -



“ 4, (0)
= g‘q0'1 i — +>0(1)} , (- +0),

we get
_ 5 (
(6.3) xl(g) =« —=——  +0(1), (%->+40).
q, + 1
8§ 7. case 0C,0(0)§,(0)7 0. Notice that C,p(0) $,(0) = H,(0).
Substitutin (3.1),(3.5) in the function F defined by (2.8), we get
% A m .
F=%+ %;ixm(g)s , where in particular

9,74 (0)

%, (3)= %) ()41, (%) = +0(1), (g~ +0).

a, + 1

Let Ml(;l). El' 81 and & be positive constants such that

'§1(§)|§ H, for 0 g 2,

> a_ H.{(0)
Xl(;) 201 for O 2 g = §1 ( 3 1),
(715 2(qo+1) -
1 a .
IE Q(g)sm‘zlim' for 0% & 21,0<5 £§_,
m=2 2 1 : -
3 q. H,(0)
§ = zﬁnisl, ., ol } :
4 iy uml(qo+1)
Prom (7.1) 1t follows that if %, S E21,0<8 8 | we get

e 2t {lRmls o £ e smE 57}
i’s‘l -(Mlé‘ +M182) z f,_ - 28 >o,

<
and that if 0 = § = 51' 0<% =8, we get

v

A ol A m q Hl(o)
Zame » 2 R et 21—

> a_q,(0) _
2 {—-———01 % l-zvil}.
2(q0+l)

1AV

o -m 5l
2(q0+1)

- 13 -
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o ’ - <
Since we have the inequality 5 = ¢§ 9% = $ , We have
2

28 (a_+1) B8 Loy 7
. ;2{ a % (0) qoal(m} 3%q,_4, (0)
Ss 2(q+1) 4(q +1) - 43 (q,+1) ’

provided that %  1is in the interval

(e/86)1Y% L % £s,

for a sufficiently small £ , which prove the assertion (a) of
Theorem 2. Since 21 = - H,(0)/(q, +1) + o(1), (3> +0), the equation

x(&, €57 %) = 0 has a solution 3 = § (8): ' |

g(ﬁ) ={—H—1£2-)-e + o(i)}l/(qoﬂ) . (£>+0). |

q,*1 -

Therefore if Eo 2 0 1is sufficiently small, we get

A

5(8) 1 for 0< € =&,

A

(/8 }1/%

Then it 1s easily seen that the function F - is positive, namely
dx/d% > 0 for (2.9) and (2.10). Hence x($,€% %) has one and
only one zero there. This completes the proof of the assertion (1)
of Theorem 2.

§3. case C,0(0) $,(0) < 0. In the same manner as in § 7,

we can complete the proof of the assertlion (11) of Theorem 2.
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