An Application of the PLK-Method for Second-Order Nonlinear Ordinary Differential Equations

By Ken-iti Takahasi

(Tokyo University of Agriculture and Technology)

§1. Introduction. In 1949, M.J.Lighthill [1] proposed a new method for nonlinear differential equations known as FLK-method. In order to construct a uniform representation of the solution of the initial value problem:

$$(1.1) \left\{ x + \sum_{m=1}^{\infty} \varepsilon^m P_m(x, u) \right\} \frac{du}{dx} + q(x)u = r(x) + \sum_{m=1}^{\infty} \varepsilon^m R_m(x, u), \quad u(1) = b$$
over the interval $0 \le x \le 1$ for every ε (0 ε $\varepsilon \le \varepsilon$

over the interval $0 \le x \le 1$ for every ε (0 $< \varepsilon \le \varepsilon_0, \varepsilon_0 > 0$ being sufficiently small), he substitutes

(1.2)
$$u = \sum_{m=0}^{\infty} \varepsilon^m u_m(\xi), \quad x = \xi + \sum_{m=1}^{\infty} \varepsilon^m x_m(\xi)$$

into the equation of Problem (1.1) and determines $u_m(\xi)$ and $x_m(\xi)$ in a suitable manner. In 1966, Y. Sibuya and K. Takahasi [4] proved the uniform convergence of the formal solution (1.2) of the initial value problem: $(x+\xi u)$ du/dx+q(x)u=r(x), u(1)=b. In 1955, W.A. Wasow mentioned in his paper [3] that Lighthill's method can be justified if $P_m(x,u)$ and $P_m(x,u)$ are polynomials of degree not greater than m with respect to u. In 1967, the author mentioned in his paper [6] that Lighthill's method can be justified for the problem of the form:

$$\left\{x + \varepsilon u + \sum_{m=2}^{s} \varepsilon^{m} P_{m}(x, u)\right\} \frac{du}{dx} + q(x)u + r(x) + \sum_{m=1}^{s'} \varepsilon^{m} R_{m}(x, u) = 0, u(1) = b$$

under some assumptions, even if $P_m(x,u)$ and $R_m(x,u)$ are polynomials of degree greater than m with respect to u. In this paper,

our purpose is to show that Tighthill's method can be justified for the initial value problem of the second order differential equation:

(1.3)
$$\left\{x+8(v+p(x))\frac{dv}{dx}\right\}\frac{d^2v}{dx^2}+q(x)\frac{dv}{dx}+s(x)v=r(x), v(1)=b, v'(1)=b',$$

where p(x), q(x), s(x) and r(x) are real-valued and analytic functions of x for $0 \le z \le 1$, and $q_0 = q(0)$ is a positive non-integer.

§ 2 Theorems. In order to consider this problem for $\varepsilon = 0$, we put $\varepsilon = 0$ in Problem (1.3), then we have

(2.1)
$$x \frac{d^2v}{dx^2} + q(x) \frac{dv}{dx} + s(x)v = r(x), v(1) = b, v'(1) = b'.$$
Putting
$$\frac{dv}{dx} = a, \text{ we have}$$

(2.2)
$$\begin{cases} x \frac{du}{dx} = -q(x)u - s(x)v + r(x), \\ \frac{dx}{dx} = u, \quad u(1) = b^{\epsilon}, \quad v(1) = b. \end{cases}$$

In order to construct a solution of Problem (2.2), first of all, let us consider a solution of the equation of Problem (2.2) of the form:

(2.3)
$$u = \phi(x) = \sum_{m=0}^{\infty} a_m x^m, \quad v = \psi(x) = \sum_{m=0}^{\infty} b_m x^m$$

in the neighborhood of x = 0 Inserting the series (2.3) into the equation of Froblem (2.2), we have

(2.4)
$$\begin{cases} (m+q_0)a_m = a_m(a_0, \dots, a_{m-1}, b_0, \dots, b_m), \\ (m+1)b_{m+1} = a_m, (m = 0, 1, 2, \dots), \end{cases}$$

where $\mathbf{R}_{\mathbf{m}}$ is a polynomial of $\mathbf{a}_{\mathbf{0}}$, ..., $\mathbf{a}_{\mathbf{m}-1}$, $\mathbf{b}_{\mathbf{0}}$, ..., $\mathbf{b}_{\mathbf{m}}$. Since we

assumed that $q_0 > 0$, we can construct a solution of the equation of Problem (2.2) which is analytic and real-valued in the neighborhood of x=0. Since (2.2) is linear, $u=\varphi(x)$, $v=\psi(x)$ is analytic on $0 \le x \le 1$. It is evident that $\varphi(x)$, $\psi(x)$ are real-valued on $0 \le x \le 1$. Thus the solution of (2.2) is given by

$$(2.5) \left\{ \begin{array}{l} u = u_o(x) = c_1 \ \phi_1(x) + c_2 x^{-q} o \ \phi_2(x) + \phi(x) \,, \\ \\ v = v_o(x) = c_1 \psi_1(x) + c_2 x^{-q} o \ \psi_2(x) + \psi(x) \,, \end{array} \right.$$

where ($\mathcal{G}_1(x)$, $\psi_1(x)$), (x^{-q} o $\mathcal{G}_2(x)$, x^{-q} o $\psi_2(x)$) is a fundamental system of solutions of the following system of homogeneous equations:

$$x \frac{du}{dx} = -q(x)u - s(x)v, \frac{dv}{dx} = u$$

and C_1 and C_2 are constants such that $u_o(1) = b^*$, $v_o(1) = b$.

Our main theorems are stated as follows:

THEOREM 1. Assume that

- (I) p(x), q(x), s(x) and r(x) are real-valued and analytic functions of x for $0 \le x \le 1$;
- (II) $q_0 = q(0)$ is a positive non-integer.

 Then there exist functions $x(\xi,\xi)$, $u(\xi,\xi)$ and $v(\xi,\xi)$ defined by the power series

(2.6)
$$\begin{cases} x(\xi,5) = \xi + \sum_{m=1}^{\infty} x_m(\xi) 5^m, \\ u(\xi,\xi) = \sum_{m=0}^{\infty} u_m(\xi) 5^m, \\ v(\xi,\xi) = \sum_{m=0}^{\infty} v_m(\xi) 5^m. \end{cases}$$

such that (a) the power series $x(\xi,\xi)$, $u(\xi,\xi)$ and $v(\xi,\xi)$ are uniformly convergent for $0 < \xi \le 1$, $|\xi| \le \xi$, $(\xi > 0)$ being sufficiently small)

with coefficients $x_m(\xi)$, $u_m(\xi)$ and $v_m(\xi)$ functions real-valued and analytic for $0 < \xi \le 1$; (b) $x(1,\xi)=1$, $u(1,\xi)=b'$, $v(1,\xi)=b$; (c) $x = x(\xi, \xi \xi^{-q}o)$, $u=u(\xi, \xi \xi^{-q}o)$, $v=v(\xi, \xi \xi^{-q}o)$ is a parametric representation of the solution u(x), v(x) of the following Problem:

(2.7)
$$\begin{cases} \left\{ x + \mathcal{E}(v + p(x)u) \right\} \frac{du}{dx} + q(x)u + s(x)v = r(x), \\ \frac{dv}{dx} = u, \quad u(1) = b', \quad v(1) = b. \end{cases}$$

THEOPEN 2. Assume the same assumptions (I) and (II) as in Theorem 1. Then there exist positive constants δ and ϵ_{o} such that

(i) if $c_2 p(0) \varphi_2(0) > 0$, (a) the function

(2.8)
$$F = x(\xi, \xi \xi^{-q}o) + \varepsilon \left\{ v(\xi, \xi \xi^{-q}o) + p(x(\xi, \xi \xi^{-q}o)) u(\xi, \xi \xi^{-q}o) \right\}$$

never vanishes in the interval

$$(2.9) \qquad (\varepsilon/\delta)^{1/q_0} \le \xi \le 1$$

for every E in the interval

$$(2.10) 0 < \varepsilon \leq \varepsilon_0;$$

(b) the equation $x(\xi, \xi \xi^{-q}o) = 0$ has a unique solution $\xi = \hat{\xi}(\xi)$ in the interval (2.9) for every ξ in the interval (2.10) and the function $\hat{\xi}(\xi)$ behaves asymptotically as

(2.11)
$$\hat{\xi}(\xi) = \xi^{1/(q_0+1)} \left\{ \left(\frac{C_2 p(0) \varphi_2(0)}{q_0+1} \right)^{1/(q_0+1)} + o(1) \right\}, (\xi \to +0),$$

and, consequently, the value of the solution u(x), v(x) at x = 0 is

given by $u(\hat{\xi}(\xi))$, $v(\hat{\xi}(\xi))$ for $0 < \xi \leq \xi_0$; (c) the solution u(x), v(x) defined by

(2.12) $x=x(\xi, \xi \xi^{-q}o), u=u(\xi, \xi \xi^{-q}o), v=v(\xi, \xi \xi^{-q}o)$

does not have any singular point on the interval $0 \le x \le 1$ for every ξ (0 < $\xi \le \xi_0$);

- (ii) if $C_2p(0)$ $\mathcal{G}_2(0) < 0$, the function F has a zero $\xi = \widetilde{\xi}(\varepsilon)$ in the interval (2.9) for every ε in the interval (2.10), hence the solution u(x), v(x) defined by (2.12) has a singular point with respect to x on the interval $0 \le x \le 1$.
 - § 3. Construction of a Formal Solution of Equation (2.7). Putting

(3.1)
$$\begin{cases} x = \xi + \eta, \\ u = \xi^{-q_0} (\overline{u}_0(\xi) + \overline{u}), \\ v = \xi^{-q_0} (\overline{v}_0(\xi) + \overline{v}) \end{cases}$$

in (2.7), where $\bar{u}_{o}(\xi) = \xi^{q}ou_{o}(\xi)$, $\bar{v}_{o}(\xi) = \xi^{q}ov_{o}(\xi)$, we have $\left\{ \begin{bmatrix} \xi + \eta + 5 \{ \bar{v}_{o} + \bar{v} + p(\xi + \eta) (\bar{u}_{o} + \bar{u}) \} \end{bmatrix} \left[-q(\xi)\bar{u}_{o} - s(\xi)\bar{v}_{o} + \xi^{q}or(\xi) - q_{o}\bar{u} + \xi \frac{d\bar{u}}{d\xi} \right] + \xi \left[q(\xi + \eta) (\bar{u}_{o} + \bar{u}) + s(\xi + \eta) (\bar{v}_{o} + \bar{v}) - \xi^{q}or(\xi + \eta) \right] (1 + \frac{d\eta}{d\xi}) = 0,$ $\left\{ \frac{d\bar{v}}{d\xi} = \xi\bar{u} + q_{o}\bar{v} + \xi(\bar{u}_{o} + \bar{u}) \frac{d\eta}{d\xi}, \quad (\xi = \xi \xi^{-q}o). \right.$

In order to satisfy the equation (3.2), it is sufficient to determine η , \bar{u} , \bar{v} such that

$$(3.3) \begin{cases} \xi \frac{d\eta}{d\xi} = \eta + \xi \{ \overline{v}_0 + \overline{v} + p(\xi + \eta) (\overline{u}_0 + \overline{u}) \}, \\ \frac{d\overline{u}}{\xi} = (q_0 - q(\xi + \eta)) \overline{u} - s(\xi + \eta) \overline{v} - (q(\xi + \eta) - q(\xi)) \overline{u}_0 \end{cases}$$

$$-(s(\xi+\eta)-s(\xi))\overline{v}_{o} + \xi^{q}o(r(\xi+\eta)-r(\xi)),$$

$$\xi \frac{d\overline{v}}{d\xi} = \xi \overline{u} + q_{o}\overline{v} + (\overline{u}_{o} + \overline{u}) \left[\eta + \xi \left\{ \overline{v}_{o} + \overline{v} + p(\xi+\eta) (\overline{u}_{o} + \overline{u}) \right\} \right].$$

Putting

$$p(\xi + \eta) = \sum_{m=0}^{\infty} p_{m}(\xi) \eta^{m}, \quad q(\xi + \eta) = \sum_{m=0}^{\infty} q_{m}(\xi) \eta^{m},$$

$$s(\xi + \eta) = \sum_{m=0}^{\infty} s_{m}(\xi) \eta^{m}, \quad r(\xi + \eta) = \sum_{m=0}^{\infty} r_{m}(\xi) \eta^{m}$$

in (3.3), we have

$$\begin{cases} \frac{d\eta}{d\xi} = \eta + g_1(\xi, \eta, \bar{u}, \bar{v}, \xi), \\ \frac{d\bar{u}}{d\xi} = (q_0 - q_0(\xi))\bar{u} - s_0(\xi)\bar{v} + g_2(\xi, \eta, \bar{u}, \bar{v}, \xi), \\ \frac{d\bar{v}}{d\xi} = \xi\bar{u} + q_0\bar{v} + g_3(\xi, \eta, \bar{u}, \bar{v}, \xi), \end{cases}$$

where

$$\begin{split} g_{\underline{1}} &= \xi \left\{ \bar{v}_{0} + \bar{v} + (\bar{u}_{0} + \bar{u}) \sum_{m=0}^{\infty} p_{m}(\xi) \eta^{m} \right\}, \\ g_{\underline{2}} &= - \sum_{m=1}^{\infty} \left\{ (\bar{u}_{0} + \bar{u}) q_{m}(\xi) + (\bar{v}_{0} + \bar{v}) s_{m}(\xi) - \xi^{q} or_{m}(\xi) \right\} \eta^{m}, \\ g_{\underline{3}} &= (\bar{u}_{0} + u) \left[\eta + \xi \left\{ \bar{v}_{0} + \bar{v} + (\bar{u}_{0} + \bar{u}) \sum_{m=0}^{\infty} p_{m}(\xi) \eta^{m} \right\} \right]. \end{split}$$

We want to construct a formal solution of Equation (3.4) in the form:

$$\eta = \sum_{m=1}^{\infty} \bar{x}_{m}(\xi) \xi^{m}, (\bar{x}_{m}(1) = 0, m=1,2,...), \\
u = \sum_{m=1}^{\infty} \bar{u}_{m}(\xi) \xi^{m}, (\bar{u}_{m}(1) = 0, m=1,2,...), \\
v = \sum_{m=1}^{\infty} \bar{v}_{m}(\xi) \xi^{m}, (\bar{v}_{m}(1) = 0, m=1,2,...).$$

Denote these series by $S(\xi,\xi)$, $\overline{S}(\xi,\xi)$, $\overline{S}(\xi,\xi)$ and let

$$\begin{split} & g_{1}(\xi,s,\bar{s},\bar{s},5) = \sum_{m=1}^{\infty} \mathbb{H}_{m}(\bar{x}_{1},\ldots,\bar{x}_{m-1},\bar{u}_{1},\ldots,\bar{u}_{m-1},\bar{v}_{m-1}) 5^{m}, \\ & g_{2}(\xi,s,\bar{s},\bar{s},5) = \sum_{m=1}^{\infty} \bar{\mathbb{H}}_{m}(\bar{x}_{1},\ldots,\bar{x}_{m},\bar{u}_{1},\ldots,\bar{u}_{m-1},\bar{v}_{1},\ldots,\bar{v}_{m-1}) 5^{m}, \\ & g_{3}(\xi,s,\bar{s},\bar{s},5) = \sum_{m=1}^{\infty} \bar{\mathbb{H}}_{m}(\bar{x}_{1},\ldots,\bar{x}_{m},\bar{u}_{1},\ldots,\bar{u}_{m-1},\bar{v}_{1},\ldots,\bar{v}_{m-1}) 5^{m}, \end{split}$$

where the quantities H_m , \bar{H}_m , \bar{H}_m are polynomials of their arguments with coefficients analytic in a suitable sector S_0 in the complex ξ - plane such that the vertex of S_0 is $\xi=0$, S_0 contains the line segment $0 < \xi \le 1$ in its interior. In particular

$$\begin{split} & \bar{H}_{1} = \bar{v}_{o}(\xi) + \bar{u}_{o}(\xi)p_{o}(\xi), \\ & \bar{H}_{1} = -\bar{x}_{1}(\xi) \left\{ \bar{u}_{o}(\xi)q_{1}(\xi) + \bar{v}_{o}(\xi)s_{1}(\xi) - \xi^{q_{o}} r_{1}(\xi) \right\}, \\ & \bar{\bar{H}}_{1} = \bar{u}_{o}(\xi) \left\{ x_{1} + \bar{v}_{o}(\xi) + \bar{u}_{o}(\xi)p_{o}(\xi) \right\}. \end{split}$$

Hence we determine $\bar{\mathbf{x}}_{\mathrm{m}}$, $\bar{\mathbf{u}}_{\mathrm{m}}$ and $\bar{\mathbf{v}}_{\mathrm{m}}$ by

$$\begin{cases}
\frac{d\vec{x}_{m}}{d\xi} = (mq_{o}+1)\vec{x}_{m} + H_{m}(\vec{x}_{1}, \dots, \vec{v}_{m-1}), \quad \vec{x}_{m}(1) = 0, \\
\frac{d\vec{u}_{m}}{d\xi} = \{(m+1)q_{o} - q_{o}(\xi)\}\vec{u}_{m} - s_{o}(\xi)\vec{v}_{m} + \vec{H}_{m}(\vec{x}_{1}, \dots, \vec{v}_{m-1}), \quad \vec{u}_{m}(1) = 0, \\
\frac{d\vec{v}_{m}}{d\xi} = \xi\vec{u}_{m} + (m+1)q_{o}\vec{v}_{m} + \vec{H}_{m}(\vec{x}_{1}, \dots, \vec{v}_{m-1}), \quad \vec{v}_{m}(1) = 0, (m=1,2,\dots).
\end{cases}$$

The solution of Problem (3.6), (m=1) is given by

(3.7)
$$\bar{x}_1 = \bar{s}^{q_0+1} \int_{1}^{\bar{s}} t^{-q_0-2} H_{L}(t) dt$$

where $H_1(t) = \overline{v}_0(t) + \overline{u}_0(t)p_0(t)$, and the integral may be taken along any path from t = 1 to $t = \xi$ within the sector S_0 . Noticing that $(\xi^{2q} \circ \varphi_1(\xi), \xi^{2q} \circ \psi_1(\xi))$, $(\xi^q \circ \varphi_2(\xi), \xi^q \circ \psi_2(\xi))$ is a fundamental system of solutions of the following system:

$$\begin{cases} \xi \frac{d\bar{u}_{1}}{d\xi} = (2q_{0} - q_{0}(\xi))\bar{u}_{1} - s_{0}(\xi)\bar{v}_{1}, \\ \xi \frac{d\bar{v}_{1}}{d\xi} = \xi\bar{u}_{1} + 2q_{0}\bar{v}_{1}, \end{cases}$$

we get the following solution of Problem $(3.6)_{2,3}$ (m=1):

$$(3.8) \begin{cases} \overline{u}_{1} = \xi^{2q_{0}} \quad \varphi_{1}(\xi) \int_{1}^{\xi} \frac{t^{-2q_{0}-1}W_{1}(t)}{W(t)} dt \\ + \xi^{q_{0}} \quad \varphi_{2}(\xi) \int_{1}^{\xi} \frac{t^{-q_{0}-1}\hat{W}_{1}(t)}{W(t)} dt, \\ \overline{v}_{1} = \xi^{2q_{0}} \quad \psi_{1}(\xi) \int_{1}^{\xi} \frac{t^{-2q_{0}-1}W_{1}(t)}{W(t)} dt \\ + \xi^{q_{0}} \quad \psi_{2}(\xi) \int_{1}^{\xi} \frac{t^{-q_{0}-1}\hat{W}_{1}(t)}{W(t)} dt, \end{cases}$$

where

$$W(t) = \begin{vmatrix} \varphi_1(t) & \varphi_2(t) \\ \psi_1(t) & \psi_2(t) \end{vmatrix}, \quad W_1(t) = \begin{vmatrix} \overline{H}_1(t) & \varphi_2(t) \\ \overline{\overline{H}}_1(t) & \psi_2(t) \end{vmatrix}$$

$$\hat{W}_1(t) = \begin{vmatrix} \varphi_1(t) & \overline{H}_1(t) \\ \psi_1(t) & \overline{\overline{H}}_1(t) \end{vmatrix},$$

$$\bar{H}_{1}(t) = -\bar{x}_{1}(t) \{ \bar{u}_{0}(t)q_{1}(t) + \bar{v}_{0}(t)s_{1}(t) - t^{q}or_{1}(t) \}$$

$$\bar{\bar{\mathbf{H}}}_{1}(t) = \bar{\mathbf{u}}_{0}(t) \left\{ \bar{\mathbf{x}}_{1}(t) + \bar{\mathbf{v}}_{0}(t) + \bar{\mathbf{u}}_{0}(t) p_{0}(t) \right\} .$$

Assuming that we can get the solutions of Problem (3.6)(m=1,...,k-1) the solution of $(3.6)_1(m=k)$ is given by

(3.9)
$$\bar{x}_k = \xi^{kq} o^{+1} \int_1^{\xi} t^{-kq} o^{-2} H_k(t) dt$$

where

$$\mathbf{H}_{k}(\mathbf{t}) = \mathbf{H}_{k}(\overline{\mathbf{x}}_{1}(\mathbf{t}), \dots, \overline{\mathbf{x}}_{k-1}(\mathbf{t}), \overline{\mathbf{u}}_{1}(\mathbf{t}), \dots, \overline{\mathbf{u}}_{k-1}, \overline{\mathbf{v}}_{k-1}(\mathbf{t})),$$

and then the solutions of Problem (3.6)2,3(m=k) are given by

$$\vec{u}_{k} = \xi^{(k+1)q_{0}} \quad \varphi_{1}(\xi) \int_{1}^{\xi} \frac{t^{-(k+1)q_{0}-1}W_{k}(t)}{W(t)} dt$$

$$+ \xi^{kq_{0}} \quad \varphi_{2}(\xi) \int_{1}^{\xi} \frac{t^{-kq_{0}-1}\hat{W}_{k}(t)}{W(t)} dt,$$

$$\vec{v}_{k} = \xi^{(k+1)q_{0}} \quad \psi_{1}(\xi) \int_{1}^{\xi} \frac{t^{-(k+1)q_{0}-1}W_{k}(t)}{W(t)} dt$$

$$+ \xi^{kq_{0}} \quad \psi_{2}(\xi) \int_{1}^{\xi} \frac{t^{-kq_{0}-1}\hat{W}_{k}(t)}{W(t)} dt,$$

where

$$\begin{split} & \mathbf{W}_{k}(t) = \begin{vmatrix} \mathbf{\bar{H}}_{k}(t) & \varphi_{2}(t) \\ \mathbf{\bar{\bar{H}}}_{k}(t) & \psi_{2}(t) \end{vmatrix} , \quad \hat{\mathbf{W}}_{k}(t) = \begin{vmatrix} \varphi_{1}(t) & \mathbf{\bar{H}}_{k}(t) \\ \psi_{1}(t) & \mathbf{\bar{H}}_{k}(t) \end{vmatrix} , \\ & \mathbf{\bar{H}}_{k}(t) = \mathbf{\bar{H}}_{k}(\mathbf{\bar{x}}_{1}(t), \dots, \mathbf{\bar{x}}_{k}(t), \mathbf{\bar{u}}_{1}(t), \dots, \mathbf{\bar{u}}_{k-1}(t), \mathbf{\bar{v}}_{1}(t), \dots, \mathbf{\bar{v}}_{k-1}(t)), \\ & \mathbf{\bar{\bar{H}}}_{k}(t) = \mathbf{\bar{\bar{H}}}_{k}(\mathbf{\bar{x}}_{1}(t), \dots, \mathbf{\bar{x}}_{k}(t), \mathbf{\bar{u}}_{1}(t), \dots, \mathbf{\bar{u}}_{k-1}(t), \mathbf{\bar{v}}_{1}(t), \dots, \mathbf{\bar{v}}_{k-1}(t)). \end{split}$$

Thus, by mathematical induction, we can get the solutions of Problem (3.6).

§ 4. Estimates of the Coefficients $x_m(\xi)$, $u_m(\xi)$ and $v_m(\xi)$. In this section we shall prove the following lemma:

LEMMA 1. There exists a positive constant M such that

$$\sup_{\xi \in S_{o}} \left| \bar{x}_{m}(\xi) \right| \leq M \sup_{\xi \in S_{o}} \left| H_{m}(\xi) \right| ,$$

$$\sup_{\xi \in S_{o}} \left| \bar{u}_{m}(\xi) \right| , \sup_{\xi \in S_{o}} \left| \bar{v}_{m}(\xi) \right| \leq M \left\{ \sup_{\xi \in S_{o}} \left| \bar{H}_{m}(\xi) \right| + \sup_{\xi \in S_{o}} \left| \bar{H}_{m}(\xi) \right| \right\} .$$

PROOF. We shall prove the first inequality, since the others

can be proved in the same manner. Since the quantities $\varphi_1(\xi)$, $\varphi_2(\xi)$, $\psi_1(\xi)$, $\psi_2(\xi)$ and $|\psi(\xi)|^{-1}$ are all bounded on the closure of S_0 , there exists a constant C such that

$$|\bar{x}_{m}(\xi)| \leq C|\xi|^{mq}o^{+1} \sup_{t \in S_{0}} |H_{m}(t)| \int_{C_{1}} t^{-mq}o^{-2}dt |+|\int_{C_{2}} t^{-mq}o^{-2}dt | \},$$

where the paths of integration C_1 and C_2 are respectively the line segment $1, |\xi|$ and the circular arc $|\xi|, \xi$. On the other hand, we can prove the following inequality in the same way as in [4]:

$$\left| \int_{C_1} t^{-mq} o^{-2} dt \right| + \left| \int_{C_2} t^{-mq} o^{-2} dt \right| \le c \cdot |\xi|^{-mq} o^{-1} \quad \text{in } S_0,$$

where C' is a sufficiently large constant. This proves our lemma.

§ 5. Construction of Majorant. Since $p(\xi+\eta)$, $q(\xi+\eta)$, $s(\xi+\eta)$ and $r(\xi+\eta)$ are analytic for $|\eta| \le \delta_0(|\xi-\eta|)$ of is sufficiently small) and $\xi \in S_0$, there exists a constant K such that

$$\begin{aligned} \left| \overline{u}_{o}(\xi) \right|, & \left| \overline{v}_{o}(\xi) \right| \leq K, \\ \left| p_{m}(\xi) \right|, & \left| q_{m}(\xi) \right|, & \left| s_{m}(\xi) \right|, & \left| r_{m}(\xi) \right| = K/\delta_{o}^{m}. \end{aligned}$$

Let us consider

(5.1)
$$\begin{cases} \eta = MG_{1}(\eta, \bar{u}, \xi), \\ \bar{u} = \bar{v} = M\{G_{2}(\eta, \bar{u}, \xi) + G_{3}(\eta, \bar{u}, \xi)\}, \end{cases}$$

where

$$G_{1} = 5 (K + \bar{u}) (1 + \frac{K \delta_{0}}{\delta_{0} - \eta}), G_{2} = \frac{K \eta (2\bar{u} + 2K + 1)}{\delta_{0} - \eta},$$

$$G_{3} = (K + \bar{u}) \left\{ \eta + 5 (K + \bar{u}) (1 + \frac{K \delta_{0}}{\delta_{0} - \eta}) \right\}$$

and M is the constant in Lemma 1. Notice that G_1 , G_2 and G_3 are

respectively majorants of g_1, g_2 and g_3 uniformly for ξ in S_0 . Equation (5.1) has a solution

(5.2)
$$\left\{ \begin{array}{l} \gamma = S(\varsigma) = \sum\limits_{m=1}^{\infty} S_m \varsigma^m, \\ \bar{u} = \bar{v} = \bar{S}(\varsigma) = \sum\limits_{m=1}^{\infty} \bar{S}_m \varsigma^m, \end{array} \right.$$

such that S_m , $\overline{S}_m \stackrel{?}{=} 0$ and these series converge for $|\xi| \stackrel{\leq}{=} \delta$, if $\delta > 0$ is sufficiently small. Let

$$G_{1}(S(5), \overline{S}(5), 5) = \sum_{m=1}^{\infty} K_{m} 5^{m},$$

$$G_{2}(S(5), \overline{S}(5), 5) + G_{3}(S(5), \overline{S}(5), 5) = \sum_{m=1}^{\infty} \overline{K}_{m} 5^{m}.$$

It is easily seen that $S_m = MK_m$, $\overline{S}_m = M\overline{K}_m$, in particular

$$S_1 = MK_1 = MK(1+K)$$
,

$$\bar{S}_{1} = M\bar{K}_{1} = MK^{2}(1+K)\{M(1+2K) + \delta_{0}(1+M)\} / \delta_{0}$$

Next we shall prove

(5.3)
$$\sup_{\xi \in S} \left| \overline{x}_{m}(\xi) \right| \leq S_{m}, \quad \sup_{\xi \in S} \left| \overline{u}_{m}(\xi) \right|, \quad \sup_{\xi \in S} \left| \overline{v}_{m}(\xi) \right| \leq \overline{S}_{m}, \quad (m=1,2,\ldots).$$

In order to prove (6.3), first of all let us consider the case m=1.

We have

$$\sup_{\xi \in S_0} \left| \overline{x}_1(\xi) \right| \leq M \quad \sup_{\xi \in S_0} \left| \overline{H}_1(\xi) \right| \leq M \quad \sup_{\xi \in S_0} \left| \overline{v}_0(\xi) + \overline{u}_0(\xi) p_0(\xi) \right|$$

$$\leq MK(1+K) = S_1.$$

$$\sup_{\xi \in S_{O}} \left| \overline{u}_{1}(\xi) \right| = \sup_{\xi \in S_{O}} \left| \overline{v}_{1}(\xi) \right| \leq \mathbb{M} \left\{ \sup_{\xi \in S_{O}} \left| \overline{H}_{1}(\xi) \right| + \sup_{\xi \in S_{O}} \left| \overline{H}_{1}(\xi) \right| \right\}$$

$$= \mathbb{M} \left[\sup_{\xi \in S_{O}} \left| \overline{x}_{1}(\xi) \right| \left\{ \overline{u}_{O}(\xi) q_{1}(\xi) + \overline{v}_{O}(\xi) s_{1}(\xi) - \xi^{q} \operatorname{or}_{1}(\xi) \right\} \right|$$

$$\leq S_{O}$$

$$+ \sup_{\xi \in S_{o}} \left| \overline{u}_{o}(\xi) \left\{ \overline{x}_{1}(\xi) + \overline{v}_{o}(\xi) + \overline{u}_{o}(\xi) p_{o}(\xi) \right\} \right| \right]$$

$$\leq M \left\{ MK^{2}(1+K) (1+2K) / \delta_{o} + K^{2}(1+K) (1+M) \right\}$$

$$= MK^{2}(1+K) \left\{ M(1+2K) + \delta_{o}(1+M) \right\} / \delta_{o} .$$

Assuming that

$$\sup_{\xi \in S_0} \left| \overline{x}_n(\xi) \right| \leq S_n, \quad \sup_{\xi \in S_0} \left| \overline{u}_n(\xi) \right| \leq \overline{S}_n, \quad \sup_{\xi \in S_0} \left| \overline{v}_n(\xi) \right| = \overline{S}_n, \quad (n=1,\ldots,m-1),$$

we have

$$\sup_{\xi \in S} \left| H_{\underline{m}}(\xi) \right| \leq K_{\underline{m}}, \quad \sup_{\xi \in S} \left| \overline{H}_{\underline{m}}(\xi) \right| + \sup_{\xi \in S} \left| \overline{H}_{\underline{m}}(\xi) \right| \leq \overline{K}_{\underline{m}},$$

because G_1, G_2 and G_3 are respectively majorants of g_1, g_2 and g_3 . Therefore from Lemma 1 it follows

$$\sup \left| \overline{x}_{m}(\xi) \right| \leq MK_{m} = S_{m}, \quad \sup \left| \overline{u}_{m}(\xi) \right|, \quad \sup \left| \overline{v}_{m}(\xi) \right| \leq MK_{m} = \overline{S}_{m}.$$

Thus, by mathematical induction, we complete the proof of (5.3).

§ 6. Properties of $\bar{x}_1(\xi)$. In Section 3, we derived the differential equation of $\bar{x}_1(\xi)$:

(6.1)
$$\xi \frac{d\overline{x}_1}{d\xi} = (q_0 + 1)\overline{x}_1 + H_1(\xi).$$

whose solution satisfying the initial condition $\overline{x}_1(1) = 0$ is given by

(6.2)
$$\overline{x}_1(\xi) = \xi^{q_0+1} \int_1^{\xi} t^{-q_0-2} H_1(t) dt.$$

Noticing that

$$\int_{1}^{\xi} t^{-q} e^{-2} H_{1}(t) dt = -\frac{1}{q_{0} + 1} \left[t^{-q} e^{-1} H_{1}(t) \right]_{1}^{\xi} + \frac{1}{q_{0} + 1} \int_{1}^{\xi} t^{-q} e^{-1} \frac{dH_{1}}{dt} dt$$

$$= \xi^{-q} o^{-1} \left\{ -\frac{\exists_1(0)}{q_0+1} + o(1) \right\}, (\xi \to +0),$$

we get

(6.3)
$$\bar{x}_1(\xi) = -\frac{H_1(0)}{q_0 + 1} + o(1), \quad (\xi \to +0).$$

§ 7. Case $C_2p(0)$ $\mathcal{G}_2(0)$ > 0. Notice that $C_2p(0)$ $\mathcal{G}_2(0) = H_1(0)$. Substitutin (3.1),(3.5) in the function F defined by (2.8), we get $F = \xi + \sum_{m=1}^{\infty} \hat{x}_m(\xi) \xi^m$, where in particular

$$\hat{x}_{1}(\xi) = \bar{x}_{1}(\xi) + H_{1}(\xi) = \frac{q_{0}H_{1}(0)}{q_{0} + 1} + o(1), (\xi \to +0).$$

Let $\mathbf{M}_1(\stackrel{>}{=}\mathbf{1})$, $\boldsymbol{\xi}_1$, $\boldsymbol{\delta}_1$ and $\boldsymbol{\delta}$ be positive constants such that

$$\begin{cases} |\hat{x}_{1}(\xi)| \leq M_{1} & \text{for } 0 \leq \xi \leq 1, \\ \hat{x}_{1}(\xi) \geq \frac{q_{0}H_{1}(0)}{2(q_{0}+1)} & \text{for } 0 \leq \xi \leq \xi_{1} \ (\leq 1), \\ |\sum_{m=2}^{\infty} \hat{x}_{m}(\xi) \xi^{m-2}| \leq M_{1} & \text{for } 0 \leq \xi \leq 1, 0 < \xi \leq \xi_{1}, \\ \delta = \min \left\{ \delta_{1}, \frac{\xi_{1}}{4M_{1}}, \frac{q_{0}H_{1}(0)}{4M_{1}(q_{0}+1)} \right\}. \end{cases}$$

From (7.1) it follows that if $\xi_1 \leq \xi \leq 1$, 0 < $\xi_1 \leq \delta$, we get

$$F \stackrel{?}{=} \xi_{1} - \left\{ \left| \hat{x}_{1}(\xi) \right| + \left| \sum_{m=2}^{\infty} \hat{x}_{m}(\xi) \right| + \left| \sum_{m=2}^{\infty} \hat{x}$$

and that if $0 \le \xi \le \xi_1$, $0 < \xi \le \delta$, we get

$$F \stackrel{?}{=} \stackrel{\wedge}{x_1}(\xi) + \sum_{m=2}^{\infty} \stackrel{\wedge}{x_m}(\xi) + \sum_{m=2}^{\infty} \frac{1}{2(q_0 + 1)} + \sum_{m=2}^$$

Since we have the inequality $5 = \varepsilon \xi^{-q} \circ \le \delta$, we have

$$F \stackrel{?}{=} \S^{2} \left\{ \frac{q_{o}H_{1}(0)}{2 \delta (q_{o}+1)} - M_{1} \right\} = \frac{\S^{2}}{\delta} \left\{ \frac{q_{o}H_{1}(0)}{2 (q_{o}+1)} - M_{1} \delta \right\}$$

$$\stackrel{?}{=} \frac{\S^{2}}{\delta} \left\{ \frac{q_{o}H_{1}(0)}{2 (q_{o}+1)} - \frac{q_{o}H_{1}(0)}{4 (q_{o}+1)} \right\} = \frac{\S^{2}q_{o}H_{1}(0)}{4 \delta (q_{o}+1)} > 0,$$

provided that & is in the interval

$$(\varepsilon/\delta)^{1/q}$$
 $\leq \xi \leq \xi_1$

for a sufficiently small \mathcal{E} , which prove the assertion (a) of Theorem 2. Since $\bar{x}_1 = -H_1(0)/(q_0+1) + o(1)$, $(\xi \to +0)$, the equation $x(\xi, \xi \xi^{-q}o) = 0$ has a solution $\xi = \hat{\xi}(\xi)$:

$$\hat{\xi}(\xi) = \left\{ \frac{H_1(0)}{q_0+1} \xi + o(\xi) \right\}^{1/(q_0+1)} , (\xi \to +0).$$

Therefore if $\xi_0 > 0$ is sufficiently small, we get

$$(\varepsilon/\delta)^{1/q}$$
 $\leq \hat{\xi}(\varepsilon) \leq 1$ for $0 < \varepsilon \leq \varepsilon_0$.

Then it is easily seen that the function F is positive, namely $dx/d\xi > 0$ for (2.9) and (2.10). Hence $x(\xi, \xi \xi^{-q}o)$ has one and only one zero there. This completes the proof of the assertion (1) of Theorem 2.

§ 3. Case $C_2p(0)$ $\varphi_2(0) < 0$. In the same manner as in § 7, we can complete the proof of the assertion (11) of Theorem 2.

References

- [1] M.J.Lighthill, A technique for rendering approximates solutions to physical problems uniformly valid, Phil. Mag., 40(1949), 1179-1201.
- [2] H.L.Turrittin, A critique of the PLK-method, (presented in the

- Serrin seminar, at University of Minnesota, January, 1958).
- [3] W.A. Wasow, On the convergence of an approximation method of M.J. Lighthill, Jour. Eat. Mech. Anal., 4(1955), 751-767, and Correction.
- [4]Y.Sibuya and K.Takahasi, On the differential equation $(x+\varepsilon u)du/dx +q(x)u-r(x)=0$, La Funk. Ekva., 9(1966), 71-31.
- [5]K.Takahasi, A note on PLK-method, M.R.C. Technical Summary Report 703(1966),1-17.
- [6]K.Takahasi, A note on PLK-method, Proceedings U.S.A.-Japan seminar on diff. and func. equ., University of Minnesota, (1967),507-517.