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CAUCHY PROBLEMS FOR NON-LINEAR TRANSPORT MODELS
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1. Intreoduction : 1In recent years it has been shown that in the fields
of radiative transfer (Ambartsumian (1), Bellman, Kagiwada, Kalaba. and
prestrud (2), Busbridge (3), Chandrasekher (4), Rybicki and Hummer (5),
and Sobolev (6)), and of rarefied gas dynamics (Wing (7)), the trans-
formation of the two—point boundary-value problems tao the initial value
problems.plays an important role from tle anélytical and numerical as-
pects, because the latter problems contain computational advantasmes over
the former~ones* Whereas some recent trend in the theorvy of invariant
imbedding was in expository manner presented in the iiﬁear transnort
processes by Ueno (8), however, in this note it will be shown how rower=
fully to comvert the non-linear boundary-value prohlems into Cauehy
problems with the aid of the invariant imbedding and guasilinearization
(Bellman and Kalaba (9)). For the sake of simplicity the rod mcdel with
coherent scattering is used throughout the analytical treatment.
Recently. the mathematical theory of the invariant imbedding in the
non-linear transport processes has been developed by the RAND-USC school
(cf. Bellman and Kalaba (9), Kagiwada and Kalaba (10), and Wing {7?)).  On
the other hand, Ambartsumian (11) has in recent years extended the. in-
variance principle to the solution of non-linear radiative transfer gro-
blems. With the aid of this method some non-linear transport problems
were dealt by Engibaryan (12) and the volychromatic diffuse reflection of
light from an infinitely deep one-dimensional media with three-level atoms
was discussed by Nikogosyan (13), whose theory is presented by the vhysical

method based on *the invariance principle., Furthermore, the Boltzman treat-
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ment for this problem was provided by Uenc (14), allowing for the vhoton
'emergence probabilitye.  Similarly, thé*dissipation function in the . non-
linear scaftering processes of neut;ohs and plasma within the finite rod
' was_fﬁund by Ueno and Mukaiﬂ(l5)&

The7charactefistic feature of fhe'non-linear radiative transfer is
i:éﬁckythat therradiation intensity‘degends:not only upon the local optical
,prapertiesAof'the»mediumw.b&t also upon the impinging radiation field.

In &ther“wordsﬂ;the.nonplinearity,comes=fromnthe fact that-the parameters
descfibing«the optical properties.of the-medium with scattering.are ex~
preséed in terms. of the radiation field. . The eqﬁation-for the- photon:
emergence: probability plays . an important role:-similar to the-eguation of
transfer. The study of radiation-gas-dvnamics is given by the simulta~
neous sclution of the transfer equation and of the Boltzmann equation,.
allowing for the stochastic state of the media. '

2.  The Boltzmann formulation (see Ref. (7), (9), (10))} : Consider an

one-dimensional model of optical length, x, illuminated by flux F of radi-
ation incident on the risht end z=x (see: Fige. l}» At the left end z=0

the reflection effect is assumed.
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FPig. 1 The Physical rod model
Let the radiation-fluxes at z, directed toﬁards*z:x and z=0, be de~
noted by u(z, F, x) and v{z, T, x), resvectively.

The equation of transfer appropriate to this case is written in the
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form
: gu._ -
(l) 3 —BT = f(u, ‘f.Z) .
(2) -2 g, 0Kz KX,
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sogether with the two-point boundary conditions

(%) u(0,F,X) e (V0,7 %)Y,

(&) (X, F,X)

F

.
On differentiating with respect to ¥, we get
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Similarly, differentiating with respect %to x, we have
7y 5u__ af 3u . 3f 3V du_ | _ de 3V |
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Furthermore, from-eq. [(2Y, we et

t
(9) &V_’ 'l“ ) = f!‘(uQVQX) % L.

Comparing eqs«-(5) and (6Y with eqgs.. (7)Y and (8), and assuming the

uniqueness of the solution, we obtain

(10) ' 3 (2,7 X) = g(R(F,0),F,0) %‘i 2,70 .
' av
(11) —Z-}f— (2,F,0) = g(R(F,X),FX) = (Z,F.0) ,
where
(12) TR A(F,X) = u (X,F,X) ,  V (Z,F,X) =F .

Z=X

kNow, the functional equation for R should be asked.

Differentiate.eq. (12) with respect.to x to obtain
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\'3)' X (F,X) = 22 + X "
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On making use of eqs.. (1) and (10); we have the required partial

' differential equation given by

SEy DR e - ‘ : . yy R
(W) S (R0 = TRIFD,FX) + g(ROFX),FX) S5

kt&getherﬂwith the initial condition
(15) . R(F,0) = Q(F) .

" Then, éqs.w(IO? and (Il) are the desired partial differential equa-
tians.governing,ujand v, together with the initial condition (12). In
other words they give the solution for the. Cauchy problem under consideré-
tion. It is noted that this requires only*integratienkin the direction of
increasing value of x.

2 Pclychromaﬁic‘diffﬁse~reflection {see Ref. (1%) and (14)) : Consider

a semi-infinite rod consisting of three~level atoms, whose end z=x is il=-
luminated by the constant flux of radiations at the frequencies i(i=1, 2

and 3){=zee Fig. 2 and 3).
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Fig. 2 The Physical rod model ’7 Fige 37 Cyclical Transition

These. three states are éonnected with each other by possihle random
transition, but connected with no other state. The redistribution of
atoms with respect to levels under the influence of the incident fluxes
results in the change in the transparency of the medium at some frequency.

For the: sake of simplicity we assume the pure polychromatié scatter-
ing. Now wefask'for the reflected fluxes Ri(i=1,2,3) as functions of the

End

fluxes Fj incident on the medium. For this purvose it is sufficient to
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find the Ri at one particular fregquencv, because ¢f the law of the con-

servation of the photon number.

¢

= o IR o
S it § — ] b | =3 ST 2 b
(16) 'nv.‘ * Ny - JV; + [ R e S I
’ J

In eg. (16) it is stated that the total number of vhotons in the-.
incident flukes at two frequencies is conserved in the reflected fluxes
by the rod. In what follows, starting with the transfer equation, we
shall find an equation for Ry(Fj, FZ, F}, x) at the first frequency.

It is assumed that scattering of light in either direction is equally
probable.

The equation of transfer takes the form

(17) _M;_:._. .~ eu NECse )

™

v awiz,x) 1 .

(18) - 3z = - %V’; - }‘-:6.1 \ L«; + V; 2 *

‘where. § and ki{i: 1,2,3) represent respectively the ébsofption~co-v
efficient and the albedo for single scattering, together with the

boundary condition

(19) 7 V. (x,x; = F

The albedo for single.scattering demotes the survival probabil_tv of =2
photon after an elementary act of scattering.

Write-

(20) R

;(Z.V§z.x))=u;(z.x) (3=1,2,3) o

From eq. (19) we have

(21) vl o, 2yl o
¥z zZ=X X bax

Assuming the linearity of the perturbation equation and unique-

ness of solution, and using egqs. (17), (18) and (21}, we get
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where X) =X and Xi and ‘E/’¢§i depend upon the radiation field. On
making use of eq. (16), we have

(gt S RE Vi E=RV &
(23) (B NGeR)F = (2-a0%5 N iT,_&:’—,:ﬁ (1=2,3) «

Then, eq. {22) reduces to

(2k) :.& _-4-1&,;_;_& 1 (p-&>+z((1- A) an . _13:3.@ ) g,m.g_ L

T=t <, taF;', W

where = -1 for 1=i and &y=1. If Ry (F,s %) = ﬁl(x)p , then

A
3% _ A 2. ARY
5 + (A2 )3+ 3R,

which is equivalent to the Riccati type equatiom.iq.(24) reduces to that
given by Nikogosyan (Ref.(13)).
Let the steady-state condition for the number dansity of atoms in

the first and third states be ziven by
/ o _ & . ; , |
(26} ni\Bizpri B?i ) -nzgf)BxZ(rﬁi-pE} f%%ﬁxjw‘+a, .

where n, is the number density in the i-th state, Pi is the radiation

density at y = vy given by (Fi + Ri}/c, Bij is the Einstein coeffi-
cient of the transition probability of an atom from a lower gtate i te
the higher state Jooy is- equal to 87{h¥i3/§3 and g, is the statisti-
cal weight of the i-the state, Eq. (26) states that in non-local thermo-
dynamical equilibriuﬁ the number of atoms leaving the l-th state coin-
ciedes with the number arriving at it.

Putting

(27) Ay = B )
g =n 3{'1 / (n n3g1/83’gispi ,

and
- hy g, B~ hu hs . 3
@8) o s ppnen BBz ol Bu o @By ol By 550
- c Ay, 2 3y L N ! 2



where ﬁﬂi is the effective width of the corresponding absorption line.
In the atom Ai and 6; devend upon R..
On making use of eas. (27) and {(2R), we have the ter~s for ﬁ/é/ 83,
63/ 81 and 1 - A, being functions of Rl' Substituting these derived
expressions into eq. (24), after some transformations, we get the equa-
tions of the characteristics for the Cauchy problem. It is shown that,
after some manipulations, the solution depends upon the atomic constants.
Finally, we obtain the functional equation for the photon emersence

probability at the frequency vy

E1y, Vewn( Vem { e ; AN S £9 3
(29) ;ﬁ;{q,x‘/—-gkz‘wx‘z*g\z,.x‘; gxg.x‘,«i‘zﬂ\-zi+—2—k;x§;+fx’g)%sﬁ 1

where

(307 BUxx)= B (LREE0).

It represents such a probability that a phetbn'abscrbed at Zq at a
frequency ﬁl uiil appear from the medium at xy at the same frequency
after one or more scattering processes, allowing for the cyclic transi-
tion between these three levels. If we take intoc account the collision
process, the equation of the photon emergence probability makes the basis
of the study of radiation~gas-dynamics in connection with the 3oltzmann
equa tion.’

L, Dissipation function of the non-linear transvort process [see Ref(15}):

Consider an inhomogeneous rod of the length x, Qhere each second a
single left moving particle is injected into the rod at z=x and no parti-
cle enters at the left end. We assume that the expected number density
of particles lost per second in (z, z+dz) due to interaction between
moving particles is

¢ (u(z,x),v(z,x)) A + 0(A),
where the particle speed is considered to be unity. In the case of anni-

hilation of particle é -function is vrovortional to the product of the
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opposite stream fluxes (see Fir.1). Let the expected number density of
particles at z and moving to the risht be denoted by u{z,x) 3 similarly,
let the expected number density of varticles at z and moving to the left
be denoted by v(z,x).
The equation of transport takes the form

du . , N N N . \

Ezztx\z)ukz,x1+ 3(ziviz,x)= ¢ {u,v)

3

(31)

(32) -%‘-z:: &‘(z)uéz,x)-hca(z)v(z,x)-cﬁ(u.v) N

together with the boundary conditioms

(3% ulC,x)=0 ,  wlx,x)=F,.

From eg. {33} we get

dvy ¢V
o SF] s g3l =0
Z=XK ¥
Putting -

(35)  Rlvlz,xi,xj=ulz,x},
where R is the expecied number density of particles per second meoving

to the-right at z due to an input of F varticles per sencond at x, and

" differentiating u with reapeet to x in the limit z=x, we have

U Fa o eV
(36)  3x)  T3F Taziz=x .

On making use of eg. (36), differentiating R with respect to x, we.

obtain
QR(x:F) u 3 u PR o
(37) i 4% * ] =alRE )+ (B GOR ()P0 (R, F)) SR (x) 7
z=X z=X =

-8 (R,F),

when &=0 and u{x,x)=RF, eq. {37) reduces to the Riccati equationm. _

In a manner similar to that siven in the derivation of the reflec~
tion‘coefficient R, we shall find the equation for the transmission co-
efficient T-function. . Put

=G,

(38)  T(viz,x),2)) = viz,x)]



On differentiating eq. (38) with resvect to z and vas<ing to the

limit z=0, we have the required vartial differential eaua*ion

3 TR, X IV 3V . , ,
(39) \;_; :3—’ "’T—-l} v SRR € Lm ol x PR X, EN G
7 z=C 7 Tz=C
3 T -
-¢ (F,R)) &=

The law of the conservation of the probability for the multiple
scattering of particles takes the form

(kaY

. . N - ;
viz,xi=(ulz,x)+v{Q,x) )= Lz, viz,x) ) viz,sx)

where L-function is called thé dissipation fnnction.’kOn'differen‘iatinﬂ

with respect to z and passing to the limit at z=x, we pet

(b1y  Q¥p o _duwy 3L dLIV o 2V
5Z£:}§ é z'z*:x : 3'Z+ 3% 32z fz=x YV Q(,{X)} 32—';,1_-(,

the L=function

From eg. (41) we obtain the desired .equation for

9 L - T N : e T

(42) FPoo(x, il a () P+l {x)3{0,x )L+l g ix i Feii{xiB-¢ (7, F); ==

w rawe i g X . . R - - N ‘ 4-}.“”
1{R+F)-2 #(R,F)

N R
¥

~{ ot (x}+B{x)

.

Such~a-e§ﬁation will be useful for the~stﬁdy;6f;thézné:?icle-

particle interactions in the: theory of neutron diffusion and plasma
dynamics.
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