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Some Problems on Non-linear Stochastic-
Control Processes®
by

Yoshifumi Sunaharag#*#

1. ﬁIntréductiqg;end.symbolic conventions

During the paet decade, the problem of fiﬁding4the eptimal controi
has!reéei#ed a great deal of interest as results of the ever—eomplicated
demand ;o;controls andvever—increasing complekity of the operetion of
modern eysteme; However most of thls work has. concentrated on com-
pletely linear dynamical systems neslectlng the effects ‘of nonlinear
charecteristics exhibited in practice. There is no needs to-say that
dyﬁamical ejstems‘to be conﬁrolled exhibit various kinds of’nonliﬁear
' cheracﬁeristics’and mey operate in a random enviromment whose stochastic
characteristics:undergO'drestic,changes._ Thus, the general problem td
eolved is.to find the control of a noiey nonlinear dynamicaI’SySfem» 7
in some optlmal fashlon, glven only partial and n01sy observations of -
system state and, pos31bly, only an 1ncomplete knowledge of the svstem.
Under such eondltlons as llnearlty of the dynamical system, noisy -
dbservatlon and éerfarmance crlterlon given by a gquadratic cost function-
al 1t has already been shown that the optimal control problem and
the optlmal estimation problem of theksystem state from the noise-
cerrﬁpted cbservations msy independently be eolved. ilim[B]' chever,
this is not the case in general for the opfimal control of‘nonlineaf
dyhamieel s#stems, and the bVerell problem5of‘optimal control and esti-

metion must be cerried'out simultanecusly.e'Since the establishment of

* December 23, 1968. The materials of this short note have been
taken from the author's papers. submitted to the Division of Auto-
matic Control, ASME, the International Journal on Control: and.the
Jorunal of the Franklin Institute. ‘

L Kyoto. Institute of Technology, Matsugasaki, Kyoto Japan.



48

the przeise technigue for the state estimation and the optimal control
of nonlinear dynamical syétems is almost impossible, in this paper, the
aﬁthor will introducerthe reader to an approximate method which will be
shéwn to play an important role in the realization of aibroad class of
sﬁocha;tic optimal control and which will hopefully be of an extensive.

- use to the vérsion §f computing control in industrial.proéesses;

Througﬁoﬁt this paper, we use the samé symbols for the frue sﬁo-ﬂ

chastic processes and for the quasi-linear stochastic processesvwhiph B
are thé approximations to the true one -by the method descriﬁed later.
Vector and matrix notatidns follow the usual manner, that is, lower éésé J;‘
letters a, b and c, *++ will denote columﬁ vectors’with i—th'feél com- -
Vponents éi’ bi’ and ci, *e+, Capital létters A, B, C and G; +«+ denote
matfices with elements a; .o b.,, c,, and 8;

i3® " 3’ 3
a matrix, then M' denotes its transpose. The symbol| M| denotes the

++» respectively. If M is

determinant of the matrix M.

Certain algebraic guantities such as algebras, fields, etc.,rare ex~
prgssed by the symbols, ¥, F, °»+, etc. The symbol, Vt, denotes’fhe
smallest c-algebra of w setsrwith respect to which the random variables
y{t) with 1<t are measurable, where w is the‘generig point of the proba—

_bility space Q; The mathemetical expectation is denoted by E. The con-
ditional expecta£ioh of a random variable conditioneé by Vt ié”simply
exPressed‘by,”f" such that E{#(ﬁS]VT}7= ;(tlT)g'where T<t. |

For convenience ofrthevpresent aescriptibn,fthe prihcipal symbols
uséd here are listed below: ‘ o
t: timé variable, particularly the preseﬂ¥ timer
tO: the in tial time at which observations start

x(t) and y(:): n-dimensional vector stochastic processes representing

the system states and the observations respectively.
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u(t): m-dimensional control vector taking values in a convsx compact
subset UcE where T is tue m—di&enbiunal zuciidesn s;;ce"
w(t) and v(t): d,- and d,-dimensional Brownian motion processes re-
spectively
c(t), G(t) and R(t): nxm, nxdl and nxd, matrices whose components @epend
on t B
f{t, x(t)] and h[t, x(t)]: n-dimensional vector valued nonlinéar functions

respectively

x(tit)

nee-

-
-

x(t|t): optimal estimate of x(t) conditioned by Yoo i.e., E{x(t) Y :
P(t]|t): an error covariance matrix in optimal estimate of x(t) con-

ditioned by Y _, i.e., P(t]t) 8 cov. [x(t)IVt].

2. Mathematical models and problem statement

Guided by a well-known state space representation concept, the dyn-
amics of an important class of dynamical systems can be described by a

nonlinear vector differential equation,

) SEE) e (L)) - cedule) + eyt

wheré v(t, w) is a dl;dimensional Gaussian white noise disturbance. For
the economy of descriptions, we shall omit to write the symbol w in the
sequel because of no confusion.

We shall start with a precise version of Eq. (2.1), namely the sto-

chastic differential equation of Ito~-type, (L]
(2.2) dx(t) = £t, x(t)]at - c(t)u(t)at + G(t)aw(t),

where the dl-dimensional Brownian motion process w(t) has been introduced
here along the relation between a Brownian motion process and a white

noise or a sufficiently wide (but finite) band Gaussian random. process

v(t), [5]v[6]
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k o,
(8.2 : wit) = "y (s)as.

Wejsﬁppose that observations are made at-the output of the nonlinear
system with additive Gaussian disturbance. The observation process y(t)

is the n-dimensional vector random process determined by

(2.4%) | | dy(+) = n[t, x(t)]lat + R{t)av(t),

where we assume that the system noise w(t) and the observation noise
v{t) are mutually independent.
In practical terms, the problem is to control x(t) in such a way as

to minimize a real valued functional,

3

(2.5) 3(a) = B[}
S 0

Llt, x(t), u(t)lat}, [tgstsT]
based on fhe a priori probability distribution of x(tc),vprovided that

Oiﬁgﬁ is ‘acquired as the observation process,

where y(to) = 0 and where L and'L; are bounded, uniformly Holder con-

the process y(s) for t

tinuous in t and'uniformly\Lipschitz}centinuous'in X, and wheré'Lﬁd is
bounded and continuous on [to,'T] x E® x U. The subséript denotes
differentiation here and below.

We shall consider the case where the state variables x(t) are com-
életély obsér&able. Usually,-;n tﬁis cése, the optimal control must be
assumed tc depend on x(s), where to§§§§. Bearing this fact in mind,
and following:[3], w& shall proceed tc establish the.sclution of the sto-
chastic differential equation {2.2).

Let G denotes the class of comtinuous functions A(t) which are de-~
fined on Etog T] and which take the values in Ep, and Ft denotes-a -
‘functionalvoperatgr,in En. Clearly, if AEG, then FtAeG.viFurthermore,

let ¢ denotes a mapping of [to, T} x G onto U with the following proper-

,ties:
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P-l: For each AeG, the functional ¥(t, A) is Holder continuous with re-
spect to t.

pP-2: For teft

—_ 0?

T], the functional ¢ satisfies a uniform Lipschitz con-

dition, i.e.,

loles 2) = wle, A <k l=agl s

where the function » _eG and K

o 1 is a real positive constant, and where

”."sup expresses sup. norm in G.

Let ¥(t, *) be an m-dimensional vector stochastic process, such that,

for each telt., T], w(t, *) is measurable and

0)
(2.6) ’ "é E{luw(t, -)iz}dt«n,

where "‘" expresses the norm in Z°. Let ¢ be the class of the ¥(t, °)=-

process. For some ye¥, we call the u(t) admissible and write ueU, if

(2.7) . ult) = v, ) for telt

following hypotheses are additionally made:

r b
i

H-1: The component of the functions and hi*, °] are .Baire

functions with respect to the pair (t, &) for toStsT and —w<gcw,
where x(t) = €.

H-2: The functions fl+, -] and u{-+, *] satisfy a uniform Lipschitz con-

ditions in the variable ¢ and are bounded respectively by

(2.8a) ele, O <k (1 + gre)t/?
and
(2.80) o e, 8)] s k(L e gre)t/?.

where both K2 and K_ are real positive constants and are independent of

3
both t and § respectively.
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H-3: The functions f£[-, *] and g[+, °] are uniformly Holder continuous
in t with exponen% .

H-b: x(to) is a random variable independent of the w(t)-process.

H-5: All parameter matrices are measurable and bounded on the finite
time interval [to, T].

H-6+ (R(t)R(t)"}™! exists and this is bounded on [to, T].

With the properties P-1 and P-2 and the hypotheses H-1 to H-6, Eq. (2.2)
has exactly a unique continuous solution x(t). A precise interprétation

of Eq. (2.2) is given by the stochastic integral equation of Ito-type

(b]:

(2.9) x(t) = x(t,) + f: fls, x(s)lds - f: C(s)u(s)as + f:oG(s)dw(s).
0 .

0

3. Quasi-linear stochastic differentials and an approximation to non-

linear filtering equations

In this section, the development of the discussion requires that,
until further notice, we set the control u(t) equals to zero in Eq. (2.2).
When u(t) = 0, the symbol is temporarilyrchanged from x(t) to z(t). With

this symbolic change, Eq. (2.2) is

(3.1) az(t) = £ft, z(t)lat + G(t)dw(t)'
and‘also Eq. (2.4) is written by

(3.2) : dy(t)i= nlt, z(t)lat + R(t)av(t),

where the same symbol y(t) h=s been used as in Eq. (2.4) because of
economy of notations.

The problem considered here is to find the minimal variance esti-
mate of the state variable z(t), provided that the process y(s) for

toggjp is acquired as the observation process, where y(tO) = 0.
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We expand the function, £{t, z), in Eq. {2.1) into

(3.3) Cflt, z2(8)] = a(t) + B(t){z(t) - 2(t]t)} + e 2),

where a(t), B(t) are an n-dimensional vector and an n*n matrix respective-
1y, and where e(t) denotes the collection of n-dimensional vector error.
terms, and where ;(tlt) = E{z(t)lyt}. We shall determine a(t) and B(t)

in such a way that the conditional expectation of the squared norm of

e(t) conditioned by Ve E{He(t)“2fyt}, becomes minimal with respect to
a(t) and B(t). It is a simple exercise to show in the calculus of
variation that the necessary and sufficient conditions for min: E{“e(t)

ﬂglyt} are given by

(3.4a) : a(t) = E{f[t, z(t)]ivt}.

andé

(3.40) B(6) = ELO£[%,2(6)] - £(5,2(8)1Ha(e) - a(e]0)} |y, 188 ()7,
where

(3.5) ' | B(t]t) = cov. [i(t)fvt]

The scalar expressions of (3.4) are as follows:

(3.62) o, (8) = Bz, [t, 2(e)][Y,) = £,l¢, 2(s)]
n. . - o
E’lbiv(t)?[{fzv:(t.) - Zv(tlt_)}{zj(t) - Zj(t’t)}lYt]

(3.6b)

BLiz, (5, 2(0)] - 7,08, 2(0)]Hz (6) - 2|0y}

1

where zj(t[t) E{zj(t)[Vt} and i, j=1,2, +*-, n. Using a(t) and B(t)

determined by (3.4) and (3.5), we approximate Eg. (3.1) by

(3.71) =z(t) = Z(to) + ft [a(s) + B(s){z(é) - ;(s]s)}]ds + fz G(s)aw(s).
0 / 0 ) ’

The same procedure is applicable to the observation process given by
Eq. (3.2). Through the expansion of the function, h{t, z(t)], in the

form;



(3.8) alt, z(2)] = by (8) + He(t){z(tﬁ - a(t]e)} + e, (4),
‘the,fellowing conditiens can easily be obtained so as io minimize
E{ﬂeh(e)ﬂglvt}>with respect to by (t) ahd‘H2(t):*

(3.90) () = Ele, 2010 LAl ()]

(3.90)  Hy(t) = El{nlt,2(8)] = nle,2(t)1Hz(t) - 262} ¥, 1B(t]6)7

We shall assume here that, for te[to, T], the conditional prebability
density function p{z(t)IVt} is Gaussien with the mean value z(t]|t) ana

 covariance matrix ?(t]t), i.e.,
' A 1 |
(3.10)  pla(s)¥,} = (2m) 2|p(t]t)| 2exp[-%{z - z(t|t) 1 B(e]e) ™t

x {z = z(t]t)}].

h the help of (3. lO) both a(t and B(t) ‘can; be obtalned in the form
a(t) = a(t, 2(t]t), B(t]t)) and B(t) = B(%,. z(t]t) B(t|t)) or b (t)
,:= aa,( )/az t|t). A striking fact is that the random variables a(t)
and B(t) are not 1ndependent but depend mutually on the state estimate
z(t]t) and the error covariance matrix P(tlt) From this p01nt of view,
in reallty, more prec1se symbols, a(t, z tlt - : tlt')-and B(tiez(tlt),
: P(t]t)) should be introduced.. However‘ for the: economy of description,
T we merely denote these by a(t) and B(t) without - 1ndicat1ng the dependence
bon both z(tlt) and P(tlt) Both hy (t) and H, (t) also follow thls'
_symbollc convention. ;

Lo From Eq. (3 7) e may thus define here the following: n—dlmen51onal.

'qua51-linear stochastic: dlfferentlals of Ito—type for Eq. (3.1),
i ;(3.11)_"v dz(t) = B(t)Z(t)dtl+ {a(t) - B(t)z(t‘t)}dt‘+ G(t)aw(t),
: end.for'the ebservatien process‘(B.é);
'](3;1;;7*1_Jay(t> =.H2(t)z(t)dt + {ny(t) - Hg(t);(tit)}dt + R(t)av(t).

<8



However, respective drift terms in Egs. (3.11) and (3.12) st 11 remain

siknown. We ;hall thus. proceed Lo sciveThe provism inceind zothe cor.
putation of the state estimate ;(t!t) and the error covariance matrix
B(t]t). |

Let of{t, to) be the fundamental matrix associated with the homo-
geneous differenﬁial’equatidn, dz(t)/dt = B(t)z{t). The solution of Eg.

(3.11) can formally be written as

(3.13) " 2(6) = ot t.)a(ty) + [§ e(t, s)als) - B(s)z(s|s) ds
} ) R 0

+ 7 o(t, s)a(s)aw(s).

_ 0

- We write for the second term of the right side of Eq. (3.13)

(3.14) g(t) = —f: o(t, s){a(s) - B(s)z(s|s)}ds
o s

“and introduée a new stochastic process

(3.15) - gl = a(t) + gle).

Combining Eq. (3.13) with (3.1L) and noting that £(t,) = z(to), from Egs.

(3.14) and (3.15), the &£(t)=process is of Ito—fype and the stochastic

~differential is
(3.26) ag(t) = B(t)g(t)at + Glt)aw(t).
On the other hand, it follows from Eq. (3.12) that

(3.17) y(t) = szHg(S)kz(S)ds + [} (ay(s) - By(s)a(s]s) as

0

+ f:éR(s)dv(s).

Let the second term of the right side of Eq. (3.17) be cy(t) and define

ny(t) £ y(t) - cy(t}. Then we obta;n |
(3.18) an (8) = Hy(t)z(t)at + R(t)av(t)

with ny(to) = 0. With ny(t) determined by Eq. . (3.18), define a new
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stochastic process h(t) by its stochastic differeptial,

(3.19) Can(t) = an (%) + Hy(t)z(t)at,

and n(to) = Q. Using Egs. (3.15)‘&#&'(3.18), ﬁq. (3.19) becomes
(3.20) an(t) = Hg(t)g(t)dt + R{t)av(t).

Since ¢(t) is Vt—measurable, it follows from Eq. (2.15) that
(3.21) e(tle) = Bla(e)]v,) = alt]t) + c(t).

Let H_ be the o-algebra of w sets generated by the random variables n(s)

for tofgjp. Then the y(t)-process is Hffmeasurable and thus
‘ « ‘ . A2
(3.22) ELe(e) |V} = Ble(t)[H ) = e(t]t).
Now we consider that the E(t)-process is the fictitious state vari-
ables determined by Eq. (3.16) and that Eq. (3.20) denotes the obser-

vations which are made on the £(t)-process. This situation implies that

the current estimate g(t]t) is given by [9], [10]

(3.23)  ag = B(t)£at + PgtiLt)HQ(t)'{R(t)R(t)'}‘l{dn‘— Hy(t)Eat},
where
(3.24) Pg(tlt) = cov. [g(t)lﬂt].

Substituting Eq. (3.20) into Eq. (3.23) and using Egs. (3.12) and (3.21),

it follows that

(3.25) dz = £[t, z(t)]at + F(t|;)H2(t)'{R(t)R(t)'}'l(dy - hdt).
where Egs. (3.6a) and (3.9a) héve been used. By combinipg (3.21) with
(3.24), we have | ‘ ‘

(3.268) ©B(eft) = cov. [a(e)]¥,] = B (t]t)

and the version of dP(t|t)/dt is

o

(3.26b) Fre

= BP ¥ PB' + GG' -~ FHg'{RR'}_lHQF.

~10-



Equations (3.25) and (3.26) describe the dynamic structuve ~f 2 gquasi-
iinear Tilter for generating a current estimate z(t]t) with the re-

spectively given initial values, z(tolto) and P(togt ).

0

L. Quasi-optimal control

In this section, the control term u(t) in Eq. (3.1) is revived,
noting that the symbol changes naturally from z(t) to x(t).

Let the function L in (2.5) be
(bo1) L(t, x, u) = x'M(t)x + u'N(t)u,

where M and N are respectively measurable, locally bounded, p051t1ve
seml-definlte and - positive deflnlte symmetrlc,ma¢r1ces. ‘In the case
where both the dynamlcal system and. the observation are respectlvely
determlned,by llnear stochastlc dlfferentlals, it has already been vari-
fled.that the optimal control exists and this is u (t) =y [t, x(tlt)]
= N(t)f;c(t)‘q(t);(t]t)g where Q is the unique solution of a certain
matrix Riccati'equation. tl]; [3]  In the case of ﬁbnlinear regulaﬁor;
?robiems considered ‘the quasi-optimal control may be found out by an
extensive use of the qua51—opt1mal control. may be found out by an
extensive use of the quasi llneaflzatlon technique developed in the
prev1ous section to-thg»vgrslon,of stochastlc control,

It is-apparént that thé X(t)—précess hés the\qqasi?linear‘stochastic
differential,r S ’
(b.2)  ax(t) = B(t)x(t)at + {a(t);B(t)Q(t[t)}dt'— c(t)wkt)dt + G(t)aw(t),
where the definition of the admissible control_givenAb& (2.7)’has been

taken into account with the simplified notation Y(t.x). It also follows that

(5.3) ay(t) = hy()at + Hy(6){x(t) - x(t]t)lat + R(t)av(t).

@
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Furthermore, with the help of Eq. (3.25), it can easily be shown that

the state estimation x(t[t) for the nonlinear system described by Egq.

(L.2) is

(4. k) dx = %dt = éwdt + Pﬁg'(RR')fl(dy - ﬂdt),

whére‘the’verSionvofvdP/dt has the same formvas1giveh by -Eq. (3.26b).
In the present caée; the basic process ‘is ;(t|t) (tbjpf?) with the
stochastiérdifferential (h.h); the cost rate function is given by<Kh.l)
and the performance index by (2f5).
Combining the stochastic linegrization technique with the line‘of
attack én‘the lineaf regulator probleﬁ, we ‘shall suppose that u(t)
= &[t, ;(t]t)]. It has been proved by solving the following Bellman’§

equation [10] that the optimal control v© and V(t, £) exist

(h-Sa) . minueU{L(t’ &, u) + Vt(t.s 5) + L&;V(t, E)} »= 0’

with terminal ¢ondition

(L.5b) - " v(T, £) =0,

where | C » i

(h.6) . ov(t, a)»='E{j$£[s, x(t]t), s, x(s|s)]las|x(t]t) = €}
(b.7) L= ELls, x(s), ¢°ls, x(s]s)1]]x(s]s) = £}

and.i& denotes the &ifféiéﬁtial'geherator of the ;(tlt)-proqess‘given
by [11] 5 o |

(1.8) “ L;(v) = %tr{,f’(t)'YEEZ(t)-} + {a(t) - c()y(t, 0}V,
with o T ‘

b9y~ I(+) = PE,"(RR") 'R

 because of (4.k) and the fact that the differential dy-hdt in Eq. (h.h4)
may'be replaced by the suitably scaled differential of a Brownian motion

process. .



In the case where the function L is given by (k4.1), it follows from
(L.7) that

(4.10) CLls, £, 0(s, £)] = tr M(s)B(s[s) + £M(s)5 + v'N(s)V.
We shall suppose that Bellman's equation (L.5) has a solution
(4.11) . V(t, §) = £'I(t)e + 2€'a(t) + 8(t),

where T(t), o(t) and B8(t) will be determined as the solutions of matrix
differential equatiohs which will be given later. Applying {(4.8), (k.10)
and (4.11) to (h.S)vand performing the minimization of Eq. (h;S), the
optimal,controi is- |

) Yoe) mie) e + Ne) Te(e) alt),

(4.12) WP, £)

and N(t), a(t) satisfy

(4.13) i‘;—é’i)- n)eNs) e (s) m(s) + M(t) = 0
(4.14) gale) _ is)o(em(a) ™ e() a(t) + Lt)ale) = 0

for t <t<T with

(b.15) ' n(m) =0, o(T) = 0.

Fﬁrthermore, B(t) in (L4.11) satisfies

(hag) Bl er{T06)M(6)](£)] + trlM(6)P(6[)] + 2a(t) a(t)

- a(e)eeIn(s) te(t) alt) = 0
for tofpii with
(b.17) o B(T) = 0
and this is necessary to compute (L.11), with ﬁ(t) and a(t); In Egs.
(4.13) and (4.14), both T(t) and alt) are actually indeéendent of the
dyrnamic characteristics of an cbservation mechanism, h(t, x) and R(t).

' Hence the optimal control depends on the cost rate function matrices M

-13-
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and N and on the system dynemics f(ﬁ, x). However, a éerious difficulty’
arises in the version of numerical computation on Bga. 1%.12), (B.33),
“<u¢1u>, (4.15) and (4.16). 1In fa;t, the computation of (4.12) with Egs.
4(&.13) and;(h.ls)’has éé;étart with the pre-assigned initial values of
the state estimation ;(§§1£6) and error covariance P(tglto).aQQa furtyef-
more, with H(tO) ahd a(to) which are detefmined by the so-called‘trial

an&jerror method.

5. An illustrative example

For-the purpose of exploring the quantitative aSﬁects, we: shall
consider here the one-dimensional case. The dynamical system considered
here is schematically shown by block diagram in Fig. 1. From Fig. 1,

the stochastic differential equation of the dynamical system is givén by

(5.1) - :f , dx = f(-x)dt + udt + gaw
with. ‘ w |
(5.2) .. f(x)'=fsini;

Théaobservatibn process is
(5.3) - ‘ dy = xdt + rav..
Application of (3.ka) and (3.4b) to the present case gives

—sinx exp(~0.5p)"

(5. a(t)

(5.5) - ... ®(t) = -cosx exp(-0.5p).
From Egs. (4.4) and (3.26b), the approximated filter dynamics and related

error covariance are determined by

. (5.6) dx = -sinx exp(=0.5p)dt - udt + prﬁz(dy - xdt)
and  5 '
(5.7) ‘;' - ¥ -2p§Os;,exP(—0f5P) + 52 - pgf_z.

ERTY
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(5.8) Ve, g) = n(t)e + alt)

end T T

(5.9) V(t, £) = m(t)e° + 20(t)E + B(t),

where

(5.10a) C—lgji—ﬁ = n2(t) - 1

(5.100) 0lt) - r()a(s) - w(t)alt)

(5.10¢) d—gél)-c —P(E)m(t) - 2a(t)alt) + o2(t) - plt]e).

Equations (5.6) to (5.10) are simulated on a digital computer with the

subroutine for the generation of random disturbance, v(t) and 6(t).

Figure 2(a) shows the running values of the stéte estimation é(t{t)

(in figures presented here and below, the symbols ;(t]t) and p(t|t) are
simply denoted by x(t) and p(t)), for the pre-assigned control interval
[Q; 1.0] (sec). The sample path behavior of the true system is also
shown as the . run x(t). HOWevér, the x(t)-process is, in practice,’ih
accessible and this‘ié only for comparative observation,’ The dotted run
in Fig. 2(a) shows. the sample path behaviﬁr of the quasi-linearized
system. Comparison of the sample paths of the gquasi-linear system and
filter dynamics with the that of true system, actully reveals that, as
time goes on, the pursuit behavior of the é(t)—process to the in-
accessible x(t)—procesé becomes improved»with the elevated accuracy of
the stochastic linearization. The optimalvcontrol signal run is also
plotted on Fig. 2(a). Figure 2(b) shows the error covariance of filter-
ing éction p(t|t), and also m(t), alt) which may be adopted as a success~

ful set of trial and error method. Figure 3 shows the averaged’runs,of
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ten sample paths.

6.

Conclusion

The technique started with the stochastic: linearization of the dyna-

mical system and with that of the observation dynamicsf 'Based on the

linearized system dynamics, a class of finite dimensional approximations

to the optimal filter has been drived. The optimal control has been

obtained for the linearized system by means of solving Bellman's equation.

In general, the optimal control depends parametrically on both the con-

ditional averaged behavior %[t, x] = a(t) of nonlinear action and the

choice of performance index factors M, N. Through the analytical

development and the numerical results, we may conclude that the approxi-

mation procedure has desirable properties in realizing the feedback con-

figuration of stochastic optimal control..
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Fig. 1. Over-all configurétion_of optimal.

control for the nonlinear dynami-
cal system under noisy observation
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Dynamical system dx=-sin xdi-cudlr .~
Observation dy=xdtrrdv
Filter dynamics
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Fig. 2. (a) Sample path behaviorsof the system, quasi-
linearized system, filter and optimal control
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Covariance
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(b) ~ Error covariance p(tlt) and convergence of
w(t) and aft)
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Fig. 3. Averaged runs of 10 sample paths

20~



