goooboooogn
0710 19690 1-24

Numerical Analysis of Subharmonic Solutions

to ‘Duffing's Equation

- : : Minoru URABE

1. Preliminaries

The: present paper is concerned with subharmonic solutions
of Duffing's equation
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(1.1)° +c%q (198q%) = Py cosyr -
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By the transformation
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kT =0, q = X,
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equation- (1.1) can bé~reduced to. the equation

: d%x ./
(1.2) — * x(1+ ex”) = cosuwt, -
dt ’
which, replacing wt by t,‘ . one canirewrite~as follows:
' %k o, 2 2, _ 1
(1.3) >t g x{(1l+ex™) = o cos t,
: dt ' ‘ ‘



)

s

where

(1.4)

o]
]
e

o a subharmonic solution of (1.1), corresponds a solution of
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SOS T+ A4, COS t + ... .

Hence replacing ¢ by 3t in (1.3) and (1.5), one can reduce

the problem to the one to find a solution of the form

(1.8} x{t) = a; cos t + a, cos 3t + ...

to the equation

(1.7) ii?% + ‘%’X(l*EXZ) = f%‘ cos 3t .

In the present paper, approximations of solutions of the
form (1.6) will be computed by Galérkin's method for various
values of the parameters ¢ and @ . The existence of sub-
harmonic solutions corresponding to these approximations will
be assured from approximations themselves by the author's
method developed in [1]. Error estimates of approximations
computed and the stability of the éorresponding subharmonic

sglutions will be given also.
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2 Galerkin's method

Consider a real periodic differential system

dx
(2.1) qc - X(x,t),
where x and X(x,t) are vectors and X(x,t) is periodic
t of period 2r . To get an approximation of a periodic

solution of (2.1), we consider a trigonometric polynomial

=]

CZ)Z)'. x (t) = ag* %%a (a4 sin nt + a, cos nt)

with unknown coefficients a =(ao, a1s 8ps wees Bon g azm),

and we determine these unknown coefficients by the equation-

dx_(t) 2m |
(2.3) 4t = In 'X[xm(t), tl dt

A .
. ‘
+-% g;a { sin nt D/P X[x,(s),s] sin ns.ds
o 0 ‘

- 2m. v . : '
+ cos nt ://i X[xm(S},s] cos ns ds }k.
SRR 0

Equation (2.3) is evidently equivalent to the equation
2m

(Fo(@) & gh X[x,(t),t] dt = 0,

2m

P ~ ) | ’ ) ‘
‘(2.4) v FZn_l(a) A= X[xm(t),t]51n nt. dt + na, = 0,



X{xm(t),t]cos nt dt - na, ;=
0

(n=1,2,...,m).

A trigonometric polynomial with coefficients satisfying (2.4)

will be called a Galerkin approximation of a periodic solution
of (2.1) and the equation (2.4) will be called the detefﬁining
equation of Galerkin approximations. A method of getting an
approximation of a periodic solution by computing a Galerkin

approximation is called Galerkin's method.

Galerkin's method 'is based mathematically on the follow-

ing theorem due to the author [I].

_ Theorem 1. Suppose that X(x,t) and its Jacobian matrix

¥ {x,t) with respect to x are continuously differentiable

with respect to x- and t in the region. DxL, where D is

a closed bounded region of the x-space and L is the real

line. If differential system (2.1) possesses an isolated

periodic solution x=X(t) lying inside D, then for sufficiently

large Tgs there is g Galerkin approximation x=xm(t) vgg any

order mzm, such that

(1) —>R01), % (t) — k() (+ =d/dt)

uniformly 8s M ——i oo,

By an isolated periodic sclution, is meant a periodic

solution such that the multipliers of the relative first varia-

tion equation are all different from one.

To compute a Galerkin approximation, it is necessary to
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solve numerically the determining equation, which is usually

nonlinear. Newton's method is well adapted for this .urpose,
because as will be shown later, the starting approximations

can be found usually without difficulty and the iterative
process can be practised easily on a computer by means of‘weli—

known formulas of Fourier analysis (See[2]).

3. Assurance of the existence of an exact periodic solution

and error estimation of approximate solutions

“Our method is based on the following theorem due to the
author- [1}. -

‘Theorem 2. Suppose that (2.1) possesses a periodic

ggpreximate solution x=x(t) lying inside D - and the multipliers

- of the relative first variation equation

e FE o vix),tly

‘are all different from one.

Let  o(t) be the fundamental matrix of (3.1) satisfying

“the initial condition @(0) = E (E is the unit matirix) and

H(t,s) = (Hkﬁ(t,s)) be a piecewise continuous matrix such that

o(t)[E - o(2zm)] 1 o l(s) for oOsssrezm

(3.2) H(t,s) =
S(t)[E - o(2m)] Yo(zme t(s) for 05t<s<2m ,

—

Let M be a pdsitive number such that
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(3.3) [27 «max

r{i (t,s)ds}l’/z < M,
O0gtglm o -

0

and r be a non-negative number such that

oo- N d-,t
(3.4 J &2 - xix(o), ] <,
where the svmbol ”ﬁ.;.ﬁ denotes the Euclidean norm of vectors

or the correponding norm of matrices.

By

ositive constants ¢ and K< 1 such that

If there are p
i H
- - 1 H B
it D= o4xo
z { ;
it . (ST e P
{3.3) 1d hrix,vi- ¥ix(t],.t] i < «/M

I

given svstem 2.1 possesses one and only one periodic

- . AN .. ~ - 5 . . -~ . -
solution  x=Xx({t) in D and this is an isolated periodic

solution. Further, for x=X7t}, it holds that

F

When a Galerkin approximation iﬁ(t) has been computed,

one can find the corresponding value of the number M through

R

ot

the numerical integration of (3.1 for Z(tjzﬁm(t) and one
can find also the corresponding value of the number r Dby

évaluating the Fourier coeffi;ients of the function
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Then one can easily check the existence of the constants 3§
and « satisfying the condition (3.5). If there exist such
constants § and k , then by Theorem 2 one can assure the
existence of a periodic solution of (2.1) and further by (3.6)
one can get an error bound for the Galerkin approximation im(t).
Remark. In the cqmputation'of the number M, one computes
the fundamental matrix @(t) of (3.1) satisfying the initial
condition ¢(0) = E. ‘Ifl X(t) 1is close to the exact solution
Q{t), then the eigenvalues of @(2m) 1is close to the multi-
pliers of the first variaticn equation of (2.1) with respect
to the exaqt solution. Hence one can decide thg stability of
an exact ﬁeriodic solution by inspecting the module of eigen-

values of the matrix d(2my.

4, Numerical computation of subharmonic solutions

¥ To get a rough approximation of a periodic solution

of (1.7), we consider a trigonometric polynomial of the form

(4.1)  x=a; cos t + azhcos‘St.

Then the determining equationwfor a polynomial of the above
form is:
P N, 27 2, -2
~ 31[(9'9)*‘2”,€ (a;” + aja, + 2a,")] = 0,

(4.2)

.03 2 3 :
(1 - Qa, + %—(a1 +6a;%a, + 3a,” ) - 1 =0



Since al=0 does not correspond to the desired subharmonic

solution, we assume that
(4.3 a) # 0.
Then from (4.2} follows

2

(9-Q) + -i—z 5(312+ai'32+,232 ) =70,

(4.4)

(1-2)a, + 5 (a;%+6a,%a,+32,%) - 1 = 0.

From the first of (4.4) we have

Caey: g 2T 2, 2
C(4.5) QAf 9 + 3 s(al +alazf232 Y.

, Heﬁce substituting (4.5) into the second of (4.4), we have

o
12273

(4.6) 51a,°+27a,a,%+21a +2(8a,01) = 0.

Let us consider the case where
(4;%)' ” e >0,
Then from'(4.S), reél solutioné.éf (4.4)'can exist only for
(4.8) : Q >9,

Now the derivafive of the left member of (4.6) with respeét to

a, is always positive and hence (4.6) can have only one solution

a for‘any’given‘value,of. a;. Such being the case, for €=1/8,‘

l/Z,kl and aI=-5(1)5, we have computed a, satisfying (4.6)



by Newton's method and then we have computed the corresponding
values of & by (4.5). Drawing the graphs of (&, Gy and

Q, az) from the results obtained, we then have the approximate
solutions of (4.4) for given values of . Starting from these
approximate solutions, we finally get the solutions of (4.4)

by Newton's method for various values of @ . Figure 1 shows

the graphs of (Q, al) and (Q, az) for €=1/8 and Table 1

'shows the solutions of (4.4) obtained in. the above way for e=1/8.

TABLE 1
w £ a, z-~

4 16 2.88938 9313 S5.01337 0 1240

-2.81281 9167 S0.12385 Q310

3.2 10.24 - 1.25675 9007 -3.10488 3138

-1.14426 3122 0.11040 0863

3.1 9.61 0.89420 1638 Sg.11337 - 8rTs

B -0.77575 5977 -0.11842 2055

3.05  9.3025 0.63741 8236 -0.12058 7225

-0.51585 2082 -0.12171 4132
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2° To get a Galerkin approximation of a periodic solution

of {1.7), we consider a trigonometric polvaomlial of the form
m

(4.9) x(t) = >, a_ cos (2n-1)t.
n=1

I1f x=x(t) 1is a solution of (1.7), then x=x(-t) and x=-x{t+m)
are also solutions of (1.7). This suggests the form.(4.9) of a
periodic solution.

We have computed solutioné of the determining equation by

Newton's method starting from

alf

where (a;, a,) (51, 52); is a solution of equation (4.4)
obtained in 1°., The Fourier coefficients appearing in the

determining équation have been computed by the following formula [2]:

2l
N
2

.
i

|

2w
d/r f(t) cos pt dt = - £(t.) cos pt.
N1 i i
0

A{p=1l,2,...,v ),

;where
: 2i-1 .
t; = —iﬁ-n (i=1,2,..., 2N)
and
N = v+l.

Table 2 shows. the values of coefficients ay obtained in the

above way with N=64.
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TABLE 2

€=1/8, w=4

n ay

1 2.88939 64903 -2.81264 00834
2 -0.01834 34265 -0.12557 78220
3 -0.00034 06838 -0.00232 01890
4 -0.00000 20357 -0.00007 13067
3 0.00000 00117 -0.00000 19406
6 - 0.00000 00002 -0.00000 00528
7 0.0 -0.00000 00014
8 . 0.0
15 0.0 0.0

e=1/8 , w=3.2

n a_. an

1 1.25671 76442 -1.14419 82013
2 -0.10489 29084 -0.11640 92077
3 -0.00052 42595 -0.00057 89532
4 0.00002 26175 -0.00002 82413
5 -0.00000 02233 -0.00000 07476
6 -0.00000 00080 -0.00000 00117
7 0.00000 00001 -0.00000 00003
8 0.0 0.0

15 0.0

- 12 -
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n- an
1 0.89416 37367 -0.77570 72093
2 -0.11558 04311 -0.11942 42151
3 -0.00029 52928 -0.00030 39846
4 0.00002 15640 -0.00002 06942
5 -0.00000 04842 -0.00000 07033
6 -0.00000 00063 -0.00000 00064
7 0.00000 00002 -0.00000 00002
8 0.0 0.0

15 0.0 G.o

=1/8 , w =3.05

n 2

1 0.63738 94700 -0.51581 553386
pA -0.1205%- 77217 -0.12171 4612C
3 -0.0001L5 - 03858 -0.00015 14040
4 g 0.00001 74607 -0.00001 45577
5 -0.00000 06320 -0.00000 @&7090
6 -0.00000 00038 -0.00000 00033
7 0.00000 00002 -0.000006 Q0002
8 0.0 0.0

15 0.0 0.0
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e=1/2 , w=4

B,
n n e s
1 1.46165 38180 -1.38496 30370
2 -0.04555 49212 '~ -0.09836 10693
3 -0.00084 49916 -0.00180 57494
4 0.00000 59508 -0.00007 68957
5 0.00000 02492 -0.00000 26025
6 -0.00000 00018 -0.00000 00865
7 -6.00000 00001 ~ -0.00000 00030
8 0.0 -0.00000 00001
. . 0.0
15 0.0 0.0
5 e =1/2, w=3.2
an . "é'n'
1 ¢.64303 26531 -0.53088 90496
2 -0.10832 12797 -0.11289 93867
3 -0.00051 45997 -0.00053 17972
4 0.06005 10049 -0.00004 80110
5 -8.00000 13945 -6.00000 23212
6 -3.00000 00368 -0,00003 060375
7 0.00000 00014 -G.60000 00019
8 0.0 -0,00000 00001
9 ' 0.0
0.0 0.0

- 14 -
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B e=1/2, w=3.1
n an an
1 0.45439 19264 - . ~0.33641 48660 .
2 -0.11695 64970 ;- -0.11793 31876 :
3 -0.00026 33429 - -0.00026 41626
4 ¢.00004 53681 - ~0.00003 46282
5 -0.00000 22006 . -0.00000 25224
6 -6.00000 00253 -0.00000 00203
7 0.00000 00017 -0.00000 00015
8 0.0: -0.00000 00001
9 0.0
is 0.0 g.0
s e=1/2, ©=3.05
n a, a’nv'
H 0.31340 53558 -{.19237 42156°
2 -0.123113 75427 -0.12103 80304
3 -0.00011 05583 -§.,80011 03701
4 6.00003 47781 -0.,00002 ‘13758
5 -0.00000 26472 -G.00000 27122
] -0.00000 00131 -3.00000 00086
7 0.00000 00015 -(.00600 00010
8 -0.00000- 00001 -0.00000 00001
9 g.0 0.0
15 0.0 0.0

- 15 -
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C’1 e=1, w=4
It n a
1 1.04265 32218 -0.96604 ~ 99115
2 -0.05366 54105 -0.09024 34248
3 -0.00099 23715 -0.00164 48577
4 0.00001 80707 -0.00008 58323
5 0.00000 04148 -0.00000 33351
6 -0.00000 00123 -0.000600 01232
7 -0.00000 00002 -0.00000 00049
g8 0.0 -0.,00000 00002
g : 0.0
15 0.0 0.0
CZ E:ls w=3.2
n a
n
1 0.45801 73216 -0.34637 31608
2 -0.10946 46843 -0.11164 50565
3 -0.00048 31870 -0.00048 78993
4 0.00007 49046 - -0.00006 06922
5 -0.00000 31416 -0.00000 42355
6 -0.00000 00747 -0.00000 00644
7 0.00000 00045 -0.00000 00045
8 -0.00000 00001 -0.00000 00002
9 0.0 0.0 '
15 0.0 0.0
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C €=1, w=3.1

n a

1 0.31600 21647 -0.19866 15617
2 -0.11741 22723 -0.11732 07872
3 -0.00021 64496 ©-0.00021 57463
4 0.00006 37913 -0.00004 03006
5 -0.00000 45871 -0.00000 48456
6 -0.00000 00459 -0.00000 00309
7 0.00000 00050 -0.,00000 00033
8 -0.00000 00002 -6.00000 00002
9 0.0 0.0
15 0.0 0.0

c, e=1, w=3.05

n an

1 0.19874 95570 -0.07843 84541
2 * -0.12123 55889 -0.12075 36311
3 -0.00005 65814 -0.00005 70524
4 0.00004 42107 -0.00001 73127
5 -0.00000 53693 -0.00000 53370
6 -0.00000 00176 -0.00000 00078
7 0.00000 00039 -0.00000 00015
8 -0..00000 00002 -0.00000 00003
9 0.0 0.0
15 0.0 0.0
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5.. Existence of subharmonic solutions, error estimation of

Galerkin approximations and stability of subharmonic solutions

Equation (1.7} is equivalent to the system

dx _
a? =Y
(5.1)
g% = - —ggz-’(x%xs) + %cos“ 3t.

The Jacobian matrix ¥(x,y,t) of the right member of (5.1)

with respect to x and y is

. . 0. - 1
(5.2} ¥(x,y.t) = » .

' - é%{l+3€xz} [
For an approximate solution (x;y} = (x{t), ¥ (t), we»theh.
have 7

letx,y,t1 - vizen, 5,0l = 2L el o

p13

Px - Z\E(t)§§__6;,
then we: have
.9 oyt - o50,500,0 I e sl
(5.3} Yix,y,t] VIX(E), ¥ ()t i35 e s (8+2ix(t) ).

Thus for sustem (5.1}, condition (3.5) is satisfied if

2—; €6 (6+2 max Ix(0)]) £
(5.4) -t

Mr
1-x

A

8

-

- 18 -~
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The method of verification of the above inequalities will
be illustrated with an example.
Consider the case where e=1/8, w=3.05 (&=9.3uZ5; and
(5.5) X(t) =0.63738 94700 cos t - 0.12059 77217 cos3t
-0.00015 03858 cos5t + 0.00001 74607 cos7t
-0.00000 06320>c059t - 0.00000 00038 cosllt
+0.00000 00002 cosl3t. -

First, putting

2 | < -
d X(‘g) + 2 [R(t)+eX0(8)] - = cos3t = decos(Zk-l)t,
at Q @ k=1 "

we compute

which is found to be 0.86207 96094x10" %

Iy

or {5.5).

Hence we may take 1 so that
: . : -9
(5.6) r = 8.63x10 .

Next, by the author®s method devéleped in {3,4}, we compute
the fundamental matrix &(t) of the first variation equation

of (5.1) with respect to (x,y)=[X(t), dX(t)/dt] 1in the form

1 3¢ £
o(t) = 5A5 * Z’i AT (-1,
n:

where Tn(t) (n=1,2,...,30) are Chebyshev polynomials.

- 19 -
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>By (3.2), we then compute

H(t_, t (P,q=0,1,2,...,256),
( P q) ‘ q ,256)

where

t, = pr/128 (p=0,1,2,...,256).

Making use of the values of H(tp, tq) obtained, we compute

the integrals

k)

2%

\j :Ej Héxﬁtp,s)ds (p=0,2,4,,.., 256)

) k,2

by Simpson's rule with mesh h=1/128. By (3.3}, we then compute
2n '

[2 7emax ‘} 2: Hﬁl (t ,S)dﬁllfz >
voody kR ' P

which is found to be 3.10143 694242103 for (5.5). Hence for

(5.5), we may taks M s¢ that
(5.7) | M= 101.5
Now for (S.S},
(5.8) max |x(t)l = 0.75815 56742.

t

Hence by (5.6), (5.7) and (5.8), the inequalities of (5.4) can

be written as follows:




27 ,
ooz X 0.125 x ( +1.51631 13484) § <
(5.9)
101.5x8.63x10°°
1- «
Since
101.5x8.3%x10"7 = 8.75945x10"

we assume tentatively that

(5.10) §< 9x1077.

’

S S
101.5 °

Then the first inequality of (5.9) is satisfied if

27
9.3025

that is,

9.3

x0.125%1.51631 22484x8<

025

27x0.125%1.51631 22484x101.5

= 0.01790 8374 ..

o F Ko

K
101.5°

Then both inequalities of (5.9) are satisfied if

7

(5.11) -

Consider the inequality

(5.12) 8.75945%10 "

Since

8.75945x10" /

0.01790

8.75945%107 " 5 .

0.01790 .

0.01790< (1-K).

4.893547

21 -

...X10
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we rteadily see that inequality (5.12) is satisfied by

(5.13) < = 5x107°.

For this value of «k ,

7 7

8.75945%10 ° _ g 75088 79943 ...x107/,

1-¢

6.01790¢ = 8.850 ...x107 .
Hence taking into account the inequality (5.10}, from (5.11)

we have-

7 7

(5.14) 8.75989%x10 ‘< & < B8.950x1¢™ ",

which shows the existence of the positive numbers & .and ¢ < 1
satisfying (5.4). Thus by Theorem Z we see the existence of

an isolated periodis selution xaﬁ{t} of (1.7} such that
£5.15) 120e) - %X(t)ls 8.760x107° .

This proves that (1.7} really possesses a subharmonic solution

close to x=x(t) given by (5.5) and further that the approximation

. , . . e or e . -7
(5.5} of a subharmonic solution is within the error bound 8.760X10 .

Now, if x=X(t) is a periodic solution of (1.7}, then
xz?(—t) and x=—§(t+w) are also periodic solutions of (1.7).

However by (5.14) and {(5.15},
Ix-o-xml = [5¢-o-%¢-olgs

[-R(e+m 1-X(0)] = [[-R(e+m) 1-[-X(e+m) 7] &6 -



gince there exists only one periodic solution in D6 by

Theorem 2, we then see that

Rty = R(eem) = X(v),

which shows that x=§(t) isrof.thequtm

oo

(5.16} ;(t) = 2{: ancos(Zn"l}t.
n=1

Erom the value of 4(2n), we readily see that the eigen-

values A, 7\2 of (2w} are
Ais ho = 0.99321 0Z880 + $5.11633 281211,

which implies

»

(5.17) x(t) = -e.sissi 55306 cos t - 0.12171 46120 cos3t
-0.00015 14040 cos5t - 0.00001 45577 cos7t
-0.00000 07096 cosSt - 0.00000 00033 cosllt
© -0.00000 00002 cosl3t,

we have

r=1.31x10"8,  M=123.7.

-‘23 -
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Hence we again gel the assurance for the existence of a subharmonic
solution, and for (5.17), we get the error bound 1.6207XI0"6.

However in this case, the eigenvalues of &(27) are found to be

1.09964 4524 and 0.90938 47852,

which show that the subharmonic. solution close to (5.17)} is

unstable..
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