An uncountable number Of II1 , II....-factors Shôichirô Sakai

1. Introduction. Recently, great progress has been made in the investigation of the isomorphism classes of II_1 -factors ([1], [2], [4], [6], [7], [8]).

In particular, McOuff [4] proved the existence of a countably infinite number of II_1 -factors on a separate Hilbert space.

In this paper, by using the method of McDuff, we shall show the existence of an uncountable number of non-isomorphic II,-factors on a separable Hilbert space.

Moreover, by using this result and tensor products, we shall show the existence of an uncountable number of II_{∞} factors on a separable Hilbert space.

Concerning III-factors, Powers [11] has shown the existence of an uncountable number.

Added in proof. After writing this paper, the author received other two papers of McDuff [9], [10] in which she proves the existence of an uncountable number of II_-factors. But, the construction is different from ours.

- 2. Construction of examples. Suppose G_1 , G_2 ,; H_1 , H_2 , are two sequences of groups. We denote by (G_1 , G_2 ,; H_1 , H_2 ,) the group generated by the G_i 's and the H_i 's with additional relations that H_i , H_j
 - A) Susperted in part by Hational Science Foundations.

commute elementwise for $i \neq j$ and G_i , H_j commute elementwise for $i \leq j$. This situation was considered in [2].

Let $L_1 = (G_1, G_2, \ldots; H_1, H_2, \ldots)$ with $G_i = Z$, and $H_i = Z$ for all i, where Z is the infinite cyclic group. Define L_k inductively by $L_k = (G_k, G_2, \ldots; H_1, H_2, \ldots)$ with $G_i = Z$, $H_i = L_{k-1}$ for all i and $k \ge 2$.

Let I be the set of all positive integers and let I_1 be a requence of positive integers. nand subset of I:

Let $M_n(I_1) = \sum_{i=1}^n \bigoplus_{p_i} L_{p_i}$, if $I_1 = (p_1, p_2, \dots)$ is infinite, and $M_n(I_1) = \sum_{i=1}^n \bigoplus_{p_i} L_{p_i}$ for $n \leq n_0$ and $M_n(I_1) = M_{n_0}$ for $n > n_0$, if $I_1 = (p_1, p_2, \dots, p_{n_0})$ is finite.

Let $G[I_1] = (G_1, G_2, \ldots; H_1, H_2, \ldots)$ with $G_i = Z$ and $H_i = M_i(I_1)$ for all i.

For a discrete group G, U(G) is the W^* -algebra generated by the left regular representation of G.

As a corollary, we have

Corollary 1. There exists an uncountable number of non-isomorphic II_1 -factors on a separable Hilbert space. To prove Theorem 1, we shall provide some considerations.

Definition 1 ([4]). For a W*-algebra U(G) we shall write $(U(G))_1$ to denote the unit sphere of U(G). If B and C are subalgebras of U(G) and $\delta > 0$, then we shall write B \subset C to mean that given any T \in (B)₁; there exists some S \in (C)₁ with $||T - S||_2 < \delta$ where $||x||_2$ is the $L^2(G)$ -norm of x, when U(G) is embedded into $L^2(G)$ canonically.

Let A = U(G). A bounded sequence (T_n) of elements of A is called a central sequence, if for all X \in A, $\|[X_i , T_n]\|_2 \to 0 \ (n \to \infty), \text{ where } [\quad] \text{ is the Lie product.}$ Central sequences (T_n) , (T_n) in A are called equivalent, if $\|T_n - T_n\|_2 \to 0 \ (n \to \infty).$

Let H be a subgroup of a group G. H is called strongly residual in G, if it satisfies the following conditions: there exist a subset S of the complement $G \setminus H$ of H and elements g_1 , g_2 of G such that (i) $g_1Hg_1^{-1} = H$, (ii) $g_2 \cdot g_1 \cdot g_1 \cdot g_2^{-1} = G \setminus H$, (iii) $\{g_2^n \cdot g_2^{-n}\}_n = 0, \pm 1, \pm 2, \ldots$ forms a family of disjoint subsets of $G \setminus H$.

By the above definition, we can easily see that only one strongly residual subgroup of a commutative group G is G itself - in this case, S is the empty set.

Lemma 1 ([4]). Let G_i ($i=1,2,\ldots,n$) be a finite family of groups and let H_i ($i=1,2,\ldots,n$) be a subgroup of G_i . Suppose that H_i is strongly residual in G_i for each i, then $\sum_{i=1}^n \bigoplus H_i$ is strongly residual in $\sum_{i=1}^n \bigoplus G_i$. Let H be a strongly residual subgroup of G, then H must

contain the center of G.

Let $\{H_n\}$ be a sequence of subgroups of G. $\{H_n\}$ is called a residual sequence of G, if it satisfies the following conditions: (i) H_n is strongly residual in G; (ii) $H_n = H_{n+1} \oplus K_n$, where K_n is a subgroup of G; (iii) $\bigcup_{n=1}^\infty H_n$ = G, where H_n is the commutant of H_n in G.

Let G_i ($i=1,2,\ldots,m$) be a finite family of groups and let $\{H_{i,n}\}$ ($i=1,2,\ldots,m$) be a residual sequence of G_i then $\{\sum_{i=1}^m H_{i,n}\}$ is a residual sequence of $\sum_{i=1}^m G_i$. Any central sequence in U(G) is equivalent to a central sequence whose elements lie in U(H), if H is canonically considered as a subalgebra of U(G), and H is strongly residual in G.

Definition 2 ([4]). A sequence (T_n) in the unite sphere (A)₁ of $A = \mathcal{U}(G_n)$. is an ϵ - approximate central sequence, if $\limsup \| [T_n, X]\|_2 < \epsilon$ for all $X \in (A)_1$. The set of all ϵ -approximate sequences is denoted by $C_A(\epsilon)$.

If H is strongly residual in G, then for all $(T_n) \in C_U(G)$ (c), there exists a sequence (T_n) in the unit sphere of U(H) such that $\lim\sup\|T_n-T_n\|_2 < 14 \in (cf. [3], [5], [6])$.

Let $G = (G_1, G_2, \ldots; H_1, H_2, \ldots)$ with $G_i = Z$ and let $Q(G, n) = \sum_{j=n}^{\infty} \bigoplus H_j$ and $Q(G, m, n) = \sum_{j=m}^{n} \bigoplus H_j$. Then, $\{Q(G, h)\}$ is a residual sequence in G. Let $(\bigcap_k | k = 1, 2, \ldots, Y)$ be a finite family with the form $\bigcap_k = (G_1, G_2, \ldots; H_1, H_2, \ldots)$ with $G_i = Z$. Let $Q(\sum_{k=1}^{\infty} \bigcap_k | n) = \sum_{k=1}^{\infty} \bigoplus Q(\bigcap_k | n)$ is a residual sequence in G. This residual sequence is called the

canonical residual sequence.

penote $Q(\sum_{k=1}^{r} \oplus \mathcal{T}_{k}^{r}, n, m) = \sum_{k=1}^{r} \oplus Q(\mathcal{T}_{k}^{r}, n, m).$

A group G is called of type 0, if it is commutative G is called of type i, if $G = \sum_{j=1}^{n} \Theta G_{j}$ with $G_{j} = L_{i}$; G is called of type i_{∞} , if $G = \sum_{j=1}^{n} \Theta G_{j}$ with $G_{j} = L_{i}$; G is called of type $(i_{1}, i_{2}, \ldots, i_{n})$, if $G = \sum_{j=1}^{n} \Theta G_{j}$, where G_{j} is of type i_{j} ; G is called of type $(i_{1}, i_{2}, \ldots, i_{n})_{\omega}$, if $G = \sum_{j=1}^{n} \Theta G_{j}$ and some of G_{j} are of type i_{j} and others are of type i_{j} .

Now let $U(G[I_1]) = A$ and $U(G[I_2]) = B$. Suppose that A is *-isomorphic to B. Then, under the identification A = B, we have two expressions $U(G[I_1])$ and $U(G[I_2])$.

Henceforward, we shall assume that A = B and conclude a contradiction.

Lemma 2 ([4]). For $\delta > 0$ and a positive integer n_1 there exists a positive integer n_2 such that $U(Q(G|I_2], n_2)) \subset U(Q(G[I_1], n_1))$

Moreover, since $U(Q(G[I_i], n, n + 1))$ is a factor, we have

Lemma 3 ([4]). For a positive integer m_2 with $m_2 > n_2$, there exists a positive integer m_1 such that $m_1 > n_1$ and $g(G[I_2], n_2, m_2)) \subset U(Q(G[I_1], n_1, m_1))$.

Now let $I_1 = (p_i)$ and $I_2 = (q_j)$. Without the loss of generality, we can assume that $q = q_1$.

For $t = 10^{4}$ l, by applying Lemma 2 for I_{1} and the symmetric form of Lemma 2 for I_{2} , we can choose positive integers n_{1}

• • • • • • • • •

Then, by Lemma 3, we can choose positive integers m_1 , m_2, \ldots, m_t such that $m_2 > m_4 > \ldots > m_t$ and $m_1 > m_3 > \ldots > m_{t-1}$ with $m_t > n_t$ and $U(Q(G[I_2], n_t, m_t)) \subset U(Q(G[I_1], n_{t-1}, m_{t-1})) \subset \ldots$

Since $Q(G[I_i], h, k)$ is a finite sum of the form $(G_1, G_2, ..., H_1, H_2,)$ with $G_i = Z$, it has the canonical residual sequence $\{Q(Q(G[I_i], h, k), n)\}$.

For simplicity, we shall denote $Q(G[I_i], h, k)$ (resp. $Q(Q(G[I_i], h, k), n)$) by $Q_i(h, k')$ (resp. $Q_i^2((h, k), n)$.

Lemma 4. Suppose $U(Q_1(h, k)) \subset U(Q_2(i, j))$ $Q \in U(Q_1(p, q))$ with h > p and q > k.

Then for arbitrary positive integers r and w, there exists a positive integer s such that $U(Q_1^2(h, k), s)) \stackrel{(lo)^3 \delta}{\subset} U(Q_2^2(i, j), r)$ and s > w.

Proof. Suppose this is not true, then there exists $T_n \in (U(Q_1^2((h, k), n)))_1 \text{ for each } n \text{ with } n>w \text{ such }$ that $||T_n-S||_2 \geq (10)^3 \delta$ for all $S \in (U(Q_2^2((i, j), r))_1.$ Since $\{ \cdot Q_1^2((h, k), n) \}$ is a residual sequence in $U(Q_1(h, k), (T_n))$ is a contral sequence in $U(Q_1(h, k))$. On the other hand, $Q_1(p, q) = Q_1(h, k) \oplus C$, where C is a subgroup of $Q_1(p, q)$; hence (T_n) is a central

sequence in $U(Q_1(p, q))$. Now, take $T_n \in (U(Q_2(i, j))_1$ such that $||T_n - T_n||_2 < 9 \delta$ and for arbitrary $X \in (U(Q_2(i, j))_1, j)_1$, take $X \in (U(Q_1(p, q))_1$ such that $||X - X|| < 9 \delta$. Then,

$$\begin{split} &||[X',T_n']||_2 = ||[X',T_n'-T_n]||_2 + ||[T_n,X]||_2 \\ &+ ||[T_n,X-X]||_2 \le 2 ||T_n'-T_n||_2 + ||[T_n,X]||_2 \\ &+ 2 ||X-X'||_2 \;. \end{split}$$
 Hence lim sup $||[X',T_n']||_2 \le 18 \; \delta \; + 18 \; \delta \; < \; 37 \; \delta \;.$ Therefore, there exists a sequence (T_n') in ($U(Q_2^2(i,j),T_n')$)

This is a contradiction and completes the proof.

Applying this lemma for I_1 and the symmetric one for I_2, there exist positive integers r_2 , r_3 ,..., r_t such that $r_2 < r_4 < \dots < r_t$ and $r_3 < r_4 < \dots < r_{t-1}$ and U(Q_2^2 ((n_t , m_t), r_t)) \subset

 $U(Q_1^2((n_3, m_3), r_3)) \subset U(Q_2^2((n_2, m_2), r_2)).$

 $Q(G[I_1], n, m) = \sum_{j=1}^{m} \theta M_j(I_1) \text{ is of type } (p_1, p_2, p_m).$ Then, $Q_1^2((n,m), r) \text{ is Of type } (p_1-1, \dots, p_m-1)$.
Therefore, at this time, $Q_1^2((n, k), r) \text{ might contain}$ a type 0 -group as a direct summand.

Now we shall define : for r < s, $RQ_i^2((h, k), (r, s))$ = the center of $Q_i^2((h, k), r)$: + $(Q_i^2((h, k), r)$: $Q_i^2((h, k), s + 1))$

```
For arbitrary positive integer s_t > r_t ,
there exist positive integers s4, s5,...., st such that
s_4 > s_6 > \dots > s_t and s_5 > s_7 > \dots > s_{t-1}
  U(RQ_2^2(n_t, m_t), (r_t, s_t)))
(r_2)^{s_6} U(RQ_1^2((n_5, m_5), (n_5, s_6)) \subseteq U(RQ_2^2((n_4, m_4), (r_4, s_4))).
               Q_2((n_{t-2}, m_{t-2})) = Q_2((n_t, m_t))
, where H is a subgroup of Q_2 ((n_{t-2}, m_{t-2})).
Now, consider Q_2^2((n_t, m_t), r) \oplus H in Q_2((n_{t-2}, m_{t-2}))
, then {Q_2}^2((n_t, m_t), r) is strongly residual in Q_2((n_t, m_t))
and so Q_2^2((n_t, m_t), r) \oplus H is strongly residual in
Q_2((n_{t-2}, m_{t-2})) for each r.
     On the other hand.
U(Q_1((n_{t-1}, m_{t-1})) \subset U(Q((n_{t-2}, m_{t-2})) \subset U(Q((n_{t-3}, m_{t-3}))).
Therefore, by the similar method with the proof of Lemma 4,
for each r there exists k with k-1 > r_{t-1} such that U(Q_1^2(n_{t+1},n_{t+1}),k) \subset
U(Q_{2}^{2}((n_{t}, m_{t}), Y^{-}) \oplus H).
Take r = s_{t} + 1, then for T \in (U(RQ_{2}^{-2} \cdot ((n_{t}, m_{t}), (r_{t}, s_{t}))))_{1}
   \subset (U(Q_2^2((n_t, m_t), r_t)))_1, there exists T \in (U(Q_1^2))
n_{t-1}, m_{t-1}), r_{t-1}))) such that ||T - T'||_2 < (10)^3 \delta
For X' \in (U(Q_1^2((n_{t-1}, m_{t-1}), k)))_1, take X \in (U(Q_2^2((n_{t-1}, m_{t-1}), k)))_1
n_t, m_t), r) \bigoplus H )) 1 such that ||x - x'||_2 < (10)^3 \delta, then
   || [T, X']||_{L_{\infty}} \le || [T' - T, X']||_{L_{\infty}} + || [X' - X, T]||_{L_{\infty}}
+ ||[T, X]||_2 < 2(10)^3 \delta + 2(10)^3 \delta
, because [T, X] = 0.
Hence, there exists T'' \in (U(Q_1^2((n_{t-1}, m_{t-1}), k))')_1 \cap
U(Q_1^2((n_{t-1}, m_{t-1}), r_{t-1}), where ( ) is the commutant of
```

the W*-algebra (), such that $\|T - T^*\|_2 \le 4.4(10)^3 \delta$ (cf. Lemma 4 in [4]). Hence, $\|T - T^*\|_2 \le \|T - T^*\|_2 + \|T' - T^*\|_2 \le (10)^5 \epsilon$ Clearly, $U(\Omega_1^2((n_{t-1}, m_{t-1}), k)) \cup U(\Omega_1^2((n_{t-1}, m_{t-1}), r_{t-1})) = R\Omega_1^2((n_{t-1}, m_{t-1}), (r_{t-1}, k-1))$. Take k-1 as s_{t-1} . The remained part is quite similar.

This completes the proof.

Remark. The proof of Lemma 5 is due to B. Vowden.

 $RQ_1^2((h, k), (i, j))$ is of type $(p_1-1, p_2-1, \ldots, p_k-1)$. and $RQ_2^2((h, k), (i, j))$ is of type $(q_1-1, q_2-1, \ldots, q_k-1)$. They might contain a type 0 group as a direct summand. $RQ_1^2((h, k), (i, j)) = D \oplus W$, where D is the center of $RQ_1^2((h, k), (i, j))$ and W is of type (i_1, i_2, \ldots, r_n) with $i_1 \ge 1$ for $u = 1, 2, \ldots, n$.

Now we shall continue this process by q_1 times . Then we have the following situation.

 $\begin{array}{l} \mathtt{U}(\Omega_t) \overset{\mathsf{Ko}}{\subset} \mathtt{U}(\Omega_{t,1}) \overset{\mathsf{Ko}}{\subset} \mathtt{U}(\Omega_{t,2}) \overset{\mathsf{Ko}}{\subset} \mathtt{U}(\Omega_{t,3}). \\ \\ \mathtt{where} \quad \Omega_t \quad \mathtt{contains} \text{ a type 1-group as a direct summand} \\ \\ \mathtt{and} \quad \Omega_{t-1} \text{ does not contain a type 1-group as a direct summand} \\ \\ \mathtt{:} \quad \mathtt{moreover} \quad \Omega_{t-2} = \Omega_t \overset{\mathsf{C}}{\subset} \overset{\mathsf{K}}{\subset} \overset{\mathsf{C}}{\subset} \overset{\mathsf{C}}{\subset} \mathtt{uberc} \overset{\mathsf{C}}{\subset} \mathtt{is} \text{ a subgroup of } \Omega_{t-2} \\ \\ \mathtt{:} \quad \mathtt{K} \text{ is a constant} \text{ , which does not depend on } \overset{\mathsf{C}}{\circ} \overset{\mathsf{C}}{\circ} \overset{\mathsf{C}}{\subset} \overset{\mathsf{$

and by the $q_1 + 1$ th process, we have $U(\Delta_{\ell}) \subset U(\Delta_{\ell-\ell}) \subset U(\Delta_{\ell-\ell})$

, where K1 does not depend on c.

Moreover, let $\Omega_t = E \oplus H$, where E is the center of Ω_t , then $\Delta_t = E \oplus E_1 \oplus W$, where E_1 is contained in the center of Δ_t and $E_1 = Q(L_1, n)$ for some n.

On the other hand, the center of Δ_{t-1} is same with the center C of Ω_{t-1} , because Ω_{t-1} does not contain a type 1-group as a direct summand.

Lemma 6. For $X \in (U(E_1))_1$, there exists an element $X' \in (U(C))_1$ such that $||X - X'||_2 < 10^2 \text{ K}_1 \text{ Å}$.

Proof. Put $X_n = X$, then (x_n) is a central sequence in $U(E_1)$; it is a central sequence in $U(\Delta_{\ell-2})$, because $\Delta_{\ell-2} = \Delta_{\ell} \oplus \Gamma$ for some subgroup Γ .

Let $Y' \in (U(\Delta_{i-1}))_1$ such that $\|X - Y'\|_2 \leq K_1 \delta$, then by the discussions in the proof of Lemma 4, $\|[Y', W']\|_2 \leq \int K_1 \delta$ for all $W' \in (U(\Delta_{i-1}))_1$; hence there exists a central element X' of $(U(\Delta_{i-1}))_1$ such that $\|X' - Y'\|_2 \leq 2 \cdot \frac{1}{2} K_1$; hence $\|X - X'\|_2 \|\|X - Y'\|_2 + \|X' - Y'\|_2 \leq 2 \cdot \frac{1}{2} K_1$; hence $\|X - X'\|_2 \|\|X - Y'\|_2 + \|X' - Y'\|_2 \leq 10^2 K_1 \delta$. This completes the proof.

Now we shall prove Theorem 1.

Proof of Theorem 1. $(U(E_1))_1 \subset (U(L_1 \cdot))_1 \subset (U(\Omega_t))_1$ by lemma 6, for $X \in (U(E_1))_1$, there exists an $X' \in (U(C))_1$ such that $\|X - X'\|_2 < 10^2 K_1 \delta$ for arbitrary $Y \in (U(L_1))_1$, take $Y' \in (U(\Omega_{t-1}))_1$ such that $\|Y' - Y\|_2 \leq K \delta$. Then,

Then,

 $|| [Y, X] ||_{2} \neq || [Y - Y', X] ||_{1} + || [Y', X - X'] ||_{2} + || [Y', X'] ||_{2} \neq 2K ||_{2} + 2 \cdot 10^{2} ||_{X_{1}} ||_{3}$

Hence there exists an element X \in U(L₁) \cap U(L₁) = (λ 1), where λ are complex numbers, such that $\|X - X^*\|_1 < 4(K + 10^2 K_1) = 0$.

We can choose σ as arbitrary small number ; hence $U(E_1)$ must be the center of $U(L_1)$.

On the other hand, $U(E_1)$ is not the center of $U(L_1)$, because $U(E_1) = U(\sum_{j \in n} (D_j H_j))$ with $H_j = Z$. This is a contradiction and completes the proof,

Next, we shall show the existence of an uncountable number of II_{∞} -factors.

Let F_2 be the free group of two generators g_1 , g_2 . Let S be the set of g F_2 which, when written as a power of g_1 , g_2 of minimum length, end with a g_1^n , $n=\pm 1,\pm 2,\ldots$, then it is clear that $S \cap g_1Sg_1^{-1}=...$ { e }, $g_1eg_1^{-1}=e$, and { $g_2^n Sg_2^{-n}$ } $n=0,\pm 1,\ldots$ are disjoint subsets of ... { e }, where e is the unit of F_2 ; therefore { e } is strongly residual .

; hence $\{\vec{T}_n\}$ is a residual sequence in \vec{T} .

Put $\vec{\phi}_n(\mathbf{I_1}) = \vec{T}_n \in Q(G.[\mathbf{I_1}], n)$ for $n=1, 2, \ldots$, then $\{\vec{\phi}_n(\mathbf{I_1})\}$ is a residual sequence in $\vec{T} \in G[\mathbf{I_1}]$.

Now, we shall show

Theorem 2. Let I_1 and I_2 be two subsets of I satisfying the conditions of Theorem 1, then $U(\nearrow \oplus G[I_1])$ is not *-isomorphic to $U(\nearrow \oplus G[I_2])$.

Proof. Since $\Phi_n(I_i) \ominus \Phi_n(I_i) = (\Gamma_n \ominus \Gamma_{n+1}) \ominus (Q(G[I_i], n) \ominus Q(G[I_i], n+L)), U(\Phi_n(I_i) \ominus \Phi_{n+1}(I_i))$ is a factor for $n = 1, 2, \ldots$ and i = 1, 2.

Therefore, we can apply the lemmas of McDuff [4]. Now. suppose that $U(\nearrow \oplus G[I_1]) = U(\nearrow \oplus G[I_2])$, then we have the similar situations with Lemmas 2 and 3 for two residual sequences $\{?, (I_i)\}$ (i = 1, 2).

On the other hand, $\Gamma_{n,n} = \Gamma_{n,0}\Gamma_{n}$ m < n has the strong residual subgroup $\{e\}$; hence we have the same relation with the previous case such that $U(Q_2^2((n_t, m_t), r_t)) \subset \dots$ $U(Q_1^2((n_3, m_3), r_3)) \subset U(Q_2^2((n_2, m_2), r_2))$. This is a contradiction and completes the proof.

Theorem 3, Suppose that I_1 , I_2 satisfy the conditions of Theorem 1 and let B be a type I -factor, then B \otimes U(\nearrow \oplus) G[I_1]) is not *-isomorphic to B \otimes U(\nearrow \oplus) G[I_2]).

Proof. B \otimes U(\uparrow' \oplus G[I_i]) = B \otimes U(\uparrow') \otimes U(G[I_i]) = B \otimes U(G[I_i]) \otimes U(R_n), where \otimes U(R_n) is the canonical infinite tensor product of { U(R_n)} (cf. [6] ; hence B \otimes U(\uparrow' \oplus G[I_i]) \otimes A is *- isomorphic to

B \varnothing U($\nearrow \varnothing$ G[I_i]) (i = 1, 2), where A is the hyperfinite II₁ -factor (cf. [6]).

We shall denote U($etarrow G[I_1]$) by N. Let etarrow be a normal, faithful semi-finite trace on B, and let etarrow T, (resp. etarrow T) be the normalized trace on N (resp. A), then $etarrow \infty T$, etarrow T, will define a normal, faithful semi-finite trace on B etarrow N A. Now, let E be a minimal projection of B, then E $etarrow 1_N$ is a finite projection in B etarrow N, where etarrow N is the unit of N; moreover (E $etarrow 1_N$) B etarrow N (E $etarrow 1_N$) = E etarrow N ; hence it is *-isomorphic to N.

For arbitrary positive α with $\alpha \leqslant \varphi \otimes \tau_* \otimes \tau_* (E \otimes 1_N \otimes 1_A)$, we have a projection P in A such that $\varphi \otimes \tau_* \otimes \tau_* (E \otimes 1_N \otimes P)$ = α , where 1_A is the unit of A.

Now suppose that B \otimes N \otimes A is *-isomorphic to B \otimes U($\uparrow \oplus$ G[I $_{2}$]) \otimes A. then there exists a finite projection E $_{1}$ in B \otimes N \otimes A such that E $_{1}$ (B \otimes N \otimes A)E $_{1}$ is *-isomorphic to U($\uparrow \oplus$ G[I $_{2}$]) \otimes A.

Take $P_0 \in A$ such that $n_0 \notin \mathcal{T}, \notin \mathcal{T}$ (E $\otimes 1_N \otimes P_0$) = $\emptyset \in \mathcal{T}, \otimes \mathcal{T}$ (E₁) for some positive integer n_0 .

Then, there exists a family $(E_{1,i}|i=1,\cdot 2,\ldots,n_0)$ of mutually orthogonal , equivalent projections in B \otimes N \otimes A such that $E_{1,i} \sim E \otimes 1_N \otimes P_0$, $E_{1,i} \leq E_1$ and $\sum_{i=1}^{n_0} E_{1,i} = E_1$.

Since $E_{1,i} \sim E \otimes l_N \otimes P_0$, $E_{1,i}(B \otimes N \otimes A)E_{1,i}$ is *-isomorphic to $(E \otimes l_N \otimes P_0)$ $(B \otimes N \otimes A)$ $(E \otimes l_N \otimes P_0)$.

On the other hand, $(E \otimes l_N \otimes P_0)$ $(B \otimes N \otimes A)$ $(E \otimes l_N \otimes P_0)$. $E \otimes N \otimes P_0 A P_0$; since $P_0 A P_0$ is *-isomorphic to A,

 $E \otimes N \otimes P_O A P_O$ is *-isomorphic to $N \otimes A$.

Since $E_1(B \otimes N \otimes A)E_1$ is *-isomorphic to $E_{1,i}(B \otimes N \otimes A)E_{1,i}$ \otimes B_{no} and so it is *-isomorphic to $N \otimes A$, where B_{no} is the type I_{no} -factor.

Hence, $U(f \oplus G[I_2]) \otimes A$ is *-isomorphic to $N \otimes A$.

Since $U(\lceil' \oplus G[I_i]) \otimes A$ is *-isomorphic to $U(\lceil' \oplus G[I_i])$, we have a contradiction, where i = 1, 2.

This completes the proof.

As a corollary, we have

Corollary 2. There exists an uncountable number of II po-factors on a separable Hilbert space.

References

- 1. W. Ching, Non-isomorphic non-hyperfinite factors, to appear.in Canadian J. Math. .
- 2. J. Dixmier and E. C. Lance, Deux nouve facteurs de type II1, to appear in Inventiones Math..
- 3. F. Murray and J. von Neumann, On rings of operators, IV, Ann. of Math. 44(1943), 716 808.
- 4. D. McDuff, A countable infinity of II1-factors, to appear.
- 5. L. Pukansky, Some examples of factors, Publ. Math. Debrecen 4(1956), 135-156.
- 6. S. Sakai, Asymptotically abelian II1-factors, to appear.
- 7. J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure appl. Math. 16(1963), 19 26.

- 8. G. Zeller Meier, Deux autres facteurs de type II], to appear in Inventiones Math.
- 9. D. McDuff, The revised form of [4]
- 10. D. McDuff, Uncountable many II1-factors, to appear
- 11. R. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann algebras, Ann. of Math., 86 (1967), 138 171.

University of Pennsylvania