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An uncountable number 0f IIj , ILs .-factars

Sh8ichir8  Sakai

1. Introduction. Recently, great progress has been
made in the investigation of the isomorphism cliasses of IIj-
factors ( [ 1), [2],[4), [6],(7], (8] ).

In particular, Mcpuff [4[ proved the existence of a countably
infinite-number of IIj~factors on a sépa;;g;e Hilbert space.
. In this paper, by using the method of NMcluif, we shall
show the existence of an uncountable number o: non4isomorphic

II,~factors on a separable Hilbert space.
Moreover, by using this result and tensor prodﬁCts, we shall
show the existence of an uncountable number of IIg
factors on a separavie Hilbert space,
Concerning IIi-Iactors, ?owers'[llI'has shown the exiSteﬂqe

of an uncountable number.

Added in proof. After writing this paper, the author
3
received other two papers of Mcomff [9], {10} in which she
proves the existence of an uncountable number of IIL—factors.f

But, the constr.ction is different from ours.

2. Construction of examples.  -‘Suppose Gy, Gz, +«+.--
; Hl’ HZ’ «+v... are two sequences of groups. We denote
by ( 61, Gy, ..... ; Hl, Hp, ..... ) the group generated by

’ ]
the Gj s and the Hjy s with additional relations that Hj , Hj

R 5“;}_,“.&;{ Al P;n'l“ f,:;, /~J/4j/;‘.;1..{f_ SNedvaer, ).,;.‘..z...'a'('.‘,.-)_'_ .
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commute elementwise for i ¥ j and G; H: commute elementwise

i
for i < j. This situation was considered in [2].

‘Let Ly = ( Gy, Gy, ++-+ 5 Hy, Hy, ..,. ) with Gj = 2,
and Hy =2 for all i, where 2 is the infinite c¢yclic group.
Define Ly inductively by Ij = ( Gy Goy +.. 7 Hp, Hos vene )
with G, = 2, Hj = Ig; for all i and k% 2.

Let I bg .the set of all p051t1ve integers and let I be
A Lepuence a,L/?.?,,fl wo erbigers
anmGabeeteGE=T Let Mn(Il) ILGBI‘i.’ if Iy = (pl,pz,.;.. )

(=
iz infinite, and I-'Ir(Il) = iOL o1

= for n £ ng and My (I;) =

Mp, for n > ng, if I = (pl,pz,..., pno) is finite.
Let G[Ij] = (G, Gp,++v-.; Hy,Hy,....) with G; =z and
H; = M (I3) for all i. |
For a discrete group G, U(G) is the W*~algebra generated by
the left regular representation of G.
Then, we shall show' the folldéwing theorem fepuences
Theorem 1. Let Iy = (py) and Iy = (qB) be two suksecs of
I such that 12 contains a positive integer q such that.culzly
q, o=k é I . Then, U(G[I;]) is not ¥*-igomorphic to
U(G[Iy]). In particular, U(G[Ij]) is not *-isomorphic to
U(G[Iy]), if I; and I, are two subsets of wwca positive integexrs.
and I; % I, as a set.
As a corollary, we have
Coroilary 1. There exists an uncountable number of
non-isomoﬁphic IIyj-factors on a separable Hilbert space.

To prove Theorem 1, we shall provide some considerations.



)

<

Definition 1 ( {4¢]). For a W*—algeb:a U4{G} we shall write
(U(G)§l o denote the unif sphere of U(G). If 3 and @ are
subalgebras of W{g} and § » 0, then we shall write B é c
to mean that given any T & (B)3; there exisgs some S &(C)y
with T - Snl<é‘where {lx;uz "is, the LZKG)~norm of = ,when
U.(GH.is embedded into LZ(G) canonicalily.

Let A = U(G). . A bounded sequence (T,) of elements
of A is called a central sequence, if for all X ¢ A,
(X, Tl f, » O (n>® ), where | . ] is the Lie product.
Central sequences (Tn) , (Tn' } in A are called equivalent, 1if
T, = i‘n'uz——> 0 (nvy % ).
Let H be a subgroup of a group G. H is called  strongly
residual in G, if it satisfies the following conditions :
there exist a subset S of ﬁhe complement G ~ H of H and
elemwnts gj, gz of G such that () gl“rigil =H, (I) ;
tUg189] = G ~H, ‘( i) { go® 5™ Jn=0,21, 22,...
forms a family of.disjoint subsets of G~ H.

By thz above definition, we can easily see that only one
strongly residual subgroup of a commutative group G is G itself

~ in this case, S is the empty set.

Lemma 1 ({4]). Let G3(i=1, 2,......, n ) be a finite
family of groups and let Hi( i=1, 2,....., n) 7 be a subgroup
of G;- Suppose that Hi is strongly residual in Gi for eacy
i, then ‘;?Z'I@Hi is strongly residual in :;% ® Gy .

Let H be a strongly residual subgroup of G, then H must
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contain the center of G. ’
Let {H, } be a sequence of subgréups of G. (Hy} is called
a residual sequence of G, if it satisfies the followir‘zg conditio-
ns : (1) H, is strongly residual in G ; (i) Hp = Hy41 @ Ky
, where K, is a subgroup of G ; (i ) Si,ﬂh. = G ,where
Hn‘ is the commutant of H, in G. |
Let Gy (i =1, 2,.....,m) be a finite family of groups and
let {Hi,n} (i=1,2,.....,m ) ke a residual sequence of Gi
then. { f_:l—a Hi n } is a residual sequence of ‘Zi,?: Gj
Any central sequence in U(G) is eguivalent to a central segquenc
whose elements lie in U(H), if H is canonically considered as
a subalgebra of U(G), and H < ostongly Yesidual o G .
Definition 2 ([4 1. A sequence ( T4) in the unite
sphere (A )] of A= U(G) . is an ¢ - approximate central
sequence, if lim sup ||[ T, , X Hi,<e for all X e (A)3.

The set of all e-approximate seqguences is denoted by Cale) .

If H is strongly residual in G, then for all (T,) & Cu(G)

ezt

(¢), there exists a sequence (Tn') in the unit sphere of U(H)
' Al

i such that lim sup [IT, - Ty I, < 14 € { cf. [3], [5], [6] ).

Let G = ( G3,Gp,.0..- i Hi,Hy,ennn ) with G; = 2 and

[ond ) n
let Q(G,n) = 2 & Hy and Q{G, m, n) = }:. @ H
j“’l J:rn_.

Then, { Q(G, n) } is a reridual seguence in G . Let ( Fk I
k=1, 2,....., ¥) be a finite family with the form [p =
(Gl; G2) ve e :Hl; Hz,----)WithGi=Z.

3 r :

Let (7@, »n) = Y @®@Q([, , n) is a residual
fuxt . R=| R

sequence in G. . This residual sequence is called the



‘canonical residual sequence.
v r
enote Q 2@‘ >, m) = Z@Q , D, M .
P P2 F}é ] ( T’ﬁ ’ )

A group G is called of type 0, "if it is commutative

. n .
G is called of type i, if G = 2.9 Gj with Gj = Li ;i S is
o 37
called of type iw , if G =30 Gj with Gj =L; i G is called
. =t : n
of type (iy , dp,eevves, ip ), if G =d%@ Gj , where Gy is
of type ij i G is called of type (i1, ip, ....,ip Jp,if

G = 53 D Gj and some of Gj are of type ij and others are of
. = e
trpe, iy
Now let U(G[Ip]) = A and U(G[I2]) = B. Suppose that
A is *fisomorphié to B. Then, under the identification
A= B, we have twc; expressions U(GIIl]) and U(G[Ip]).
Henceforward, we shall assume that A = B and conclude
a contradiction.
Lemma 2 ([4]). For d> 0 and a positive integer nj
there exists a positive integer n, such that
U(Q(GlIz], ny )) C  uUlQlGlIyl, ny))
Moreover, sinCe'U(Q (G[1i], n, n + 1)) is a factor, we
1ave
Lemma 3 ([4]). Fer a positive integer mp with my > no,
there exists a positive vinteger m; zach that my > njp and
HQGITL) , ngy mp )) € UIQ(GII), ny, mg ). |
Now let Iy = (pﬂ and Iy = ( ds ). Without the l‘oss
>t génerality, we can assume that g = g7 .
foxr ¢ =1oql, by applying Iemma 2 for Ij and the symmetric

form of Lemma 2 for I, , we can choose pcsitive integers ng

o e e e 000000



,n2,.........,ntsuch thatn2-<n4 < ng < <ﬁt"
and N3 < ng < ..o < ng.; and

& d
U(Q(e[1,], ng )) C vu(Q(elIzl, ney3)) & ...l

é U(Q(G[12], ny )) &f: u(Q(Glr1], ngy )).

Then, by Lemma 3, we can choose positive integers my,
Myseeseves, Mg such that my > my > > mg and
ml§ M3 > ceeeeeese > MW7 withmg > ng and r
U(Q(GII,], ng , m )) Ve U(Q(6I11], ne-1, me-1 )) /A

% b, n, m ).
Since Q(G[I;], h, k) is a finite sum- of the form (G1, Go, e
Hy, Hp, ..... ) with G; = Z, it has the canonical residual
sequence { Q(Q(G[1;], h, k), n) }. |
For simplicity, we shall denote Q(G[Ii], h, k) ( resp.
Q(Q(G[13], h, k ), n)) by @3¢, k) ( resp. Q:°( (b, X), n).
Lemma 4. Suppose U(Qi( h, k )) ‘C.é‘ U(Qz( i, 3 )
cig U(Q1(p, 9 )) withh > p and q > k.
Then for arbitrary positive integers r and w, there exists
‘a positive integer s such that U(le( h, k), s)) (/2)30“
U(Q22(i, j),r‘)and s > w.

Proof. Suppose this is not true, then there exists
T, € (U(le((h, k ), n)))1 for each n with n > w  such
that T, - S f, 2 (10)> §  for all § € (U(@x2((3, 3), )}z

Since { ”,le((h , k), n)) }is a residual sequence in
U(Q1(h, kX);, ( T,) is a central sequence in U(Q;( h, k )).

On the other hand, Qi(p, q) =@ (h, k) @ C, vhere

C is a subgroup of Q1(p, ¢ ) ; hence (T, ) is a central
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sequence in U(Ql(p, Q). _ Now, take Tn' § (U(Qz(i y 3001

such that [T, - Tn‘f5< 94 and for arbitrary x' € (U(QZ(

i, 3))1 » take X ¢ (U(Qy(p, @)y such that X - X <9d ,

Then, ' |
nrx,r dl, = 0x L T - Tl WO T, X Tl

+ U1y, X -x']112<=2 Nty = Toly + H{Tn » X 1l

w2 X = Xy .

Hence lim sup nex', Tn. 1, £ 186 + 18 § < 3714

Therefore, there exists a sequence ( Tn" } in ( U( Q22(Ai,j),

r )))q such that lim sup (T, = T lp< 14-376 .

Then, 1Ty = Tn I € W¥h = Tn 1y + HT4 = Tn (h< 1054 .
This is a contradiction and completes the prooi.

Applying this lemma for I3 and the symmetric one for

I, , there exist positive integers 13 , Y3,seeevecs s¥¢

such that ry < ry < vee e < Ty and-r3<:r4 < e K Teal
. (10,38
and U{ 022 (( ag , my ), r, ))j ' .o
)

U(Q1%((n3 » m3z), ¥3)) ”CO:) U(ng((nz , Mp), Ty ).
Q(Gl11], n, m = T@Mj(11) is of type (P1, P2, » Py -
Then, le( (n,m), 1) i;=6f type ( plel,.....f.., Pn-1 )
-Therefore, at this time , Qiz( ( h, k),‘r ) might contain
a type O -gfoup as a direct summand.
Now we shall define : for z < s, RQiz( (h, ), (z, s))
= the center of ;2 ((h, k), =) ..+ (0%, x), )

Q;2( (, ), s +1))



Lemma S. For arbitrary positive integer sy > Ty

there exist positive integers sy, Sgsee++++, St such that

Sy D Sg > eeeese > St and sg > Sy .eeees ¥ Spol

and S
{40)°e
URQy2(ng , mg ), (re, s))) € aaia.l.
lUe)d 005

C URQ%((ng , ms) (s, soDCURRIZ (g, my), (g4, 54))) -
Proof. Q ey , mp 2 3)) =Q(n ¢ m) @ K

, where H is a subgroup of Qo ((ng-p; me_2)) .

Now, consider 022(( ng , mg ), r) S Hin Qo ((neo, mpa2))

5 thén (}22((nt » M), r) is strongly residual in Q2((ng,m¢ ))

and so0 sz((nt, m), r) & H is strongly residual in |

Qo((ng_p, my_o)) for each r.

©n the other hand,

; ~
3

?d
U(Ql((nt -1 > mt_l ) < U(Q( (nt—2’mt—2)) - U(Q( (nt..3'mt-3) )) .

Therefore, by the similar method with the proof of Lemma 4, ;
for each r there exists k with k-1 >Teoq such that [/ (Qf({nw ny ) &)Ué_ld“
V(R (e, me 5, Y IOH ). 29 S
Take r = s, + 1, then for T « (URQ5S ((ng, me), (rg, st))))l
C (U2 ((ng, mg), T )))y , there exists T ¢ (U(Qy%((
B_y» .mt-l): ft-l )DDE] .suc'n that [T - T'Hi :’ (10)3 &
For X ¢ (U(Q12((ng-1, me-1), XK)))1 » take X ¢ (U(Q22((
Ng, mg), * Y& H )')l such that [ X - %' i2 < (.’1.0)3d~ , then
e, x 1H g T -7, X 1 4 N X =%, Tl
ol T, X1 < 2020°¢ #2034
, because [ T, X ] = 0.
Hence, there exists T . ¢ (U(le((nt-l, me-1 ), k) ')l N

U(le((nt_l, mt_l), rt_l), where ( ) is the commutant of
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the W ~algebra ( ), such that ;.T' - 7" i 4 (3'.0)3£3 ( cf.

Lemma 4 in J4] ). Hence, [T - 7' ,2~“T - T T

2

-, < (10)° ¢

Clearly, - U(le(('nt_l, m-1 ), k y N U(le( (Rpays™e-1) o

£ ) = RZ((ngoy, meop ), (ree1s k- 1))
Take kK = 1 as sg.1 - The remained part is quite similax.
This completes the proofl.

Remark. The proof of Lemma 5 is due to B. vowden.
RQl ((h, k), (i, 3)) is of type (p1-1l, p2-1,.:-., Px ~1).
and RQZZ((h k), (i, 3)) is of type (qi~1l, Qo = 3, +-ee,q~L ).

They might contain a type 0 group as a direct summand.
RQiz((h, k), (i, j)) =D @ W, where D is the center of RQiz(
(h, k), (&, 3)) and W is of type (iy, 12,.++v > rn) with '
iy 2 1 forus= 'l‘, 2, 4000, 0.
Define the canonical residual sequence of RQ_—;_Z((’n, k),
(i, §)) as follows ;  QRQ1%((h, ¥), (i, 3), n) =" D
® Q(wW, n). Quite similarly, we define the canonical
residual sequence of RQ‘22
Now we shail continue this process DY d3 times .
Then we have thfa following s_ituation. '
‘ Ko KNe Na
u(, ) ¢ Ul C Ul 2,,) & U fle3)
, where L2 . contains a type l-group as a.direct summand
and ﬂf-l does not contain a type l-group as a direct suamand
: moreover Q(-z = {i¢ & K, vhere ~ is a subgroup of (24,

: K is a constant , which does not depend on o .
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and by the qj + 'iL th process, we kave
Yy Yro
U(Q¢ ) & Ul &y ) U(dig)
, where Ky does not depend on ¢ ,
Moreover, .‘i.et {l¢=E @ H, where E is the center of [2 +» then
Ay = E @ E; @ W, where Ej is contained in the center
of & ¢ and E; = Q(Ly, n) for some n.

On the other hand, the center of 4,., is same with the
center ¢ of {2 ¢-| » because N ¢t.; does not contain a type
l-grolp as a direct summand.

Lemma 6. For X ¢ ( U(E;)) 1, there exists an element

x' € (U(c))y such that NX - x I,

¢ 10% K & .
Proof., Put X, = X, then (x, ) is a central sequence in
U(E;) : it is a central sequence in U(d,,), because
Aé;zn 4: o T for some subgroup |’ .
Let Y & (U(<&y.)) g such that X - Y H, < Ky ¢ . then by
the discussions in the proof of Lemma 4 , || { Y., W.] I, <
SKy § for all W e (U( A,4))1 ¢ hence there exists a ,

central element X' of (U(d4,, )y such that le' - _Y' iy

3

L t A ’ N
£ 225K : hence X =X P IX =Y iy +lIlx =¥,
< 102 Ky 5. This completes the proof,

Now we shall prove Theorem 1. , |
Proof of Theorem 1.  (U(Ep)); C (W(zg))y & (U(L2:));
::i (U(-Q(-l))l . By lemma 6, for X ¢ (U(El))‘l,
there exists an X ¢ (U(C))i such that X = x' i, < 1.021(1 &
For arbitrary ¥ ¢ (U(Lp))j, take ¥ e (U(.O{,,))l sucn that

Hy' - Y<K 5‘. Then, '
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Then,
WY, XJhw i Y-Y, X1 + [y, x=-x"11,

+hLY, x ] I, < 2K 4 + 2102 Ky ¢ . ’
Hence there exists an element X « U(Ly) N U(Ll)l = (A1),
where A are complex numbers, such that IIX - X"i5L< 4 (K +
0%k )4 -
We can choose o as arbitrary small number ; hence U(El)
‘must be the center of U(Lp). .

On the other hand, U(El) is not the center of U(Ll),

because U(E,) = U( ¥ @ H: ) with H:. = Z.
1 J=n J J

This is a contradiction and completes the proof,

Next, we shall show the existence of an uncountable number
of II, -factors.

Let Fy be the free group of two generators g1, 93 -

Let S be the set of g - F2 which, when written as a power of

n

g1 » 9o of minimum length, end with a ¢, n=+* 1, £2,...,,

then it is clear that § i nggi* = .4i\\ { e}, gleQI = e,

and { gm Sg2™ )} 4 = 0, ~ are difjoint subsets of

y v e v e 0 e

s ~{ e}, wiere e is the unit of F, ; therefore [ e )}

<.

is strongly residual .
A
4

Now let Rj = Fp for j =1, 2,..... and | = ’1(@ Ry .
v I):r

Put | = Eﬁ&)Rj , then ’ is strongly residual in |
' =n ' 1e)
, because [’ is strongly residual in T, and I & { ej}

”-! ST

is strongly residual im X & R. , where e; is the unit of

J 3
iy (:"'
Rj ;: hence T;GD R, is strongly residual in 7.
. d_.n ) W ;\_’ - __—_
Moreover 7 37, = R, and }{ 5, = 2 & Ry = |

a°



: hence { [} is a residual sequence in | .

Put 3 (I;) = 17/ @ Q(G.[I1], n) forn=1, 2,.... ,
then {Ea(ll) } is a residual sequénce in 1~ @ G[{I1].

Now, we shall show

Theorem 2. Let I; and I, be two subsets of I satis-
fying the conditions of Theorem 1, then U(T@® G[I1]) is not
*~isomoxphic to U( 7 & G{Iz]).

Proof. - Since 7,.(I;) @ §nﬁli) = (TLeT,)6e

t@(cl13], n) @ Q(G[If], n+L)), U( ¢ (1) @ équi)) is
a‘factor forn=1;2,..... and i = 1, 2..

Therefore, we can apply the lemmas of McDuff L 4].
Now. suppose that U( 7' G[Il]> = " U( 7 @ GlI,] ), then
we have the similar situations with Lemmas 2 and 3 for two
residual sequences {3, (I3) } (i=1, 2).

On the other hand, |7 -1 q

] - 7 "m<n has the strong
3o L T

residual subgroup | e} ; hence we have the same relation with
Uo)3d
the previous case such that U( Q22((nt, mt), rt) C ves e
yerd re)td

& U(Q12 ((n3, m3), ry ) U(Q2%((ng, my) , 1y ).
This is a contradiction and completes the groof.

Theorem 3, Suppose that I,, Ip saté%y the conditions
of Theorem 1 and let B be a type I —-factor, then B @ U( [7®
G{Iy1) is not *-isomoxphic to B¢ U( & G[Izl). |
Proof. B % U( T @ G[I;] ) =Be U(T ) ® U(G[I;1)

o e

‘= B & u(GIy]) « W' U(Rp), where @§ U(R, ) is tha

ot 2R ]

canonical infinite tensor product of { U( R,)} ( cf. [6]

; hence B & U( T'2 GJIj] )& A is *- isomorphic to
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BU(ToG6l1yl) (i=1, 2), where A is the hyperfinite
11y -factor ( cf. [6]).
We shall denote U( 7® G[I;]) by N. Let ¥ be a normal
, faithful semi-finite trace on B, and let T, ( resp. T )
be the normalised trace on N ( resp. A}, then ¥®7,67 will
define a normal, faithful semi-finite trace on B @ N & A.
Now, let E be a minimal projection of B, then E @ 1y 4is a
finite projection in B ® N , where ly is the unit of N ;
moreovexr (B & lN) B @ N(E ® 1y) =E @N ; hehce it is
*<isomorphic to N.
For arbitrary positive « with d < ¢eLeR(E G ly @ lA)
, we have a projection P in A such that ¢oreh( EE Iy ® P) .
= , where lA is the unit of A.
Now suppose that B ® N ®A is *-isomorphic to B & u(Toe G{IZZ,])
@ A. then there exists a finite projection E; in B& N®& A
such that El(B ®N @ A)E; 1is *~isomorphic to U(T@ G[IZ]1)& A
Take Pg ¢ A such that ng ¢er,e 7 (B & ly @ Po) = |
9@ T, € T, (E]) for some positive integer ng.
.T’hen, there exists a family (El,il i=1,32,.... ,né) of
mutually drthogonal , equivalent projections in B® N ® A
such; that Ep ;3 ~ E@ lN & Po , B1,i £ Ep and
T Bi,; = Ep o ,
Since E} ; ~ E ® 1y @ Po, E1,i(B € N @A)y 5 is
#~isomorphic to (E & ly @ Pp) (B @ N @A) (E & 1y & Pg).
On the other hand, (E & 1y & Pg) (B @ N & A) (E@ 1y & Bo)

= E ® N& PoAPg ; sinee PgAPg is *-isomoxphic to A,
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E@ N ®P AP, is *-isomorphic to N® A.
Since Ej (B N (¥ A)E; is *-isomorphic to El,i(B¢3N<EA)El,i
® B,o, and so it is *-isomorphic to N @ A, where Bno is
~ the type Ino ~factor. '
Hence, U(T"® G(I,]) ® A is *-isomorphic to N ¥ A.
Since U([' & G[I;])(® A is *-isomorphic to U( " @ G[1i]),
we have a contradiction, where i = 1, 2.
This completes the proof.
As a corollary, we have

Corollaxy 2. ~ There exists an uncountable number of

IX ,,-factors on a separable Hilbert space.
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