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Abstracﬁ: A new process for accelerating the convergence
of the.relaxation method by making use of numerical integ-
rations together with numerical differentiations 1is proposed.
While the conventional S.0.B.(successive over relaxation)
requires about 0.36°N°D sweeps to solve Polsson's equation
in a square to the accurscy of D decimals by dividing it
into NxN meshes, the new process requires only 1.07(D+0.6)
(lOgloN+O.1) sweeps., Although the,computation needed per
sweep in the new process becomés several tiues wmore than
that in S.0.R., the total amount of couwputation decreases

considerably for large N.
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§1 Introduction and Heuristic HKemarks

The convergence rate of the relaxation method, which 1is
widely used for the numerical solution of elliptic partial
differential equations such as Polsson's equation, has been
considerably lmproved by the develbpment of S.0.R.(successive

1)

over relaxation) schemes.

1) D.J. Evans: "Estimation of the line over-relaxation
factor and convergence rates of an alternating direction
line over-relaxation tecknique", The Computer Journal,

Vol.?7, pp.318-321 (1964)

number
Nevertheless, there still exist a greatAof computational

problems in which the solution of Poisson's equations or

the simllar form bottle necks in the computational procedure.
Further acceleration of the relaxation procedure is highly
desirable, therefore, for many problems. In the following
treatmeht, for the sake of simplicity and clarity, we shall

focus our attention to the relaxation solution of the Poisson's

equation



b5 #(x,y)=S(x,y) in a unit square, 0O<x<l, O0<y<l and subjected
to the condition §=0 at the boundary.

In the relaxation method the squaré‘is divided into NxN
peshes of slze h=1/N, and the Polsson's equation i1s approxi-
pated by the finite dlfference equation
A*¢=(¢1+1’ J*¢1_1, J*”l, 5+i+¢1’ J-l-uﬂi, 3 )/h2=/°1, je .o (1)

The relaxation process starts from an initial function ¢§?J
and the result ¢§?J of the s'th sweep is computed according to
g, = g5t agargleslopo ) L(2)

where 1 and ) are made to run ffom 1 to N-1 during a single
sweep, the superscript (s,s-1 means to use the’new value

¢§?J for evaluating (1) if it has already been computed and
A1, Az, A3 ... are series of numbers called the successive
relaxation factors.

In the classical relaxation method, the same constant

hz/# 1s used for the relaxation factors throughout the entire

relaxation process. In this classical case, the error can be

31
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expected to decrease only by a factor of exp(—Ei’l/Nz)‘per
sweep in the average, where E%;lsis the minimum eigenvalue

of the elgenvalue problem

Ad +vmf'1¢ =0 ...(3)

and @ = 0 on the boundary square, and specially fE§,1=2n2
in the present case, ‘tlence, 1n case»the error in the initial
fungt1on ¢(0 is required to be suppressed by a factor of 10-D
or by a factor of D decimal figures, the total number S of
sweeps needed is glven by

s = 1oge1o-1>-uz/rs.§.1 =0.117-D-N%.  ...(%)

In the S.0.R., the S.0.R. fac£ors Ag's are made to
change 1n such a way as to lncrease the rate of convergence.
A suiltable cholce of the S.0.R. factors is known to glve a
convergence factor of exp(—JﬁEl’l/N) per sweep. Hence, the
number S of sweeps needed to suppress the error by a factor

of D decimals is given by

S = logg10-D+N//2Ey 1 = 0.3665:D°N, = ...(5)



which 18 much less than that in the classical method. The
amount of computation needed to solve Poisson's equation as
well as simlilar problems has thus been reduced considerably
py the developwent of the 5.0.B. metthod.

The nature of tre convergence rate of the relaxation
processes can be understood intuitively by tracing the diffu-
sion of errors. Let us suppose that the initial function
ﬂf?d has a delta function like error at (i',3'), namely,
argl® Py = m2 gt gy (6)

1,) 1,) 0y j .
By traclng,numerically‘or analytically, the behaviour of the
errors in the successive lterants, which are the values of
A*ﬂi?y-fnqj, the relaxation process will be found to be
nothing but a diffusion process of the errors towards the
boundary where they are absorbed and disappeared by virtue
of the boundary comndition. In the classical case, the errors
are made to diffuse by one mesh unit h=1/NV per sweep. Since

the mean distance of diffusion increases only as the square
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root of the time in diffusion processes, about N2 sweeps
will be needed to make a considerable portlon of the error
to diffus2 through N meshes so that they may be absorbed at
the boundary. Thils argument clearly 1ndicates the reason
why N° apears in the convergence rate formula (4) in the
classical case.

In the optimum S.0.R., the errors are made to diffuse
by /N mesh units per sweep in the average, which results in

2 in the rate formula (5).

the apearance of N instead of N
The situation is thus greatly improved in the S5.0.R..
Nevertheless, about N sweeps are still needed to make a
consliderable portion of the errors diffuse to the boundary.
If, therefore, a process which enforces the errors to be
diffused to the boundary in fewer sweeps could be deviced,
further acceleration of the relaxatlon method would be

possible,

The slowness of the convergence of the conventional



relaxation schemes may be ascribed to the local nature of

the difference operator A* of (1) used in the successive

correction scheme (2). Since the operator A* 1s the finite

di1fference analogue of the Laplacian differential operator A4,

1t

of

be

is

in

of

of

deals only wlth nearest nelghbouring sites. The correctlons
errors in the relaxation process (2), therefore, can only
local in its nature, while the diffusion of errors, which
the heart of the relaxation schemes, are essentially global
its nature. This situation may be ilmproved by making use
global operators such as the finite difference analogue

integration operators. For example, consider the integ-

ration of the following differential equation

df/dx + af = J(x-x‘), oo (7)

starting from x=0 and 4f/dx=0.

The result d4s..given by

f(x)=0 for'x<x' and' f(x)=exp{+al{x-x')))for x3zls' ...(8)
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Equation (8)
sited
indicates that the effect of a delta function,at the locality
x' propagates: to the +x direction to all x greater than x',
Similarly, by starting the integration of (7) from x=1 and
proceeding to the ~x direction, the effect can be made to
propagate : in the -x direction. The situation will be
essentially the same even if the integration of (7)
18 replaced by 1ts finite difference analogue.
Guided by heuristics as described above, a new relax-
ation process of the following form was deviced:
g%, = BTt + Lag)(A%{EI- Ly ), (o)
in which L(A;) is no longer a constant as in the conven-
tional relaxation scheme (2) but consists of the combination
of the finite difference analogues of integration operations
of the type (%). ﬂ?AS) also includes a series of parameters

As which are closely related to the integration parameter a

of (7), The new relaxation process of the type (9)



will be called S.I.D.R.(Successive Integro—Différentlal

Relaxation) hereinafter. The number of sweeps needed in

the S.I.D.B. will be shown to be proportional to log N
ineatead of N in the S5.0.B., Thus, a oconsiderable

reduction in the amount of computation will be achileved

especlally in case of large N.
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§2 The S..I.D.H. Algorithm

Before describing the finite difference algorithan for
the S.I.D.R., analytical formulss corresponding to the case
of infinitesimal h and infinite N will be glven, because
they are simpler and more tractable than the finite difference
formulas.

We now consider an iteration scheme of the following form
505 (x,y)=0 "1 (x,y)4L (8 ) @F(51(x,5)-Plx, 7)),  ...(10)
in which L(A )'s are linear operators including positive
parameters A;, A,, A3 ... to be called S.,I.D.B, factors.
The linear operator L(A) with a positive parameter A 1s déftnéd
to be the result of the following operations which map W,(x,y)
into w6(x,y):
Let a bg defined by
a=/A; ... (11)
Regarding y as a parameter independent of x, lntegrate
(L= +a)W (x,7)=0 (x,5)  ...(12)

dx
from x=0 and wl(o,y)=o in +x direction until x=1 to obtain



. Wl(xsy);
Integrate(—é§+a)wz(x,y)=wo(x,y) C o ees(13)

from x=1 and Wo(1,y)=-W3(1,y) in -x direction until x=0;
wj(x,y)*ﬂﬂl(X,y)+‘d2(x,y)-wz(0,y)1nh(a(l-x Y)/sinn(a); eeoflly)
d
Integrate (— +a)wu(X,y)=W3(x,y) ... (13)
dy
=0
from y=0 and W, (x,0), in +y direction until y=1;
d
Integrate(- — +alw_(x,y)=W_(x,y) ...(16)

from y=O and Wc(x,1)=-W,(x,1) in -y direction until y=0;

wé(x,y)=L(A)w0(x,y)

=-1-(wu(x,y)+w (x,y)-¥_(x,0)sinh(a(1l-y))/sinn(a)). ...(17)
2 5 5

Let sz(x,y) denote the devliation of the s'th approximate
function ﬂ(s(x,y) from the true splution #(x,y). Namely,
P2 0x, )28 e, 1) -B(x, 7). .l (18)
In terms of deviation ¥x,y), (18) can be rewritten as
¢s(x,y)=y;s-1(x,y)+L(As)ASV(S_l(x,y). «e.(19)
We shall make use of the following elgenfunction expansion

sz(x,y)=zm'nc£?n a,n{%¥), ...(20)
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where Q?m n(x,y) are the elgenfunctions of the elgenvalue
’
problem é
(A+E2 )1# (x,y)=0 and ¥. _(x y)=0 at the boundary (21)
m,n m,n "’ m,n*"? ¢
Specially for our present case of a unit 8 juare, the oigen-

vectors and the eilgenvalues Ei n 8 are given by:
9

E%’n(x,y)=sin(mnx)sin(nny), ...(22)

2 2 .2 22 22 -
Ep,n=E *E, =0 “+n“n” and E =mr, (23)

where m and n are positive integers,
From the construction of L(A), the elgenfunctions

gﬁ n(x,y) of the Lapalacian are slmultaneously the elgen-
’

functions of L(A) and the elgenvalue Qm of L(A) is given by
n

Q, o=2A/ ((Bo+a) (EZ+a)).  ...(24)

Hence, the eigenfunction expansion coefficients q(s of the
@,n

s'th deviation Y“S are readily obtained in terms of the eigen-

function expansion coefficients c(om,n of the initial deviation

y(o as

(s _ (0 & (Eg-ay)(E2-a,)
c ' =c >

B, m,n t=q (E§+At)(E§+At)

ee.(25)



Now proceeding to the finite difference case, L*(A),

41

which 1s the finite difference analogue of the operator L(A)

used in (10) and which 16 to be used in the iteratio scheme

of the form (9), 1s defined to be the result of the i'»llowing

erations mAappling W into W .
Op o O,l’J 6;1’J

Let a* be defined by

a*=/ A+A2ne/l -AR/2;  ...(26)

Corresponding to (12) integrate numerically the following
equation with a scale factor U

-wl;l_l,J)/h+a*w

=UW
(wl;l,J 1;1-1,) v 0;1,3

=(1-a*n)w +hUW . ...(27)

or Wi, 1;1-1,) 1,3

starting from Wi.0 J=O successively for 1=1,2,3... until
’

)
1=N;

- ot
Integrate ”2;1,3‘(1 a®h)w +huw (..(28)

2141 i1,

starting from ”2;N,J='w1;N 3 successively for i1=N-1,N-2,..
’
until 1=0;

W =W +W ~hUW W jrfas 1), LL.(29)

34,377151,3 7251, 0;1,3 2:0,



(4% 1) (1-a"h)N-1—(l-a*h)i"N (30)
h f ’1= ; oo
where 178 (1-a*n)N-(1-a*n)~N

After integrating (27), (28) and (29) for j=1,2,3...N-1, 1lntegrate
Wy, g, g=(1-2%h)Wy. g g+bUW5., ...(31)

starting from Wu.1 O=O successively for 3=1,2,3... until }=N;
by,

. = -'&— w Uw -co( 2)
Integrate d5;1’3 (1-a*n) 5;1’3+1+h 31,3 3

starting from ws;l’N=-wu;1’N successively
for j=N-1,N-2... until Jj=0;

We;1, 970" (Ao

+*
_.._(qu L, gt 5 " -hUw 1,J-w5;1,of(a b 3)), ...(33)

wwhere V 1s a correction factor given by

1
= (1+An2/8).U*

. ...(34)

The following formulas corresponding to formulas (18) to (23)
will be selfexplanatory.

Deviation: W(s _g(s -¢ {..(35)

The equations satisfied by the deviations:

¥ i® = piota g ap{sit. Ll 036)

Eilgenvector expansion: W{sj m,n® ;(3Wﬁ ;1,3 ee o (37)
?
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: 2
1 M A* =
Eigenvalue problem ( +Em,n)!ym,n;1,3 0 ...(38)

and ‘Qm,n;1,3=o at the boundary.

Eigenvectors: =gin(mrl/N)sin(ny/N).  ...(39)

‘Pm.n;l.J

Eigenvalues: E;2n=E;2+E;2=bN2(Blnz(mu/ZN)+sln2(nn/2N))
? .

and  EX2=4N%sin®(mn/2N9,  ...(40)

where m and n are positive integers less than N.

The elgenvectors ﬂ[ of the finite difference

m,n;i,)
Laplaclan A" are simultaneously the eigenvectors of L¥*(A)
and the elgenvalues Qg , of L*(A ) are given by
Qf n=2A /((EX%+a )(EXZ+a )),  ...(81)
which has exactly the same form as (24).

In exactly the same way as 1in (25), the elgenvector
expanslén coefficients c*(s of the s'th deviation W’ 1.3

1s readily obtained in terms of the elgenvector coefficlents

c*-(O of the initial deviation VAO as
4
o *‘
(5. *( s (Em At)(E At)

c e (b2)
w1, 0 (52, ) (57, )

It will be immediately noticed from (42) that the S.I.D.R.
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converges 1n case all 5.1.D,R, factors As's are fixed to a
single positive constant A, since the absc'ute magnitude of
the function (z-A)/(z+A) 15 less than unlty in case 2z and
A are both positive, Better sohemes for faster convergence
wlll be treated in the section 3.

We shall now estlmatevthe amount of computation in each
sweep of the S,I.D.R. algoritbhm and compare it with that of
the S.0.R.. Since the amount of computation greatly depends
upon the hardware and software of the cqmputef to be used,
only a very rough estimate will be meanlﬁgful as a machine
independent measure. In view of the single step operation
of the S.0.R. of (9), the part of computation time in a slnéle
sweep which 1s proportional to the meshes N2 in the S.0.R.
will be something like
T=N2(6ta+2tb+ts+6t1), oo (83)

_Where ¢t is the time to set a number from the memory in the

a

multiplicand register or to add it into or substract it from
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the accumulator, tm 1s the multiplication time, ts is
the time to store a number into the memory and ty 18 the
time to set the address of a new array element in the 1ndex
register. 1In S,1.D.R., the time needed for the evaluation
of Laplacian and substraction of /0 will be almost the same
as (43) except the number of multiplications, one per mesh
point instead of two. In view of formulas (27) to (34), the
best cholice of the scale factor U 1is U=Q=1/h, which reduces
about 6N2 multications per sweep., The stepwise numerical
integrations (27), (28), (31) and (32) will require
sz(ta¥tm+ts+2t1) of time per sweep. (29) will require
N2(3ta+tm+ts+2t1) of time provided that the function
f(a,1) of (30) is tabulated as an array. (33) combimed with
the addition in (9) together will require N2(5ta+2tm+t8+2t1)
of time. Therefore, the total time per sweep will be given by
T'=N2(18t,+8t 47t +18t,). ... (4h)

Let Ry denote the ratio of the two times T'/T evaluated
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by taking the multiplication time only into account and R
denote the ratié:evaluated by using a somewhat more realistlc
assumption:

ta=tg=ty and tp=bt . ...(L5)

From (43) and (44), these ratios become ‘BM=8/2=U and
R=75/21=3.57. If it had not been for the optimum cholce

of the scale factor U, the ratios would have been

RM=(8+8)/2=8 and R(75+32)/21=5.o9.



§3 Optimization of the Convergence of the S.I.D.R.

By convergence of S.I.D.R. we shall require that after
S iterations all of the elgenvector expansion coefficients
c;fi of the 3'th deviation be suppressed by a factor of D
decimals or by a factor Xk 1in comparison with the initial
coefficients c*(g. Namely,

1
*#(S *(o % !
‘cm’n < !cm’g[ kK ...(B5)
for =100 and for all m and n.
We define a function Fs(z) by
8=5 z—As
F_(z)=T (——=), oo (l47)
S 8=1" z4a
s
where Ag's are the S.I.D.R. factors. In view of (42),
the requirement (46) can be rewritten as
(Fq(z))°=F2(z)<k (48)
within the interval O<kBg=By<z<Bs,  ...(49)
in which B, and Bg are lower and upper bounds of E;Z's

of (40) and k 1is defined to be the ratio of the two

bounds: k=Bo/B551. In the present case of a unit square,
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the best cholces for the bounds and k are

By=E}Z, BG=Er2, and k=EX2, /E¥2=tan® (n/2N)>rP/N%.  ...(50)
The optimization of convergence of the S.I1I.D.R., therefore,
reduces to the problem of finding a set of S.I.D.R. factors,
for given k and k, which minimizes the total number of sweeps
under the requirements (48) and (49).

Not the optimum but a reasonably good convergence can be
obtained by the following very simple method which may be
called the octave method. Starting from A1=BO, we place one
A per octave until the b'th one A, exceeds Bg. Nameiy,
Ay=Bg, Az=2Bg, ... A =2PB>Bg=Bo/k.  ...(51)

Defining f(z) by
fb(z)=‘ﬂT(z—Al)/(z+A1))...((z—Ab)/(z+Ag), ...(52)

and using the fact that (z-A)/(z+A) <1/3 for A/2<z<2A,
i.e., for 2z within an octave from A, we readily obtain

Ifb(z)|5(1/3)2 within the interval B,<z<Bg, since there

are two A's within an octave from any z 1in the interval (49).
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Using the set of A's of (51) repeatedly for p times, we obtéln
F2(z)=(£(2))?P<(1/3)%, ... (5%)
Using bclog, (1/k)+1, k>n?/uN7, 1o‘D=§2(81/3)‘*P and S=pb,
we obtain i
S_<_(2/((10g102)j(1og1081)))-D(logloN—loglo(n/Z))
=3.48:D(1log; N-0.196),  ...(54)
which clearly indicates a logarithmic dependence of S on N.

The function Fo(z) of the optimum convergence 1is similar
to Tchebycheff's polynomials in many aspects., If the problem
were to find a polynomial f(z) of degree S behaving like 2>
for sufficiéntly large z and having the smallest absolute
magnitude in the interval —1§zgi,'f(z) would be given, in
terms of the well known Tchebycheff's ﬁolynomial
Tg(x)=cos(S*arccos(x)), by
£z2)=2"1g(2).  ...(55)

Using two parameters u and v, (55) can be rewritten in.

the following parametric form:
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z=cos(u), ...(56)
v=Su, ...(57)
and f£(z)=2"5cos(v) ...(58)

In the present Optiylzation problem, however, the ciass
of functions to be considered is not the class of polynomials
but 1s the class of rational functions having the form of (47).
A problem, essentially the same in 1ts nature 2s the present
one, arose and has been solved in a closed form by electrical
engineers in connection with the design of the best wave

fllters.Z)

2) See for example, W. Cauer: "Theorie der Linearer Wechsel-
stromschaltungen”, Becker u. Erler, Leipzig (1941) and its
English translation, "Synthesls of Linear Communication

Networks", Mcgrow Hill, New York (1958).

In the design of filters, a certain class of rational
functions of the frequency is required to be minimized and/or
maximized in the given frequency tnterval or intervals and

the optlmum solution 1s glven in terms of elliptic functions.
The solution to the present problem can also be given in a

closed form in terms of elliptic functions.
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We shall tentatively rephrase the problem as the problem
of the realization of the best rejection rate k for the given
k and integer S and prove the following result:

The Main Besult

The best S,I.D.R. factors for the rephrased problem are
given by
Ag=Bpen(K+1iK'(2s-1)/25,k) for s=1,2,...5S, ...(59)
where i denotes /-1 (not the integer used in t}n previous
section), s8n 1is the Jacobian elliptic function of module k,
and K, K' are the values of the following complete elliptic
integrals of the first kind
K=k ()= J 2 (1-k%s1n20)"1/2)a 0 .. (s0)
and K'=k(A-K2D). ...(61)

Fs(z), dgfiped to be of the form (h?’ wi'' A's of (59),
behaves 1like Figfl, which shows a speclal case f S=3.

In the interval B <z<Bg, F3(z) changes its s at the

o_

three zero points z=A1,A2,A3 and the absolute magnitude
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takes on a maximum value of k for four times at
z=BO, Bl’ B, and BB'

In the general case, Fg(z) changes 1ts sign at the S
zero points z=A1,A2...AS and takes on a maximum value of
V/EE for S+1 times within the interval B,<z<Bg at
z=Bg=B,sn(K+1K's/S,k) for s=0,1,...5. ...(62)

The behaviour of FS(Z) for positive z i8 similar to that of
the Tchebycheff's polynomial (55). For negative values of
2z, on the other hand, Fs(z) behaves quite differeptly from
any polynomial. In the interval -Bg<z<-B, Fs(z) has poles

at z=-A and 1ts absolute magnitude takes on minimum values

g’
of J1/kx at z=-B_. The properties for negative z are
readily obtalned from'the following identity satisfied by any
function of the form (47):

Fg(z)Fg(-z)=1.  ...(63)

Proceeding to the proof of the main result and the "mini-max"”

property of Fs(z) Just stated, we introduce a parameter u, v
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and a function F*s(z) by
z=Bysn(u, k), ... (6l)

v=—i7§lu+i§'——(zs—1)’i,...(65)
F§(z)=a(u)=  H(v)=/ X sn(v,B), ...(66)

where K, K' are the values of the following complete elliptic

integrals K=k(k), K'=K(/1-k%) ...(67)
K'K'

satisfying =4s, ...(68)

k 1s to be computed from (68) and the best cqmputational
procedure 1s to use the parameter q=q(k) of thé theta
functions. Namely, using

exp(-nK'/K)=q=q(x) ...(69)

and exp(-nK'/K)=q=q(k), ...(70)

(68) can be rewritten in the.fdliowing'form
1p(q)'1n(a)=hn28; ;..(71)

Formulas (6&),»(65) and (66) are similar in their forms

to (56), (57) and (58). The main ddfference consists in

the apearance of elliptic functions instead of circular

&S
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functions. (64) means that the function H(y) is to be 1.
regarded as a function G(u) of u by virtue of (65) and

also as a function Fg(z) of z by virtue of (64). In
respect to (6#), z 1s made to vary from -o0o to +©0 along
the real axls by varying u along the edge of a retang1e 1n
" the complex u plane of which the four vertices are at
-K+1K', -K, 4K and +K+1K'., At the same time v vgrles

along the edge of another rectsngle in the v plane of which
the four vertices are at K+iK', —(25-1)K+1K','—(ZS-1)K and K,
Table 1 shows the 6orre3pondence of the values of z, u, v
and H(v) for S=3, It will be immediately noticed trat the
values of Fg(z)zH(v) at the special points z=09, b, tBg's
apd iiAs's agree with the values of F3(z) shown in Fig.l.
Now, let FS(z) of (47) with (59) be regarded as a function
f(u) of u. Namely,

f(u)ﬁFS(z(u)). eee(72)

f(u) 18 obviously a doubly periodic function with UK and
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21K' being the two perlods. Since sn(u,k) is an elliptic
function of order two, it harn two zeros and tw~ poles within
4\
a period-rectangle of which the four vertices are at
u=2K+1K', -2K+1K', 2K-1K' and -2K+iK'. ... (73)
In regard to the period rectangle (73), the order of f(u) is
at most 25 because both the numerator and the denominator of
(#7) are polynomials of degree S. Conversly, since f(u) has
poles at u=-K-1(2s-1)K'/2S and zeros at u=k+1(28—1)K'/25
within the period-rectangle (73), the order of f(u) is at
least 2S. Hence, f(u) is pecessarily of order 2S and there
are no extra poles nor extra zeros besides those Jjust mentioned,
Next, consider F§(z)=G(u) of (66) as a function of u. U4K and
21K' are also the two periods of G(u) by virtue of (65) and
(68). 1In regard to the period-rectangle of (73), G(u) is an
elliptic function of order 23 aﬁd ail of the zeros and poles

are positioned exactly in the same plece as those of f(u) by

its construction. Hence, the ratic f(u)/G(u) is an elliptic
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function regular throughout its period-rectangle which implies

that the ratio of the two is a constant. The value of the |

constant 1s readlly seen to bé unity by evaluating special

valués of the both functions, say for u=iK' or z=§o, Hence,

the two funétions'FS(z) of (47) with constants of (59) and

F&(z) of (66) are ldentical. Naumely,

F§(z)=Fg(z) for all z. >...(74).

The "mini-max" property of Fé(z) stated in connection with (62)

is now an immedliate consequence of the following'wéll known

property of the elliptic function used in (66). Naﬁely, for

real v sn(v,k) tékes on a maximum value of 1 at §=(4n+1)K

and a minimum value of -1 at v=(i4n-1)K, where n denotes integers.
We now prove that the choice of S.I.D.ﬁ. factors given

by (59) is the best. Suppose there exists another set>§f

positive numbers &y, A,, ...Ay giving avfunctlon Fs(z)

of the form (47) and resulting into a better suppression of

the eilgenvector expansion coefficients, which means



Fslz) < Fglz)  ...(75)

for all z in the interval B <z<Bg.  ...(76)

The difference between the two functions can be written in

the following form:



58

Fg(z)-Fg5lz)=N(z)/D(z), ... (77
in which the denominator D(z) 1s a polynomial of degree
25 and the numerator N(z), » polynemial of degree 23-1
or less since the difference (77) should tend to zero
when z increases to infinity. Since the difference (77)
is contlnuous in the interval (7€) and changes 1ts sign
at least once in each of the intervals (Bg, Bgyq)

and (62)
because of (75%, the numerator of (97) has atvleast S
distinct zeros in the interval (76). For negative values
of z we make use of the identity (63) and rewrite (77) as _
Fs(-z)-F;(-z)=n(-z)/o(—z)=('§S(z)—F's(z))/(FS(z.)Fg(z)), ceo(78)
which indicates that N(z) has also S distinct zeros in:
tﬁe interval -Bg<z<-By. Having 25 or more distinct zeros
and being a polynomial of degree 2S-1 or less, N(z) must
be 1identically zero but this is obviously a contradiction.
The existence of'§%(z) 1s thus denled and the main result

1s proved.

The exact relation among k, k and S 18 given by (7/).
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Actually, k and k will be very somall numbers in most cases
of practical interest. In sucl cases the following approx! -
mation to the function q(k) can be used:
a(k)=k%/16.  ...(79)
Using (79), (71) can be rewritten as
1n(k/4) -1n(E/8)=r®S.  ...(80)
In most cases the values of k and k will be specified at
the beginning as
k=r2/BN%  ...(81)
and E=10"0, ...(82)
In such cases, we first compute S by using (81) and (82)
in (80) or in (71) if necessary. The S thus computed is
generally not an integer. We, therefore, take the smallest
integer not less than the S just computed an? redefine it as
the integer S; Using tgis integer S 1n (59), we compute the
numbers As's to start the S,I.D.B. process. The convergence

after S sweeps will be slightly better than the value specl-

fied at the beginning. Using the values of (81) and (82),



60

(80) can be rewritten in the following form
2,2
S=(2(10ggx10)"/n )(D+1og104)(10g10N+loglo(n/“))

=1.074(D+0.602) (Log, [N+0.105).  ...(83)

Comparing (83) with (54) of the octave method, the number of

sweeps 1s observed to be reduced by a factor of 3 by the

optimization of the convergence.
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(83) indicates that the number of sweeps in the S.I.D.R.
depends logarithmically on N, while the number of sweeps in
the S.O.R., given by formula (5), depends linearly ém:'N.
Therefore, for s.ificlently large N, the computntlon time
needed in the S.I.D.R. will be much less than that needed
in the S.0.R.. Inm maklng\a comparison of the computation
times, the ratio of the timés per sweep Ry or R, treated

at the end of section 2, must be.taken into account,

Using D=10 and Ry=4, we find from (83) and (5) that the
overall computation time in the 5.I.D.K. becomes less than
that in the S.0.R. when N 1is greater than 17. If BR=3,37 1is
used instead of BM=Q, the same holds when N 1is greater»than
13. In case 6f D=10 and N=1000, the respective numbers of
sweeps needed 1n the S.I.D.R. and S.0.R. are 36 and 3665.
Thus, the time needed in the S.0.R. becomes 25.5 or 30.0
times more than that in the S.I.D.R., depending upon the
assumptions BM=0 or R=3.57.

We now consider the effects of round off errors.



62
Let eésn be the eigenvector expansion co=fliclents (c.f. (39))
, ,

of the round off errors which take place in the s'tun 1iteration,

(

8
be the upper bound of the absolute magnitudes of en,n '

8
€M

and the function FS S(z) be defined as
]

z-A Z-As
Py glz)=(— ) (—2). L. (84)
’ z+Ag4+1 z+Ag

The elgenvector expansion coefficlients fm,n of the cffect

of the round off errors in the final result are given by

fm,n=zse:f.?n FB,S(EQZ)FS,S(E;Z). ... (B5)

A crude upper bound to fm can be obtalned by making use

,1
of the fact that the absolute magnitude of FB S'(z) never
» A
exceeds unity for positive z. Namely,
f < I e(s < Se (86)
Sm'n__ Mo LI ] E .

Whlle the convergence of the S.I.D.R. is independent
of the sequential order of using the S.I.D.R., factors, tpe
effect of round off errors does strongly depend upon it.

For example, consider the case in which the S.I.D.R. factors

are used in the ascending order and let the expamnsion coeffi-

cients of the round off errors for the lowest eigenvector
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a.

be given rather systematically by efsl=e In suchAcase
“ 9

M .
(186) glves a reasonably good es!'wuate of fy{ 1 ,» since the
absolute magnitudes of most of th- Fs,s(ET?)'s are actnilly
very close to unity. Now contslder the case of D=10 and
N=1000 of which the number of sweeps has already been shown

- that

to be S=36. (86) indicates,the maximum worst case error of
36eM for this case. The situation can be lmproved, however,
by sultably reshuffling the sequential order of *“he S.I.D.R.
factors, From the main result (59) glving the rules to compute
the S.I.D.R. factors, it 1s readily seen that F36(z) includes

Flz(z) 88 a factor. Namely,

F36(z)=F15(z) Quu(z), ...(87)

1

s'S.

where Q,,(z) 1s the quotient including 24 of A
Similarly, Fy,(z) includes Fu(z) as a factor. Name .y,
Using N=1000 and S=12 in (83) we obtain D=3.0 which implies

(Flz(z))?gi'('nlo"DﬂO'3 for z in the interval (76). ...(89)

Similarly, for F,(z) we obtain
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(Fy(z))%107%-%%=0.25. ... (90)

We now use the 24 Ag's in Qzu(z) first. At the end of the
2L4th iteration, the effect of round off errors can accumulate
up to 2b,eM in terms of eigenvector expansion coefficients

in the worst case. This effect, however, 1s suppressed by

a factor of 1077 because of (89) during the last 12 iterationms.

Hence, the effect of the round off errors in the first 24
iterations 1s negliglbly small in the final result. Next,
we use the 8 As's in Qa(é) of (88:) from the 25th to the 32nd
iterations. The maximum errors can accumulate up to BeM
during these iterations but they are suppressed by a factor
of 0.25-a3s indicated by (90) during the last 4 iterations.
Hence, the effect of these 8 iterations in the final resﬁlt
| off
1s atmost 0.25x8eM=2eM. The effect of roundserrors in the
last 4 iterations can accumulate up to heM in the final

result. The worst effect: of round off errors to be expected

in the final result, therefore, does not exceed 6eM in its

one
elgenvector expansion coefficlents, which 1is onl%&sixth
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of that to be expected in the cases of using the A 's in a
puniy ascending or descending order,  From the considerations
made above, we can safely conclude that round off er:ors do

not cause any serlous troubles in the S,.I.D.R..
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§4 Concluding Remarks

{. The S.I.D.R. a1gor1phm, with slight modifications'ofk
some constants, can be used with the 9 point formula instead
of the 5 point formula used in (1) to approximate the Laplaqiaﬁ
operator more closely. In case of the 9 polﬁt formula, an extra
computation time of Nz(bta+tm+4t1) per sweep will have to be
added to both (43) and (4l).

Thence, the time retios, S.I.D.R. vs. S.0.B., will become
RM=(8+1)/(2+1)=3 and B=(75+12)/(21+12)=2.64.

2. The S.I.D.B. algorithm can be generalized in a straight-
forward way for the solution of Polsson's equations in rectangles
subjected to 1nhomogenious boundary conditions.

3. An intuitive explanation to the apearance of the loga-
ritkmic term in the convergence rate formula (83) fér'the S.I.
D.R. may be given consldering the relaxation process as a diffu-
sion process in the following way.

The homogenious boundary condition (i.e., the function

should be zero)can be made to be satisfied by dividing thee

entire x;y plane into unit squares and by placing negative
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image processes in every neighbouring squares. Thence, the
term with f(a*,1) 1n (29) and (33) can be regarded as a
falthful representation of the influences of all! of the images
throughout the x, y plane. The treatment of the boundary
condition in the S.I.D.R., being thus quite satisfac.ory, it
can hardly be the cause of the apearance of the logrithmic
term in (73).

Consider now an analytical analogue of S.I.D.hK. (cf. (10))
with /D=dlx-xo)JTy—yo) and starting from an initlal function
of ¢(0=0. The solutlion to this problem is the Gfeen's func-
tion G(x,xq,y,yy) satisfing ACkax—xo)Jky—yo) and the homo-
genious boundary condition. The result of the first iteration
(cf. (10)) becomes
§(1=—%exp(-ﬁ1(x-xo+y—yo))+B(1(x,y), ... (91)
where B(l(x,y) is a function arising from the hypabolic sine
terms in (14), (17), and is smooth in the unit square. The
first term in (91) 1s continuous but not smooth at the locality

of (x,y)=(xo,yo). By tracing the behaviour of the succeeding
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iterants ¢(2, #(3... 1t will be seen that they all consist
of exponential terms similar to that in (91). Since the
Green's function G has a logarithmic singularity at (xo,yo),
an infinite number of continuct; terms will be necessary to
represent the discontinuous Green's functlon. Even when the
logarithmic term 1s truncated at h=1/N in the finite diffeQ
rence case, an increasing number of terms will still be need-
ed as N increases in order to make a reasonaﬁly good approxi-
mation. Formula (83) may thus be interpreted as that about
logioN iterations are needed to approximate the Green's func-
tlop to a single decimal figure. In terms of‘the diffusion
analogy as used in the introduction, about l°g1oN Sweeps are
needed to make a conslderable portion (90%) of the errors to
be diffused to and get eliminated at the boundary. The possi-
bility of further speeding up the diffusion and elimination
of the errors 1s an interesting open guestion.

4, While newly computed values are used whenever possible

in the S.0.R. as the superscript (s,s-1 in (2) implies, older
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values are used throughout the correction process (9) in the
S.T.D.R.. Calling the former progressive and the latter con-
servative, a conservative S,I.D.R. scheme was developed in
this paper in order to facilitate the development of the con-
vergence theory given in section 3. There exist two motivations
to develop pfogressive S.1.D.R. schemes, namely, saving in
storage spaces apd speeding up of computations.

Conslder the followlng algorithn to be called quadrant
S.I.D.BR.. Let the unit square be divided into four equal
Subsquares I,vII, ITT and IV. Let subsquare I be the one at
x(s

ng,ys—%. Let a function (x) be assigned to the boundary

1 5
line y= %, 0<x<1 between the subsquares and Y( (y), to the

1 (0 (o
Iine x= 7, 0<y<l and let the initial values X' (x) and Y' (y)

be zero. In respect to subsquare I, the finite difference
analogues of the following computations are to be pgrformed
in the 8'th iteration:

Wy (x,7)=08"% (x,5)-Mx, y);

a_=/Ag;
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Integrate (-fl— +a_)W,(x,y)=W (x,y) from x= 1
nteg dx T WalX»¥yIEN 1KY 2’

s-1 '
( (y) until x=0;

1
wal—5,y)=Y
Integrate (-%; +as)w3(x,y)=w'(x,y) from x=0,

10
w3(0,y)=-w2(0,y) until x=3;
wu(x,y)=w2(x,y)+w3(x,y) and Y(s(y)=w3(-%3y) for Ogys‘%j

Integrate (--3; +a_ )W (x,y)=wu(x,}') from y=-;—,

5

(s-1

Ws(x;%ﬂzx (x) until y=0;

d ' '
Integrate (dy+as)w6(x,y)=wu(x,y) from y=0,
1

w6(x,o)=—w5(x,o) until y=7;

B 1
x( (x);wé(x;%- for 0<x< 53

(s (s-1 E Y
g ' (x,y)=9 (x,y)}(ws(x,y)+w6(x,y))/2 for 0<x,y< 3o
Similar operations are to be performed on the remaining

| (s (s

subsquares. The functions X (x) and ¥ (y) serve to carry
the 1nfluences of errors from one subsquare to the others.
Comparing the quadrant S.I.D.R. with the conservative S.I.D.R.
disclosed in sectlon 2, the subtraction of exponential terms

in (14), (17), (29) and (33)are eliminated by suitably choosing

the initial value in each integration, which results into the
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saving of 2N2 multiplications per sweep. The quadrant
algoritrm may be sald to be conservative within each subsquare

2 extra

and brogresslve in respect to the subsquares. While N
storage locations are needed to store the values 1n the con-
servative S.I.D.R., NZ/M locations will be sufficient in the
quadrant algorithm.

There ére many heuristic and intultive reasons to belleve
that the quadrant S.I.D.R. would converge équally well as the
conservative S.I.D.R.. Unfortunately, however, the tlear-cut
'convergence theory of section 3 is not appllcablg to progres-
sive algorithms like the quadrant S5.I.D.R. becauge the eilgen-
functions of the iterative operations are no longer &ndepend-
ent of the values of the S.I.D.R. factors As's. The conver-
gence property of the quadrant algorithm thus gives rise to
another open question.

5,\ It will be the most interesting theme to avply the

S.I.D.R. to problems other than Poisson's equations in

squares and rectangles, for example, Poisson's equations in
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arbitrarily shaped domains, axially symmetric and three
dimentional Poissson's equétlnns, Helmholtz's equrations and
elgenvalue problems. Because the speeding up of diffusion
of errors 1s essential feature of the S.I.D.R., 1t should be
applicable, intuiltively, to problems mentioned above, The
convergedce theory developed in section 3, however, can not

be applied for the same reason as in the case of rerark 4,
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6. Whenever there exists an exact and finite algorithm
for the solution of a problem, iterative methods will generally
yield to the exact algorithm in respect to the speed of compu-
tation when the required accuracy exceeds s certain yielding
points. Since the finite difference solution of Poisson's
equations is nothing but the solution of simultaneous 1inear
equations, there exists exact algorithms. The fastést exact
algorithm for the solution of Poisson's equations in squares
and rectangles, within the scope of the author's knowledge,
i1s the Fourier transform method as used by Hockney{B) comblned

with the FFT(Fast Fourier Transform)(u)deveIOped by Cooley and

Tucker.\5)

3) R.W. Hdckney, "A Fast Direst Solution of Polisson's
Equation Using Fourler Analysis", JACM, Vol. 12, pp.95-113
(1965).

L) The author is indebted to Professor H. Takahasli, Director
of Coﬁbuter Centre of the University of Tokyo, for drawing
his attention to the FFT method.

5) J. W. Cooley and J. W. Tuckey, "An Algorithm for the Machine
Calculation of Complex Fourier Series," Mathematics of

Computation, Vol. 19, pp. 297-301 (1965),
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The Fourler transform method for the solution f Polsson's
equation, A #=f in a unit sjuare and @=0 at the >oundary,
consists of the finite difference #nalogues of the following

three processes,

P1. Take the Fourier (sine) tramnsform of P(x,y) in
either dimention x or y, say in y, and'obtaln'the harmonic
(1.e. sin(nny)) components Pn of P for n=1,2,..N-1,

P2. Solve the ordinary differential equatlons

2——

ag 2 2= —
—R =
x2 8 ~Pas

satisfied by the harmonic components Bn of . Using the
"marching method"(B, which is equivalent to the mapping of
Wo(x,y) into w3(x,y) of (12) and (14) with a=nn, this process
can be performed with about bNZ multiplications.

P3. Perform an inverse Fourler transform to obtain
g from Eg's.

FFT 18 to be used in processes Pl and P3. Assuming that
N is a power of two '; 2Nlog2N multiplications of complex

numbers are needed to perform the FFT on a one dimentional
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array of size N. A single multiplication of complex numbers
would gsnerally consist:of four multiplications of real numbers.
For the FPFT of a real valued array, however, two r-al mulﬁi-
plications per complex multiplication has been shown to be

sufficlent.6)’7)

6) H. Takahasi, "D6/TC/FFTR", A Library Program of the
Computer Centre, University of Tokyo. (1966)
7) C. D. Bergland, "A Fast Fourier Transform Algorithm for

Real Valued Series", CACM. Vol. 11, pp. 703-710 (1968)

Hence, 2xN(2Nlog2N)+UN2=(26.blog10N+b)N2 multlpllcations are

" needed in the FFT solution of the Poisson's equatlion. Comparling
this number with the 8N2 multiplications per sweep (of. (44))
and the‘number of sweeps (83) of the S.I.D.R., we see that the
S.I.D,B. yields to the-FFT beyond the’yleiding point at about
three decimal figures of accuracy. The FFT method, therefore,
will be superior to the S.I.D.B. when more than thrse decimals
of accuracy is needed. The S.I.D.R. will become superior when
less than threg decimals of accuracy 1s sufficient or when a

S
seried of simllar problems is to be solved so that the result
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of the preceeding problem can be used as a close approximation
to the solutlon of the succeeding problem.

The FFT and the 53.I.D.R. are thus complementary with each
other in the solution of Poisson's equatlion innsquares as well
as in rectangles, The most interesting question consists in
thelr applicabllity or adaptability to more general types of
problems. While a great difflculty is anticipated in using
the FFT method in other types of problems such as the solution
of Laplaclan or Poisson's equations in arbitrarily shaped
domains, the S.I.D.R. seems to be applicable but the truth
remalns open as discussed in the previous remarks.

7. The present stage of the development of the S.I.D.B.
1s incomplete in many respects, especlally in thrat the range
and limitations of its applications are not well known. In
order tec clarify these points, more sophisticated convergence
theories will have to be developed and empiriéal facts should
be compiled from computer experimentations. Nevertheless,

the present results, disclosed in section 2, 3 and on pure



mathematical reasoning, would be sufficient as an existence

proof of a new kind of relaxation processes.



78

References and Footnotes

l)D.J.EVans, "Egtimation of the line over-rel xation factor

- and convergence rates of an nlternsting direction line

2)

3)

4)

5)

6)

73

over-relaxstion

technique", The Computer Journal, Vol. 7, pp. 318-321 (1964)
See for Example, W. Cauer, " Theorie der Linearer Wechselstrom-
schaltungen”, Becker u. Erler, lLripzig (1941) and ite Fnglish
translation, " Synthesis of Linear Communication Networka",
Mc Grow Hill, New york (1958).
R.W. Hockney, " A Fast Dirct Solution of Poiscon's Equation
Using Fourier Ansalysis", JACM, Vol. 12, pp. 95-113 (1965).
The author is indebted to Proffesor Ii. Takahasi, Director of the
C%%uter Centre . of the University of Tokyo,
for drawing his attention to the FFT method.
J.W. Cooley and J.W, Tuckey, " An Algorithm for the machine
calculation of complex Fourier series",
Mathematics of Computation, Vol. 19, pp. 297-301 (1965)
H. Takahasi, "D6/TC/FFTR", a library program of the
Computer Centre, University of Tokjo (1967).
G.D. Bergland, "A fast Fourier Transform Algorithm for Real
Valued Series", CACM, Vol. 11, pp. 703-710 (1968).



Figure Caption
Fig. 1
Behaviour of the function F3(z)

Table Caption

Table 1
Correspondence of the values of u, v, z and H(v) for S=3.
(¢ means an infinitesimal positive number)
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Table 1

Correspondence of the Values of z, u, v and H(v) for S=3

(¢ means an infinltesimal positive number.)

| H(v)=F*3(z)

' u v
- 0o -z +1K' R+1K/2+1€ 1
B -K+1K' K+iK' 1//—'1;'
A4 -K+15K'/6 0+iK' oo
-B, -K+14K' /6 -K+iK' -1//—?'_
-Ap -K+13K' /6 -2K+1K" oo
-B4 -K+12K'/6 -3K+1K" 1//?:"
-Aq -K+1K'/6 -4K+1K" oo
-Bg -X -5K+1K" -i/ff
0 0 -5K+1K' /2 -1
By K -5K Va3
AAq K+1K'/6 -4K 0
By K+12K'/6 -3K JE
A, K+13K'/6 -2k 0
B, K+14K' /6 K A
Ay K+15K'/6 0 0
By K+1K " K | JE
oo g+1K' R+K'/2-1¢ 1
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