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Abstract

Dynamics of the t;o—dimensional stellar system Qith the frequency function
of the generalized Scﬁwartzschild type has been investigated by means of the
non-axisymmetric, non-steady and collisionless Boltzmann equation. ‘In the
present paper, the dynamical features of the stellar system in which the
quantities with the trigonometric functions of the longitude were assumed to
be of the first order smallness, were examined under the requirement that
the identity condition of the potential must  hold for all values of the
coordinates as well as of the time,

In general, two kinds of waves occur, the one advancing as a rigid rotation,
while the other receding as if it compensated for .the differential rota-
tion, so that the resultant wave acts so as to develope the spiral arms.
There exists, however, a special case in which the latter wave is not per-
missible. The one-armed and/or the two-armed pattefns are possible, but

the former appears on the looser condition than the latter.

Introduction
Hitherto, many investigations have been presented on the, problem of the

spiral structure found in the flattened galaxies. Most of theories
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have regarded the spiral phenomena as duz to the effect from some nertur-
bation deviating slightly from the overall steady state. And an approach
that imposes the so-called spiral potential as the verturbation secems likely

successful, as chown in the recent lecture givea by Contopoulos (1970).

he origin of suca pcrvurbatloa, however, any reasonable

ot

With respect to
explanation seems not to have been given up to the present. To this
problem some kinds of approach may be conceibable, but we wanted to collect

information on the multiforaity of the dynamical features of the stellar

N
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em depending on the various different dynamical conditions in the hope
tiat it might bring a general insight to the »preblem. So we planned

al stellar system being non-

o

tion into the two-dimensio
non-steady, collisgionlesgs and being consisted of the frequency

azisymmeiric,

iistribution funcition of the general Schwarzschild type after the way

The present paper reporis the result obtained under the requirement
that the identity condition for the potential should hold always and
everywhere in the self gravitating two-dimensional system.

ntion on the contents of this paper. In3l the
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Sormal but strict relacions among the coefficients of the velocity ellipse,

the motion of the local standard of rest, the potential and the so-called

weight fzctor to demsity X are derived. The formulae therein are the basis
for our investigation heveafter. Informaticns from the zeroth order appro-
imation and the first order one are shown in 82 and in 83 respectively.

In g 3, however, the so-called weight factor X which is a function entered
in the frequency function and depends on the coordinates and the time, hes

especially been assumed to be constant or negligible. Both & 4 and &5 are

devoted to the more general first approximation dropped the above-mentioned
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restriction to. X . Aad finally, main-results and relsted discussions are

given in é 6.

[

The most important conclusion of the present investigation is that unde
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the above-mentioned requirement for

-h
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he spiral patterns can only appear as leading. Whereas, as will be shown
ia the following paper, anothier requirement makes the spiral pattern either

leading or trailing depending on some parameter values.



28

1. Formal Solution of Liouville Equation.

Dynamics of the disK-like stellar system is considered in two-dimension
t;hroughout in this paper by adopting the ra&ial céordinates (r,'e) with
thelr origin at the center of gravity of the system. We assume the frequency
distribution F(P) as follows |

FRY=F{ &= &(T- ¥~k (9 -8~ 28 (T ToXS-B0)}, e)
where T, ®: velocity components radial and tangential,

Tes @,: velocity components radial and tangential.‘of the local centroid, .

h, k, 1l: coefficients of the velocity':ellipse, |
and all of the parameters X; h, seneees; Tl‘a,@, are functions of r, & and
time ¢t .

If F(P)=const.exp(=P), then 1o, ®; 1/ 2h, 1/ 2k, 1/ 41 correspond to the
motion of the local centroid, variances and covariance of the‘ residual velo=-
city at (r, &) respectively. But we do not impose any special form of F(P)’
for the present, accordingly T, Qare to be some representatives of rpotioh

of the local centroid, and h, k, 1 are to be some measures’ of V'the variances

‘They
and covariance of the residual motion.

Jhe .
Now, "two-dimensional Liouville equatiom in the polar coordinates is

written as

F O2FE.  OF GNIF . 79N L T@VLE. =
%’E*‘W-a?*'®“yze*(%¥}f% 5‘—-‘1‘*‘(;53 7 )%‘,'9‘*0; (2)

in which 3b =&} (x, & ;t) denotes the ‘potential function. Putting (1) into

(2), we have

(3)
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The solutions of the partial equations in (3) and (4) are given after some

ai ‘lemtial ™
calculations.
h=nE>-24,0, }
i i
R=HE) vafus~2vbet ¥, g i comsk., %= Sz
bs= bl 5im {H+ U O} = bilE) scn Bt balEdcoss,
(=Gl son{26+ Yo} =06 sun28+ ex;\t)q..o-z&
2ay= v {Awd>— b0}, L .S
H = ZEI' ’ (7)
. s '
28,=v{ D) --9.,, +2vbs }) ;
'UZ= "L'("QAP' 2451)
- S B k-0
@9=J2—(&A;— .QAD, / : (8)
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in which aw;m.—_ %@:o has been conditioned from the physical view point.
e d Y-

Ellimination of X from (5) results with references to (3) and )

M, % +@,2% = 0. (%)

This represents the continuity of X aloné; the motion of (T,,®.) signifying

that all the particles labelled with X move with the same velocity as the

local céntroid. Therefore, X is regarded as something like a weight to‘

be applied to F(P=X).

As regards the gravitational force, we have from (5)
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where $b, denotes the potential function taken no account of X while Jl. the

)

o
ho} .q

|

one contributed from X alone.

The local density ¢(r,86) is, therefore, readily derived from Poisson's

relation, namely

q= gl“' ?a, )
b1 238 by
—4N&G Q= 2;’3; _‘_%_55_%_*3:,_2_%}@3’ (i=1,2) (11)

where G 1s the gravitational constant.

In a self-gravitating system, however, some frequency distribution func-
tion with an argument P in (1), must be found really from the expression of
¢ given in (11). But this is possible in general as ﬁentioned below. A fre-
quency distribution function is to be defined not only by its concrete func-
tional form but\also by its velocity range. As for the trancation, the one
that leads the total mass of a stellar system has been discussed by Kurth
(1957) but usually either O$V=ﬁﬁ@ﬁﬁ§ﬁ or 0<%V« has hitherto been adopted. .
Either of these customary trancations, however, could not be accepted a priori,
especially when avnon~steady stellar system is under consideration. This
circumsﬁance may be illustrati&e in the numerical works of the mahy body
problem. In this épproach the initial velocity distribution is assigned
rather arbitrarily, say, letting it be of a rectangular type with a velocity
range of O<ASVSB</Z§, and then an evolution of the system is looked for. So,
if we change initially the type of the velocity distribution and/or the velow
.city range, a different way of the evolution is expected.

According to the authers® view, the density is to be expressed in generai
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by :
a
r jQF(E)aUTA@ = (. 0, &) (12)
m ®

where T, M.} ®,, ®, are functions of r,8d and t.. These four functions may be
corrésponded to the initial or the boundary conditions for the equations of
motion which are equivalent to the subsidary equations of (2). In our case,

Q is given automatically with aids of Poissons's equation from the potcntial

. fumction

which is also derivable from (2) by letting e and @,be inclusive in (l).
In principle, there are varieties in selécting a possible set of F(P); T, ,
"ﬂ;;C}, @L, but it is desirable that F(P) resembles the_obsérved velocity
' frequency distribution and further, even though for sake of convenience, the
means, the variances and covariance with respects to TT and & become nearer to

Mo, ®@s31/2h, 1/2k and 1/28 as possible. If some such suitable sets are

found, it is considered that there exist respective dynamical states for the

same d;nsity distribution. A detailed treatment on this matter, however,
is not our present purpose, 50 it is reserved elsewhere.

.By the way, we aéd another mentioﬁ éoncerning our #rgument P in the
frequency distribution function. Making use of the formulae.(Z)—(S) we

can write P as follows -
BR=-HQRI-ZJ+55™) + (X—X—2ndb)

+{ 20T 2(fug —Yba)%:—l(agsf\’b/a)g‘j +(F~28,9)T7 (56— 2785)T }) (13)
where I_s%(n‘-t—@‘)-&, is the gravitational energy and J=r@ is the
angular momentum per unit mass. In a special case where the two-dimensional
system is in a steady state and both of T8 and ?be are negligibly small,
P in (13) is reduced to -(aI+bJ+cJ?), in which a, b, ¢ are constants, as
.Jeans' theorem states. While, as %or our general case of (13) too, ?

remains to be the first integral of a single particlé's motion, since the

formulae (6)-(10) have been‘che conditions which make P be the first integral.
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2. Zeroth Order Approximation
In this section we consider a case where by and hyy vanish, but X©
or the "X'" in the zeroth order is not neces$ary constant. ' Then' the for-
mu]ae In (6)~(10) turn out into simple forms as follews.

fi=HE), R=HE*tKkYd L=0, (6")

A:n=.—i~7, Ax= Ré—é—)v, ")
-TQ:)';LY @o= 2(:?1«7'2) ; Z=aeD, x‘"’“‘mr*«(?%'?}:?v"ﬁ 6"
“ o PR

’%73'=;iﬁ;%>7&? %(5}3 10—:&%79%%1&? J
It follows from (10') that o

3B Sy = Ghiop = oy =S, S, 1)

B = o e B )
Since an identity %’5_}_ 5;‘%, or $55& ?gg’:r %—- ;%% must hold at any
place and at any time, we have with reference to (14)

0= Y)’Y%air—?%%— L(l"\’) (15)

But this X should also satisfy (9 ) simultaneously. Such a common solution
of )C”:Ls given, as shown in §Al of the Appendix, by

© / . 2
X2awos HiEuyec(s- ND)-alorgote (DU} aw=Rl u=ir o)

4‘(((1‘)@03
Hence, we have on reflection of (10') N(O= J‘?RT‘“" ;
35 Y (a R DAirakw) - dE,
é 2= —H*“:K.“' A)Leas.—(“«c') Q—CN*“;'KU V‘.K“ A-*- F L“) “C‘ﬁu:)w& }’ l
ooan
254, J

. 3G ZHK'U-( 319 I-+Ku.+ ).
[The density - @(r, g, t) is therefore obtained with the aids of (11), (10') and

a”n.
L D"G Ku)
#TGg =~ - S5+ IRATRWS, (18)

l «
e H‘KQ*Z"E(“}"“U‘W)%“SL““‘(WM ?i; %-M.N +0@~c)~G8™ D‘(q;acp::;t? )
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4TGo=— %(.‘["‘_)__EL; +—g§'k—“-a[—F(u)+K(l—mL)a -—u‘O#W)(}“L 1
“(4«"' i)ﬂhv@(a—c) J (19)

This density distributionm, however, even 1f a singularity at u=0 or
r=o is avoided by limitting as Y2&> O
cannot be smooth along any circie around the ofigin becéuse‘of the terms
secular about & . This may be forcibly saved by impoéing some particﬁlari
initial condition of by interpreting as a steep jumﬁ in the density distri-
bution. But, let us concern here’with a céntinuous distribution ¢ by
imposing the condivtion of ¢(v. G,‘b.‘): 6’()7;9'*2«7&:'6) . Then we should have
in (195

a(b>=c%aof3.o a=aa=%n:¢°%$‘-‘-a %=, =0, (20)
whéih reduce the formulae (16)-(19) to

2 oy ;
XO= WG alo- M r(m—a Nrmu“m) FemaN= Zrieomst,  (161)

s Y 1oy D, \_ D , a7

Y Hlmﬂ E’w)*u‘wm"“:“cu) * SR h‘-’lfofu‘ 1’ 2B _ /T

28y T v T

36 | R, ‘

‘ BB D=t a

e =~ F ) - Tt Sgeea, L ey
DA t4ou) K '

R&GE, = kaw& R U= K) T ) =U(iiew) Flw) = -—-f + S HA( R \
arag =~ Feli- 15 + gal-Ruirao-en - WW(W ~%} @y

= xR 22 (e R~ { (e 25 } |

@s seen above this continuous stellar system 1s ax1symmetric even though a
t

tangential force is still acting unless a°=0 or D=const. But there can be
a variety in its density distribution because a functional form of Fo(u) is

chosen freely so far as

gu_[ ﬁ(u)hﬂq} (l-rtm)%cu)] R‘%ﬁ{%f(%"‘:%l;

is satisfied over a range of 0<r,R, Each of

these systems is characterized with a finite dimension and with the kinematical

YA toot=nole ¢ov Chis & qlven v dhe ment page.
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constants as follow
\

: : Nicw - ®° N .

AE%(%—QQ&):' m" B-——" + a)' =T Uicuy* } (21)
dmy N__ T

x= (e $)= 15, W= P"‘B"x-uru, w=

'

which, except for ?¢ , are formally the same as in a steady_state model
usually given in text-books.

By the way, it may be interesting to check whether.Lin's potential
(1964, 1969) is consistent or ﬁot with ouf frequency funétion in éhe zero€h
order. LetASh:be Lin's spiral-producing potential S(?)egpfcauﬁb-nefikvﬂ

andzﬁ& be a corresponding increment of X, then we have from (10') and (9%")

B;&SL__:_;;‘_%?}; ( B\f')A‘S)’*J ,,56_,;: z(HMt?%'——”nAq"’
28X -—zn(*‘*;xs-f‘;?)zs&z PP =—2in AR, } o (26)

_B_g?_g By pax ——@b Av( 4o 4SyromD }A&‘

2H Y 2LHAKYE

Among these partial derivatives, however, there exist three identities such as

FBX _FBX o (é—ggfcﬁgk-i

363y 2720
X _ 2% oo B ~
Sel=set O n T aAnrrr), (27)

e R

p@ide from the first identy showing a singularity at the origin, the last
i
pair of 1dentit1es contradict each other unless the veloc1ty distribution
is circular. Lin's potential, therefore, could not operate as a disturbance

in the self gravitating two-dimensional system with the velocity distribution

of Schwarzschild's type

* Fcu>+—&-=d

= ,‘W“(d..umst:) gives 4rf Fuwo+ BE)- kauy;'m)-o

Hence, for example, 1f we take F(_u)-\--?; ag Lm"'cﬁf ] , We can .adjust_:

1

the finite dimension mentione& above. 4

both parameters C, and C,- so'asco satisfy the necesSary condition for
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3. The First Order Approximation Without XK.

If X is a constant, it does not appear explicitely in all the formulae
except, for P in (1). So, our first order approximation is set up with
this simple case where X is a constant or is neglected. Taking the linear
terms .with respectsto by , hyg and their‘derivati:ves into éccour;t, '.we'

obtain the following formulae correbsponding to (6)-(10).

h=H(l— ?—ffﬂ), A= 7?;;{_4 +2.(1—Y)_T—’-’i?ﬂ;~aﬂ?'}, i=vbi—{4% 2 6"
H=ERWE), Kanst, Ys -—‘S%—;Y*;E _(% . ‘
= L{‘Iu- zﬁaa)’ Ax= m_(“_ ).Yi?gv-éu/g) ' am
T =2l F~DUyYEE~adygtats a”m(«-\()fg}f} )
@, -—-—-c =\ {D+ay b — 1 U-e- 204~ —2-9—3;39 +ﬂ-€m~21>(t —Y)ﬁm} [
(K'WSiﬂ(lW)—bvblY-gﬁﬂ} ’ '? (8"
)= 4‘?&%«% FEDU-I 40U~V B — 565 - B (- bs }
~4i\ G2 M2 & DAY ﬂw—:m O~6s+2DM ((-Y»,,T J

QI

2 NR(3 AN
Gt 2T fantfi-ni D‘u-\’)"}—lb(l-\r)(a—zv) ¥ih - DU-YI (B4 LEe

+{DRG-2 =215} (1) Y0E— atrllp £ 4 iopt2D o—v)z&w
+4{HA DY Q=¥ faaa DD (-0 (- B 1 :
3—%= %PIZHD (=) 4HU-Y)Y B +2D G —\')%s + (4H DDA )\ 1—Y)2«—12‘9
£ (P2 LEE ~ 2R (¥ ~ 4D U~ s 214 C:-\r)ﬁm
M(pﬂ—ﬁoj(‘—vﬂ-@—u 2nA -’ (- die Ji )

(10")

Cross~differentiations of (10") give the identity or

28, _ 75 BYH% (m i )‘4’}“ eﬂbﬂf

3739 aaav .
T-{b‘ "(zh - 4r1’- )bsf"‘ 2D (bp~ b&"’*‘:%‘%)*%ba]
g”“")[(be %ba‘* "“ba>1' baj
+ 50

SN f o\ Vot % 33, | | - .'. ’
"+f-,\gll_-D+i3./ ~—S—av‘{%‘ﬂ 4:6} 2"]2’3;2.9 ﬁ:sv‘{%{qé)rigﬁ__gj

. [ A Y : A Al , 9
- X:TV"T—- D+{ﬁ,/s- a'g' —( %"‘F,‘;\ ‘ 1‘ kew p’gzﬂ-‘i’ v\m)f‘ Lﬂge‘lﬁl
_,3‘ ) . ] 1 D '6
B (Bl Rl a7 o)+ 5h]. (28)
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As regard the first or the higher order approximation, there can be
satisfy
. the potentlal ident:‘m/n_aﬁaly,

the orne imposes the condition for all values of r, 6 and‘ t , while the

alternative standpoints for making

other requiers some functional relationship among these three variables
satisfying the identity. Throughout this paper‘w;fgd;pt the former’stand-
point by reserving the approach from the latter alternative in ﬁhe following
paper;

" Then, it %buld'be in (28) that D and atsum of the terms in eveiy pair
of the ' brackets are zero, and yet for each sum of-the terms the

coefficients of sin@ , cos &, sin 29 and cos 20 vanish. With thesé

requirements we have, by writing fy= HOsing+bilt)w g and ﬁ;a—":&.(.t‘)&;z@#@;&)wi&,

as in (&)

DUEY= Tt Const., : 29)
(b, -1;_;, Laip,=0, 153_(2‘1..‘%1 by~ 22 Do _7_}’%_!9;“‘0

a)ﬁb n‘;? ‘f—-eb’*O (mi b-—(—-—-—- )b.‘. Dﬁka.-_oa“ o

4 2-;"? 2V M ( ﬁ:. \ b, ==

{"Zx -%en:o, (n f(fu ‘1‘&; ( ﬁﬁmzo
(3.~ & - (30)
- %ﬁn’%’ﬂ =0, U Bham B -Fa=o,

As for by, (I) aﬁd (II) in (29) are not independeﬁt, so that it is
sufficient‘ to consider only (I). Because of b.-j-b&)cu:m &, .‘p,_-; bEIMNTT,
both equations in (I) are written as

(5“%5 b)Yt (i + B Ybeor g =0,
(L5 b) coli=(¥i + 2, ) b shdg = O,
Since ¥¢ishould be arbitrary:' we haw_

be=bi52  di=zm, alo= )wm"’t NG, (31)

l;9=b\/jis—f2g¢,, {6—NEs

(@ sinewave hav1ng the wave-length of 2%r for any r and/
Therefore, presencs advancing with an aagular

Veiocity of ﬁ(t) = Do'/ZH(t) in the positive 9-direétién because ¥ must be

increasing with time for keeping bg in the same phase.

* Vithouts This Yesbckion, Ua rolukiom o) & to be by VR /Ry (1= 1,2) Where wy & o soleukion -
w-+(w’ 3.&+~—-)w=o - Oapectalley whien N eomst., by takes the Aome MPVW“’“ an (i),




While as for. h;s the formulae corresponded to (31), or

o - WS O, . "
fao=fenwisinaf{o-NEY =T, (32)
are obtainad from (I) in (30). Neverthelesé, putting (32) into (II), we
have N

%,&w)=o,

that 1is, Do=0 or h(t)=0.

' \W%
This unsatisfactory result for hys is due to no account of the second

vorder terms about. by which contain tﬁzmgg;sectorial harmonics
as the first order terms about h,s . According to our present standpoint,
Jeven when the calculation iz extended up to the sébond>or higher br&ér
approximation, the terms wi“th‘ sin &or cos & should be independent of -thos'e
with sin 28 or cos 28 , so that no more information about by cannot be
oﬁtaiped than given in (31).

Taking these situations in mind, we carried out the recalculation in which
the products and the squars of bp , by and/or their time-dexivatives are
included in addition to the linear terms about hzy by making.use of the
known result for by ishown in (29) amd (31).

Now the fundamental formulae, except fork(6") and (7") which remain

3

unchanged, should be replaced by the followings.

= S5~ Rei=vty=2{ o= Rbuo B3 e} ~ B (3=21) ol \
Os= XN Do Pe(3-2¢) Vo= o — Elst 222 U= ol ‘%),;‘\’LB—J-Y)‘DQ + b |
~L.-.-<—L;‘{){1+zu e zYe’”«-fi—YG—Y)E,%vY b2 (8" }
X= T [ A% S2U-Y) r‘%%(\—\()(z—\’)vba-zoou—‘o{%a -%‘t—%d'ﬁ‘)&w} }
N (s ’l&w)i— Yca -2y bs + Eﬁva-wl@l J
%%4 Rl i o~ Bu-v0e~avrev2) vbs

st has —H bus ~( 5~ 52 s} = 20,010~ -3 vau»}
|
+ B =206~ r oY D~ Byt B3 ] (
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3 x S “ " ' LR %3
ngé "i%(l-‘r)(l—‘()v{q’,fm(iM{i,;—%@w—(ﬁ-f.,—';)&”}
[} » Cy N
4RI o= Rlas) + TR A=) B-20) bobs |
where the time~derivatives of by or by have been written in terms of by

and b@' ‘ by means of (29) (I) or

1'9.9—"“‘%-‘2"0.9, to= “H‘ba*‘ H o, ' B o (29%)
The identity condition in this case becomes
) vgg - r Hz Y]
ayaé o= HK((-\’)I:H%:' Y)r&w p‘ﬁw 320 )r
+4DHC(—Y)‘(4/\,5 &,01- )+ ( 3-2Y+Y2) b&b&] (33)
Since tHe’coefficients of YZ; ¥, Y° should be null, it results that
. ’ o ,
(nzo ﬁm&*}m $ls) : ?mbpbfp_—..o '
'I
(@-J—*—Lwi-»—“&w)%-wl&w Blp-( Bt &m 22 by b4 =0, R €7
4 ”/ o »
(‘?uo"' ’n’elm"“{.ﬁ m)f‘ L{ua“‘%@ ('d'-t’- “\d}}"‘ 3D b@.ba-o
' [s;lving (34) in term. of bybj . which is. given ° -. by z.‘aHa-)swz{e-wct)}
" .from (31), we obtain : ' v
'e‘JE""deIJO""?F"&?@;‘ —‘%ﬁb'_?'é 2{.0 M(t)} o ' ’ (35)
Do~ ble—Em Hal s = "M—zkﬂoﬂ son2{6-NW)}, L

Both equation in. (35) are consistent with each other and are satisfied by

4nm—-mH(¢) cosz2{o~NIt}, ’&fa-—zKHaH(c)st{sﬂJ(t)} (36)

Thus, hze is also a sine-wave with the wave-length of wr for any ¢ and ;
\ ©
with the same angular velocity as of be
‘Now we can define the dynamical system in which both the waves

'bsl and hyp shown in (31) and (36) respectively can occur, by the fundamen-

tal formulae substituted with (31) and (36) .

%—H{H-——’- Cas 2(0—:0)& ' . H=H(E),
sl 4t
k=r{lc V‘"”F%"‘M(G w)-zm cos 49—.\))1 N(E>= 5 waw, [ 6D
F“' : 2 (%) T
2*‘ Vba OOS (G-NB"‘ .__2 M J-.C 9"”) = %!]E:;a“ '+‘<v;* j

TE= Br_ P—"r'(l Y)U/ COb(Q—N)*(I—Y) >m2(9—-~)}
®°°¥'A'<"*)[‘*' >+ 4(«-—\.*);—,#‘;-H/M,t 1+ ZLI—Y)}%{%SMCG-N )] | (38)

3
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| .

=0~ I=2U=Y) 3%’; cos2(6-N) ]

== (i) DT U-v R 3y U~ T 20-v)} B 2% \

U.
“'Lgo

.
+ U= A4+ U=+ 40 -Y)Y bf”_,sm (6-0)+2( -Y)sa—--}\’) %:;cos (6-N )1 > (34

-')}’3& = ‘?Eti(l-Y)[(z—Y)y’i’cW(9"N)-20-Y>’-b—' s 2(6-0) ], - )
“TGg= 3 (h —an)«Qacx-Y) _Ct—z\/>-3V{4+(!~Y)—8<'—Y i;%’%

-4 /O - :Cl“\’)}b" 5w (6—N)

+eYu—Y){4—4q-—Y)} c.o.s:_Ls~rJ)j ! s

“his model of the stellar system has the properties as ‘:follows':

(1) Even when the stellar system is steady, the vertex deviation, the
—-24 ‘
Ybota S o4 37)—2 sr0 (25 +72) \)'\Hu,bu&.,lcons(“s.))

. -1
angle of which is given by tan (—HEWﬁa*Y)fth>u~L0+m Y~2lnsin(aBrEay )
is possible owing to the assumption of non-axisymmetry. (ii) If the system
is unsteady, the bg-wave alone or a pair of waves be and hze' can appear so
long as the vertex deviation exists ( £#0) for almost all t. ~(iii) In all
of the fundamental physical quantities given in (37)-(40), the periodic
fluctuations depending on the langitude are traced over the system.' (iv)
The patterns of such fluctuations rotate independently of the differential
rotation with the angular Qelocity of ﬁ=D°/2H by synchronizing with both
waves of be and h26 which also advance in longitude with the same angular
velocity. (v) The theéretical fluctuating patterns, the modes of which are
; as wedd as
due to the initial conditioms the secular changes caused by the variation
of H(t), may by compared with the observations, especially the mean motion
in (38) with the observed fluctuating rotation curves and the density
distribution ¢ in (40) with theobso/rv/ structure.
' v : pm
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4. The First Order Approximation With A Variable X,
lere we extend our calculation to a general case of the first order

approximation by taking a variable X in addition to the linear terms with

o]

respects to b,, h, o

. each of their derivatives. Az for X, we write

Xiw 0, £)=RN w8, ) X5 9, ¢), (41)

|where 74? is the zeroth order function given in (16') while *? is the
first ordef function to be determined afterwards. The formulae (6"), (7"),
8" aJd (10") in the preceding section remain stlll valid as they are,.
but inclusion of X requires evaluations of (3) and velh 0{3 £oH andk 5;3? valq).

. .

These are

X2 (o)—Z&(ﬂ) @ 35 | LD, (}?_S.) U)%Zf “)2 w)} \
is5e+ a«f ag% {525‘. T @ AT ‘

= i}’fb- YEZL_?' N (i-v-Y)«.ZL . v )

j‘;&—:(ém g‘v«.s)*‘ Fa-(3s w@)}B ’(9")
LU0 (- ﬁ-&w)*b’(.”-ﬁ'ba)i-%(l“n’)[“/ﬁua*ﬁ’be)}m"

K= afo=Nem e 2 Q—t}\l & R(), }
25 xR VD i s
'bbY 5&1 ) - 2 2 ) {42 %g"’l 22 f, o, 1
sy 4 A P R [ o
The mark at the shoulder {0) or (1) indicates that the ﬁarkedvquanti-‘

ty. 'is of the zeroth order or of the first one ,  In (9"), the terms in

ves pcct&)d%“

the first brackets vanish as already seen.

Fronm CTO;n—diffGrﬁltlaulO s of (10) we have in view of (6™M)
Phe _ ihha m D) IR Y 5’43)}
S - Sobe= (e 35 3T S+ (- S s 565

3657 2vo6 ¥ SH o057 58
., PR / 7
g2 a-\r>wa+ 32, } 552
3 (o)
+ Lo (1 o 8V Dp & (1 22 2v2) s} S5 )

7 P
+ ~——{— G Ry Dot (2=2¥4-Y3) 20 ; o6

() PR ()
¥ wwbgw’nza)( Sva 71391)
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. Jin the zevoth ordcr approximation
£ N9 . . " =
subsitution o , which corresponds to our continuous case characterized

by (16')-(17"), into (42) follows with reference to (Al) in the Appendix

a’:')z . A}
%" 57573 = "‘(“‘Y)z\’a‘i J_% é*eg—‘i- -QICI‘-Y) . {

- 2 {20-YI b+ sy -ayathls ) (! =9 Y{"“a“\‘d"‘ffc('"w)“}:’ 3\: 3 (42"
- (- 10Y+ 8 Y3 Iy by + UV 1Y*)(’w} a

e e

2 HY

\
- 2
J "H""vc-rbﬁ )2 l)A{*B%N+3~E(3+\A—4Y5)*B(r Y )fzv*u-v):,@j])
By equating (28) with (42/) we get the identity condition as follows
v s \ > N 0
e B S o -2 IS e v 3

v kn— XL (10 + BYY byt 4 UT2Y=2Y2) fuo| a,
+ " Y)y (= v+ Aie)[ 2 (L'I\z{- 3auN+ 332 caf*r"-drY*)+3f5‘Y3&)+ zy%«—v)%f;;“

2Py Y (=P Cne=Bbus) T BN sray b~ S )
zﬁw’ﬂ—‘r)‘&’w | v ;,;%2;,;‘( U=3(3=v ) b
* b Y G=YI=2Y g + B (Smrvrava) by

¢ I Uh-5eL)  + ey oml-(E- R 6]
The fdst order function should satisfy simultaneously both partial differen-
tial equation (43) and (9") for any values of r, & and t ,  With these
requiements and on reflection of the different character between by and hy
t;hé solution for by or  and that for hye /are obtained separately.

Reserving troublesome calculations in A2 of the Appendix, we formulate

only the result below.

by ¢ under a condition of bg m"&* b,ao (44)
-Y¥YRrR .
®Y = (X P{ SR cmvo)- zaaN+2(F<vs-Y%$)}Zﬁb§' }
-mo(L.I)r_ba+_-1=m<y) . |
a,= P D, conse.; D‘ab”+4h6\owir/” Na—- wNw)*d—%‘—gw,T 45)

HEXS H=NEU-Y )=6,, - Giconst,,
FlY), FOXY): anbitany functions of Y.
hy5 under a condition of é‘m“ﬁ‘?\w*' P&é’{ﬁ:o)- 6

‘){" \‘“‘m 28 (7=8Y+ Y2 =2Y - T:..?)

D2 2 = ac;-sa.-awr«-\'i)} a6y L LR, :



as=0; D=D,; G, G»:'consts.,
Y . ‘e . Uy \ 47)
—‘:1-350\; O=NEI=Y)=™ s ; FUY): andilansy fume, of- Y.

"/ - N .
[R=- S Svaan]

Let us mention first about x(l) iq (45) and (47) leaving be and hze
in- (45) and (47) respectively later on. Either of both‘x(%) and ‘x(%) is
aQailable when the respective wave is exclﬁsively acting. In order to
make both cooperative, 7<”==¢€21“7€L is to be adopted by replacing Fo
in (45) with F0 in (47). Accordingly, when the parameter D characteriz=-
ing the rotational motion &, keep§§%; or a ceonstant and FO(Y) ta#es'the
particular form in (47), both waves b6 énd  h2e can occur simultaneously,
But, i1if Do tufns out D(t) or time~dependent, the hze-wave disappears
at qnce, while the be-wave remains as it is. It is noticed hgre that for
getting the result up'to the first order, Fo(u) in the zeroth order
formulae (16')4(19') should be made identical to the one‘in (45) or (4?).

When D==D0 : const., the terms with ag drdﬁw%;éﬁéézfoth order  terms
in (16') - (19'), consequently the integral rz/H(t)=u remains but the

(o)

. other one 8 -N(t)(1-Y) = v = 6, disappears from ¥ . Nevertheless,

even in such a case, 1if x(i) 'is not constant but variable, both

integrals still exist for x(l) » so also for y = §°) + x(l) , because
the subsidéry equations of (9") come out

as Ay A —_ IRV . o P IRD, )

= Tm = DAk S e es, FUeOSTOR G

which readily provide both of the integrals.
Now we return to the waves in the present case. The b e—oscillation
in (44) is the same as the one in the previous, section given in (29),

(29') and (31), expect for that Do is now replaced by D(t). While for
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the hzg— wave in (46), we obtain from (6) and (46) .
§0= BhOSML26+%) ; ~ﬁ¢)=’~ﬂ—§Hcc—>,, B(= —gn = = 200, 4u, K comsts,, (48)

which is different '~ from the one in the preceding section merely in' the

amplitude. Namely, the amplitude is here independent of b(t) so that

either of both byg=- and hyy ~ waves can occurs even separately.
have am Ianibavtamt propmmﬁsfucé\ Tinak Thaug
The waves in the case of “the variable X however, carry ot

only the wave consdidered so far but also another wave caused by the
ek :m same twng,j

differential rotation of the system. It is seen from the followings: As

above-mentioned the presence of the variable X provides .the integral

O =6,-N(t)(1~Y) where N(1-Y) corresponds to the angular velocity of the
accordingly, »
differential rotation at ¥ ;> N gy subsituting this into by and hys

we have

bo= 22 AT S V{0~ NG YN} =22 G 50n (00t NY), (49)

. Y .
2 w:.giﬁ@sgﬂ 2{6~NG-Y)4N} = L2 HiE) $0a 2005t NYD,
Loy
These indicate that there exists, in addlnon the wave advancing with the
otz ,
uniform angular velocity N(t), the wave retroceding with the same angular
velocity as the galactic rotation, cbnsequently the resultant wave at r
moves in the leading direction with the angular velocityojN(t)Y. For
sake of convenience, we call the former wave as the " D-wave " and the
latter as the " R-wave ",

D!
As regards the formulae of %‘%‘ and :,}%‘ we can rewrite (10") and

(10" on reflections of (44)=~(47)

o) (51)
) a{f Syt Dj} = ""‘“" { Fitarin " z‘.ﬁ(‘*)‘uu'\-wu)ﬁlcul-b Do’ }]
W e ‘ R Y
where 5—#—:-4-%,_5)-1’5-?}6}11-(‘«“_‘1}, ku= "oy,

\;‘“’ ~5 aéi)
Y36 v 736 'lHK“, (52)
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e Br
where 335 T ZHGAMW).
g_;’) Sﬁ’ “u) » )
> : o oap2
2% 20k, B be ] B o lRiui-ua-moR: {b\)’“wz(.!fma"‘,u)'i—%%}]

Y .
f,,sia‘,(H- =0~ h”m I“‘““Eu)—uts%u)%‘—-] (53

whare 2o _b 3 __F b )
where "52;&""‘.{._;4&:%}5{.’ R Cimﬁ) zr?&“"(’ H’K"*D’

T ) u) , o
S ‘)5}’: b, R b > =/, ‘:1¢ y
2 2 e = B LB Gl newarmadlan ZE] 60
Y26 23-:&0“{-11'-'?.“ uw}*‘““ R‘—{ “‘ swﬁ}s
<} » (.5} N 2
%&1 5 *’af""’ 7 (“““%D»‘”‘“J“' aa(2an4a, ), (55)
A0S ' -

‘M‘é‘?’“"'«miﬁ"“ﬁ“*fﬁ:}z}

(a) ) 1)
280y, _ o0y, 28
Pag oo zi
Y96 ¥98 58 r vo0

(0)

=O’ (56)

Whava iRm0, -

20 yﬂl’»z&ﬂ P BN > ,1;{, ;e&ﬁwmu u)%f:’}csn
i if* *‘*Nowmw,z
whera %5%*‘ s%m‘ ra‘wérﬁciw? N

Ehese give the corresponding densities by means of Poisson equation as

.follo'ws .

W) : o, o,
HEG Qo= ATG (Gt )= 5o H-ma-~§.F(u)~40-xwavu‘<(+mJF” :2;%&] (59)

) w T N |_ L SR N -A———--—-‘ -
-H\-ursa. 2.%{-“ WH~=D {-u-rwu.)‘- <z1—m)5}l 'j

4G §) =Tl Gl o= ‘wb" {1E£w~2-uroru‘u—m) L)t Bt 4 (60)
) 'Fl‘(‘u) ’ }
- ¢ + ey Z ‘
hw‘-;&.]:‘ %“3 ~{A :1-3&(’.&) ‘5 W Eicw) a“ }) r
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' ' zrba ——de 3 )
whave 4G = Dzi, (rtwy? S.H‘K\‘T’l’ . ‘ J

et S 2 ety e,

N e

2 .
'WLQYG _ "f‘T"-CTO}k=—‘1‘iH1—\ZHH"Do§,U-{-\f“}I ({-‘-m):'}%, . (61)

47&_3—9,‘ d=dr G (Gt G )= %3%%@ (-1-63+2.Q=D.. 3;%‘ ) ' \

> l

i-—-'\wu-“:s}:“)(u) L (HIGA) u*‘itﬂi‘(l"rlfu) ,)b;%l 1, i

e W 2 fep ) 2 3
T = L. i')
wheve ARG ‘A' -1+ et um)z" Grieap (rocus }

<6z>j

Followings are said from the above formulae. (i) The zeroth order .

20 correspond to those for be in a’'special

case when’ D=Do and B(u)-——«(\-\-:"‘)f‘:ﬂ_"-&--‘-m (FO(Y) in-(47)).  (ii).

quantities @@ and 09 for n
2h 2h

Under the condition of (44) or (46) inclusion of the variable ¥ into
F(P) 1in (1) 1leads to replacements of the essential terms which character-

2n ..
(n:an integer). But,

ize Q@ and p , by the terms with 1/4® or 1/r
this effect can be made less by modif)g%he conditian ('44) or (46) as in the
‘next section. (iii) In the case of be such‘ replacements can be, at least
partially, compensated by adj’usting—the arbitrary function FO N while as

~ for hz‘e , Fo(u) is spec"ified in the above-—me}ntioned wéy so that the _hp_e-

wave cannot happen unless the stellar system has a particular potential

field defined by (55)-(58).
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5. The First Order Approximation With A Variable x . (Continued)

In the preceding section we found an example permitting the bé -

or/and the hze-wave in the case of variable x . ‘Here, our concern

is to look for the other examples and to examine the corresponding dynamical

conditions.

The case of b6 is considered first by neglecting all the terms with

h2 and with use of the abbreviations,
e ‘ .

by =1b, s&nm- Pacio8, bo= b.&n&— Pasims,
Asz bg~: b3~( b, _5.1 by ) senB+{ b Tiba) O B SIS+ L2600, ;
A s By B b= (= B b ) s+ (B B b, )08 S ~02,546+ 0108, (63)

B D D{);: %b.$w9-+‘ﬁ' Q,_C«o@ = U&.SM%—ZB_;&»Q,

Then, the identity condition (A1l5) is transformed to ,
SUn 0L z("z;ﬁi)‘(’“{-‘r) ;—xiﬁ (uz‘— B3} (1~ 00 (Dt BHYUTY) ,
e B By B Sy e Brony-320]
+end]~2(0ut B (i -YY”;;(—E‘L) + 28 B0~y -ado- B ra-)

{

I IS

) =-%—@sw+%b.a& O= - sund T 05008,

i

(64)

o B+ e R G Syt 2K frodtaan ] =0

Both coefficients of sin® and cos® should vanish, so after-respéctive
integration about Y each of the coefficients turné out
| 3G B2, Rt Bl adl By log S + Goy
(o)~ it oy NI “—OA)+ 22 (A Hn 20,0 =0,
~2(Out B Rl 2l a2 )Yéog =+ Y (65)
+ LB oz.-rLf T ?-Ikoz 02;,*““12 \an;c;,,,,)-a-zaaoz.]=o
vhere fl and fz are to be arbit_:rary. functions of t which is regarded

here as a parameter,
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Fo(Y) does not contain t, éccordingly we should have a relation between
the respective coefficients of YlogY/(1-Y) as follows

a2 ®B) _a.,(OZré’J‘A/.z)
Oz~ P33, Pat I3/ 2

Therefore, if a #0 or D(t) is not a constant, it is required that

5?
&z 2=0, 022*—‘4—'02 fid=5=0; F : undetermined, (66)

ar {(éz,_-r%_?*)‘i-cfﬂz‘—% )"}aaz o,

which correspond just to the case of [E=0 treated in the preceding section.

A remark may be necessary that the terms in the brackets in (65) are
proved to be cancelled out by making use of the first pair of equations
in (66).

On the other hand, if ao=0 or D(t)=Do:const.,-two alternative cases
are considered. A case where 01«.—%-7—0 and d&zi—%—":o hold furthermore |
corresponds to a special case of the above-mentioned one, cOnsequently _FO(Y)

is left undetermined. In another case where (%922 4:0 02,-1- =0

we have from (65)

s H
Dz 25(8) DN Zatuge |, 31 lmw—@l :311_‘3-5(@%,, ) -
To{¥)==7 B R N 2208z | R 2@ 33,," 32552 )

2 oo
_DE, 286 ¢ Y DRI 3 Gt ihon At S nriion)
= 4K+202 +&3,Y"'& /{ 201.;?‘00, += )\ 20293 ~ 2222193, },

~which results

A _ e _ . .
2B 2Rt ,'ke': #,, Ha consts.,

-—Do<02g+m&;)+3H(0&+ ()2‘)-1-2?135@“; Uq}.:/fe;lg-czoz,—aaz), }
: . (68)
Dy (Gt Eronyai (G T cayvan St Poy= Ri5 (2273,

Eﬁ: ting

Z=m(23a 2= =B, (mzd, m% -.[:), . 69)
we obtain from (68) and (§7) ' ’
= {4 ntCam=)h} DY+ {2 2omi — b‘m—t)("vm Bt ha 5 4 Ba=0)

;"&z'ﬁ ,-1+z:~nr_t +(an1) vmm%*-&%jﬂ&,-{mfnrwcl‘nﬁ ,} C3.= o, {(70)

=y (Rin=13 %3, o= =~Rul2m=1) 23, . )
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Therefore, there is a variety of the dynamidal state permitting the by -
wave. Especially when both m(%%) and  n(# %Q are‘constant, it follows
from (69) that '
bi(E)= EERES (i=1,2), Ho, bia, T=TLICOMSES,  Fimome (71)
Therefore, on reflection of (70) we have '
fammmr P (<o),  f®=kiemOZbe, fo=-kiamdBbey, 7P
for which FO(Y) becomes '

> N oo : - ‘
RO = = vk + a ()= 0=~ - ek, (73)

With respect to the hze- wave . too, we use ‘the abbreviations,,-‘

as o :
N / '

Dao=tstn20 + hacan28, Yo =24 ‘c‘_vs.z&—- 2&;4Ur20,

=g ﬁxzw:c&, CUSERCORS B Veos28 = £,50m26+ Cacos28,

Uz b= Bfogm— b Frh)isnzo+ 2= B2\ )c0ns = = 2Easom 2428 0mag(74)
D= %ﬁm: T hSmzb+ 'ﬁdz@s 28 = GysU20+ e cin28,

B B bdpm =22 lusia2s ¥ dy cons i 28,00 2513816028,

Ei= bdd, En--gu.-)&. , (75)

Then by letting the terms with DPBL be neglected we have from the identlty
.conéltloﬁ (A15)

5%36'[25&{ bUr=ay )~ LH-ZY~Y’/}A9;-2F{/P (:-»r)—(:-*r)}@z
+ BFipe-yrar)- <1-Y-Y*>}~%+ 20 { § Q2+ LogTa )= (1) og 1Tc | o8
¢ B g v 2 E )| «91-3 Pg 2 v prg oy 1,(“‘051.11)‘9 X1
‘Bu""\()i ,P% P "9 +(‘b" ] Lr‘ J‘}l H(C:r,— Tt G:.Y)} ],
—cos20] 2852 g L 3ve 1Y 2) - (VY ~2 Rl g (3-2v)- -},
i"Q&- 314 (A~Y+RYR) =(2-Y=Y )}, — Cl»,{/!a(l‘ﬁ- fog ‘__Y) (s Y)bga‘«}él
T K' . I-Y—Y){~({) Dt ”%)'ﬂ"&‘z‘a P% 9-9&19-1- P%z - )—_!_)‘gz___ ‘219‘.}
.“9—-0-‘()"?3 5= f’*"P &E)&}vhcq—;r% —ﬁly)] 0,
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where G(l) is replaced by Gy(E)sunz8+ Gulb)cws28 as ‘it should be (cf. A2).

Since both the coefficients of sin26 and cos2d 'must vanish, we have (&+0
&,¢0)
",‘ {(19 -z)f(%—-m)\f-(zp-t)w} r-;iwrn Ge-dY} |
=—_<;,~<-r;{=a>-t) =Pyt G+ N+ “"”—‘l{ 28+ geag pdv-TnvTlg To
'*33?5-" ‘_Y-t- Pg+ Py (p—10Y }*-(27(39 F‘*\--——ﬁp)(—l—_—;-Y)"‘ O—Jﬁ-‘;éﬂv( R
+REGH G repdrabe-gv- fﬁ——-—i,:"’ 13 |
(76)
2 E—{\ g-:)*éac,g—l)‘f—(z ‘,)-D\’z} ro& (G=1D~(2g~1Y }

-5 28 L{a2(g)~Gr Y gt OY2}— a—}{ ”’ﬁ«+ P+3 pcﬁ—w—gc p-tY] %f:o}

K'Y
=50 5,
-s-;K"f-{— .@\;.,,;%4. $g LY T (SR 43+'—='jc5}(,.Y-Y)+ :‘R ﬂ;—{j:'
=ERIa pr(Batapg-piv- —i‘e———i“*’ 14

Comparison of both equations in (76) indicates that first p=q, second ao.=0

otherwise the coefficients of Ylog Y/(1-Y) in both equations cannot vanish,

HD% H D

third p=q=0 from the coefficients of pyr and ——fg; , and fourth

GH=GaD _ -&GH-GD . & G

Sy A
which provide .
4z

GlY= cosTle)) =G
N *® sn ”}w&w&. “ 2)  k:arbitrary constant. (77)

Galt)= 7:%%} = ksmn) b= AEA
'On the other hand, the h,g-  Wwave - assumed in (75) is characterized by
M= enw, wo=-r R, | | (78)

to which the function F(Y) defined below is corresponded

: %f_o__l_ =3 p-F(20—1)Y

D& 203 _a(pd)
(p-N+Gp-2)¥- u-p—l)Y‘F" cb-x)ﬂ%pﬂ.)\’-czp-t)\'i??{ x~\' Y

+(‘p+\)(2p—c)—u1p3—zp’h2p-()\’}f "&Jif’-l(p-g é*Y_; 7 (79)

This first order differential equation can be solved in a straightforward
way though its general expression is omitted here. Especially for f=1 we

have

_ _ Di-3Y) o He
o= ikl T @YU S (80)

which is nothing but the formula in (47),



In the above treatment, we examined the cases in which a combination
type of the different sub-indices such as (=m0, (= -n(8)33,
and 5.:{36&)&2 5 82*-—-46&)152’» were assuméd. For these ca’ses, if
m=n:const. or p=q:const., (71) or (78) indicate that the angular
velocity of the.respective wave depends on the multiple factor m or p ,
while the corresponding amplitude suffers no effect.

The amplitude, however, can also be changed by adopting another

combination type with th: same ‘subdndex such as-

Qu="mEB,  On=meBa, (81)
C,:ﬂo(b}u‘}, Eg_:' 4”“-) ‘-:*Qa, g t

Because, these give at once

. Gk 2{ et
b= b { / tiu:)_) 32 meeanc )’ ey =, BG Hcm P CZNICR 82)
aud especially when rm(t)::‘m,%) /‘p(t)-:/p‘,-%; (mg,pp:constants)

respectively, (82) are reduced to the simple forms of

"mﬁ- o
o= b /Hé:)) * > &&ﬁ:&a(”lcﬁ)?*‘ (82")

Generally speaking, the identity condition (AlS5) is linear with repects .
to O, Bs» & and 24 (i=1,2), so that the most general case is expected to

be of the type mixed from the above two ones, namely

0.4(—_~-mize>53,+m‘cc>032, | Chm el male) } (83)
&= Ptk £ (D, € ams (6 dut 2l

These may provide further more possible examples of both be-- and 'nze— osci-
e ‘OC\Q)
llations, since both or either of the amplitude and the angular are adjustable

at the same time. But, we refrain here from examining (83) so as to illust-

rate exhaustively the possible examples with their characteristic formulae,
, B there
and we are contented with having got an important information thatAcan be-

a variety of both bé‘ and hze- oscillations depending on the different conditions,
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Now, let us review the case of variable yx throughout both sections pre-
cedent and present by forcussing our attention to a question which kind of
models are permessible as of the two-dimensional stellar system. Concerning
it the followings are meﬂtioned: (1) The waves be and hze consist of two-
component—waves; namely the " D-wave " advancing with a uniform angulér

" receding as if

velocity over the system and the " R-wave
it compensated for the differential rotation. (ii) Tﬁe waves of b6 or/and
h26 , therefore, advance so as t0  develope the arm—structure. Whereas,’
the models in §3 in whi;h X was kept constant, the latter component-wave
was lacking so that the waves were forced to move as a rigid rotation.
(iii) If D is time—depeqdent, only the be-wéve is possible, though there is
as much allowance for the model as for the arbitrary functions of F<0>(Y)
and F(l)(Y). In § 3, however, we found no model with a time dependent D.
(vi) For a constant D on the other hand, there exists_a variety of model
which permits either or both waves of be and hze on the contrary to the
models in § 3 where the hze-wave alone could‘not occur. Generally speaking,
freedom in the model is more for be than for hze as'sqspected from conparisons
between (45) and 7) and also between (70) and (79).

(v) The gravitational field_
and the density distribution'for any of various models can be evaluated if"
(0)

we compute 24k %%%‘,93 " for an assigned F

vl (¥) which is determined con-

sistently, say, from (67) or/and (69), by making use of the formulae such

as h, k, 1in (6"), Z in (8"), %%7",%% in (10") and X(l?. in (A13),

and then if we combine these %;,—3, %0;% with %%—', %95%, shown in

(51)-(62).
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6 Summary

Here we summarize the main results in the present investigation. A4s for
our fundamental assumption refer to 8 Introduction.

1) ;n the self-gravitating stellar system with the given density distri-
bution, the velocity distribution cannot be determined uniquely. But, if :
some velocity distribution is chosen adequately at some epoch, its evo-
lutional change can be persuitea. 'Accordingly for the same density distri-
bution, different evolutions aie possible.

2) The so-called weiéht factor to the density, X , which is introduced
into the argument of the frequency function f(P) as a function of coofdinate
and time, is defined by the continuity equation following the motion of
the local standard of rest or (To,®). (§1)

1e£tingrbe the normal galaxies

3) In the present treatment,
~ in mind, we regarded the parameters relating on the vertex deviation as the
small quantities of the first order. :Iu the zeroth order approximation
dropped the first order terms, it was shown that thére’could béa$ariety of
parmissibie models which were finite in the dimension as well as in the total
mass. ( 2) ‘ |
4) With the help of the dgnsity factor x'; it was proved that Lin's
spiral p?oduqing potential could not operate as a disturBanée in the self-
gravitating two-dimensional system unless thevvelociﬁy distribution was
circular.
5) If the weight factor x is cons;ant or negligihle, the identity condi-
tion which requires consistency between %é? andég% can not hold except
when the parameter D(t) characterizing the mean rotation ( @,—-'2%—6—&') +
the first order terms) is keﬁt constant.v'In this special case of D=D°:cohst.,

the calculation up to ‘the first order showed that there existdone ron-steady



finite model in which the oscillatory variations in the velocity dispersiom,
be and/or hza were possible with the respectiye periods of 27 and 7 in
longitude, unless the vertex deviation éid not vanish; Presente of these
oscillatipns causes fluctuations depending : on longitude with
respects to the dynamical quantities, such as the motion of the local standard
of rest, the velocity dispersion, the density distribution etc.. G3)

6) Especially as for density distribution, the above mentioned fluctuations

oné and Jby and ;
appear as a patterned structure which consists of ™ ’E@g arms due to hpy respectively

or only ‘one arm from bé' Each of these arms is produced by the wave,

which we call the D-wave » advancing with the angular velocity of

D
o

( 24

nearly unchanged irrespective of the differential rotation. It is conceivable,

+ the first order terms) so that the patterned structure remains

thgrefare, cﬁe main feature of patterned structure is ascribable to the initial
state. (¥3)

7) In the above-mentioned model, the one armed pattern of bg can appear
alone while the two-armed one of hze occurs only when the ;ne—armed one
exists. In order to make the density fluctuation in the two-armed pattern
cémparablefwith that in the one-armed ‘pattern, the amplitude‘of‘ hZO osci-
llation should amount to a few tenths of H . This forces the position‘of
the maxiﬁum density to displace away from the ceﬁter of the system.‘There—

fore, this model may not be a representative of the normal spirals with two-
armed spirals. (£3)
8) If x 1is variable, such an integral as 6=6g +~—-1ll—47— éxsists so
) ' 2 (H+Kr)
far as up to the first order approximation concerns. Therefore, in addition to
the D-wave, another kind of wave or the R-wave receding reversely to the

differential rotation is produced by either of osc¢illations by and hzp .

Consequently the resultant wave moves with the difference angular velocity
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between both waves. (54)
9) For the variable x , a simple case where both be and hza osci-
llations take the same form as in the model of the constant X was examined

in details at first. In this simple case, if D=D°:const., both of the

oscillations occur in the models which are the same in the zeroth order
but differ in the first order, while if D=D(t), only the b -oscillation
can appear in the models differing in both zeroth and first orders., (§4)

10) In a general case with a variable X , however, either of both osci-
llations by and hze can occur with a variety in the angular velocity
(of the density wave) as well as in the amplitude, though the hze-oscilla—
tion vanishes unless D 1is kept comnstant. But none of these possible
angular velocities contain the radial coordinate in the zeroth order, so
that the effect of the wave due to the differential rotation leads the
resultant wa;e move in the preceding direction. Therefore, the patterned
structures of all of the various models with variable x will develope into
the leading spiral arms with different time-scales corresponding to the res-
pective dynamical circumstances. ($4,%5)

11) All of the present results have been derived under the requirement that
the identity condition of the potential must hold everywhere and every time.
The oscillations b6 and hzs, therefore, appear as sinuous with the periods
of 27 and 7 in longitude but not some of segments from a sine-curve,
accordingly the spiral arms are not bandlike. However, if the above-mentioned
requirement is looéen, the different aspect is seen, for example, either of the
the leadiﬁg arm or the trailing one occurs rather evenly as bandlike arms,
The investigation on such line will be reserved in the forthcoming paper.

12) It is added a note relating on the so-called anti-spiral theorem due)

to Lynden-Bell and Ostricker (1967). These authors proved that the patterns
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(1969) and Miyzmoto (1969) ascertainci that this theorem held as well in
their results from hydrodynamical treatment. Ca the other hand Shu (1970)

demonstrated that the theorem did not necessarily apply to a stellar systen
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case can hardly be assumed to have a common

approach from normal modes, since our those functions would contain, even
if all of the time~dependent quantities were expressible
the terms with factors of exp[1(msrve)], expirve] , explimwé] and 1. OCur
treatment, therefore, is more general in the above senrse than that due to
the normal modes, though our frequency function F(P) is restricted to have

Y

} and is required to be consistent witn the potential by adjusting
¢S . s i (&)

U8

a form of (1

the trancation.
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Appendix

Al. Derivation of the expression for 7{”
Let us find a common solution 2¢° for the simultaneous partial differential
équations of (9) and (15), or

(O] '
% LET ZV"' NC"'Y)%%"O

. - 2 Y-
S R gy FrU~¥y=o,

} N'Ct') ZHM Nes H‘H‘W‘ } (A1)

' The subsidary equation of the first equatioh in (Al) becomes:
ALY . A6
From the first pair and another pair consisting 'of the ‘first and third'terms,

we get
2

RS e =W o-Mdwg=v ; ' (A3)

(i

&3
i

Irespectively. Therefore, 7{”18 given by ’){“tu,v) which includes vevery
integral of the first eq;;ation in (Al).
On ‘the other hand, since the second equation in (Al) is tra_nsforme.'d into
L2y aﬁ’)—f—,ﬁ%} o -5%%,7{‘((9{”— %ﬂa)ﬂ:&e}f&cée)}no‘, |
in which F(r,t)h and G(&,t) are arbitrary functions ipcluding t as a

parameter. This follows at: once for Y+0 or r}0

XO= a9°+—1—{=(v.b)1-6-69.t)} ER=ae), (a4)
Put (AA) into the second equation of (Al), we have
%-E-) a.N(l-Y)}i-{-'—(,BC"ve-N S+ (kE-N %9:)} o
‘i 2H + EE) = (A5)
This is decomposable into two parts, or
E F . o
‘aac “"’zH %Y““’*NY(|-Y)’= QLN G (E), . (A6)

B +NPG+ v (Go-N GG~ -lgaryaw)
where @(t) and @(¢) are unknown functions.

Now, .let us express G(&,t) by a power series of &, or.
i, il .

coss=F e, an

R0



S'r

and substitute it into the second equation of (A6), we have

f{é.ﬂx‘:tg,-&@.teﬂf(c,fz.\m,)a f{ W) G 6" ]

fY[{“N‘J:‘*“&(é-)Z-'(-(G"ZV ;)a—j R{rtn)g ¢-»6“3=

Gromr—e ”he above equation should hold idenblcally for any values of r and
hence .

g ; it follows that

Gs=d =+ =0, :5;.—.:'——::&;35{:., G ==, %—--{q:,(.{,—)f(&a_-)} ,
consequently we have
&S t-‘)-’-'"}o‘-&f)'f"}ga«‘) 91"}.@5‘22’ gold+ {@,omo—a.cw} o+ fg.;&"
Ga= /N » G amd &Kot Con sés..
Substltution of (A8) into the first equation of (A6) results A
5—5+vfﬁ1- S’-E + ANYG=YY+ o+ NU~Y) (c-A) = -‘3% -;-7*%%54 aw (1~Y)+<.0(x-—\r)‘+ 8,=0
Guutdoe= & 2 CA){\SC-,
which readily provides

} (A8}

. ) D
Fi, 6= Tolw)=Go )+ griot—~ SO (49)

With reference to (A4), (A8) and (A9), we obtain the final expression of

»? as follows.

N=as+ BEA{Ruor O — - MO (cnyorq.0%) (A10)

By the way, let us ascertain that 76”obtained above is actually expressed
in a form of 7f?tu,V) proved at the beginning. The formula (Al0) is
rewriten as |

o), 1w o _al _B*
Kl = ’m;."afmuum)*‘

9:‘92 "

the right-hand side of which is transformed into in succession

bz ity J
-—“-—(v«—hﬁ"m)-f e + %z(,\f‘l‘rb—“‘ =)

H?ﬂ(lthJ
=B Dz zg 32N>
= Ku. kua-nm) * gemiracy T e A =YY e ryey

() g L0 v+m><«3<-«wzw*>, <2€aw=@«e~,c>-z-

But i;; i's proved that (—@c—-—aut-%-;\ll§ ~const. -or alternatively

: -ﬂw-aNf-zquN N {@+go~C)-a .\1==O; Hhat & Ly % W a-aa
.since the _last relationy ’
~ follows at once from 2g2N-a.x There&ore, we have flnally
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= __434’,:‘,(0\ ;a({;m?m mgl%*uk%—au+cz=u )_H—@L-Fm y.

o2
‘“.< —fe—aN 1'%2”;'* conslt )

where all the parameters except u and v are constants, just as expected.

(All)

It may be worthy of notice that an expansion of G by a Fourier series,

‘'which -satisfies G(9,t)=G(6+2r,t). of course , provides no admissible

term.
A2. Derivation of the expression for X%

for

A similar treatment to the case of X is possible getting a common
solutian % for both the partial differential equations (9") and (43),

but inclusion of many additional terms to each equation makes calculations

troublesome.

We rearrange (43) for sake of convenience as follows

Z%{é?/’(z\% 3)}'-: AoN i'i'i(i'—;\’/‘)( HY-2Y2) by — ( ) (4"‘“’-‘/2‘)7"@:;0
T S (-6 Y i+ T (i\—(if)awwz)-,w 3 _
— o / o __ Id
+ —?%{ 4= ‘:—})(-t—w 2723 3= 0t ) b (IS0 (2 Yz_z\(aﬁﬁ)yaw}

+-%§ :l:‘r‘(-fﬂ‘r)(bo-*bg)*— £ ey Chasrtian)
LBy (an){ B- (- 22y b vy s e 0]

P
+ {EM)—V%‘Z" A iy eyl (N2 6] o
%{:‘;{,— YU PH+ 25 Cs-YI“’v@m} (A12)

Its repeated integrations with respects to & and r give:s

K= e:%S{‘(— St :;—:)vbs* (Era)d fak
+E2{(~L42) o3 logu— ) als}
+g:éuzsa—wJ—+I—*f*>vos+<-~=-i—-%+ﬁs>~%w}

+ %{YY( Ka-g; W)~ %cgw“ fﬁ'/ﬂz@)}
el (R el (e o]
+ HTERw Z- Sea)r B - 2ra—a0vhy
i r;.(u.)(- -t-i-rz)-f %%(%“4-‘?2\’1}-&:33 ,
r¥iFPmer @, et . a1
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where F® and G are arbitrafy functions in the'first order.
We substitute (Al3) into (5'") and arrange the terms in the order of the
power of Y with the use of the abbreviations such as.
—f:‘qba =A, %b@EB; »(;w-%ewza c, %?—8,155&2 (A1)
Then it results.that |
X1 D”*(‘Foi‘r)-"ah‘}\A'f——-)"'ao(ifx -&)
B EAY BEAA A 2 AN
?1?»-‘“ L +(F&Y)—Y%5)5(A+.@'~)-ao(ﬁ{—%5:( |
2] w;&.-mcv) ~Ena-E]
2k 2 wgu ) -dov‘—- oY]+ —Lﬂugu‘:aoﬂ) I+ mwoiﬁ&i&"‘%&
+i L B (e~ By —aod~ DAL/~ B(ndnd)
~ 4 (B~ Y Y )«:f- oy i (—55 D2 ”gf")j
—‘;[%(mf Iy +—ild:/+ Bepdend)
+6(ECY}‘Y%:‘S)(¢+ —;_-) +hR (#1‘ L 5@-" ]

ra - Har &)

v

Hy2 _
. +:.(5W)—Y%£"-)<<c+ l‘i)] ~
N = TN
+EL v~ Zalh(er B ] FSiser RS l=a s

In order to make the above equation hold eve:;where and always, it is
necessary that any set of terms in every pairs of the . brackets
vanishes for an arbitrary value of &. Let us get such a necessary condi-

tion for by, at first. If we put
e’

At EE‘/‘-‘- bo- L bot Fub=E, A-B= to-Lr-Tbe=

then the coefficients of r/H are written as

2. oL
TE+ R R+ (n:—sv”*‘o")qam-&z(ﬁcy)-\ﬂ °,51E+a,'(E/= o,
while all the’ coefficients of both r/HY and rv/HY are expressible by

some multiple of E or E' . Therxefore, when



60

‘.E=b0~*n-b9't'5%b£:=0 (A16)
holds without any restriction except for F°=Fo(u), l’m =F® (u’).. and G¥=
Gyp iconst.*, :he whole terms concer.:ning ‘bg yanish, orlin otller‘ y&_orcls,
an oscillatory motion of by defined by (AlS) occnrs in :'r:ealit':y."

Secondly as regards h,e , the coelficients of l/HY2 gives** ‘

F=Ct %—l S‘e\ze-*-%&wi-%fw-‘-‘o. (A12)

Then the equation (AlB) becomes as follows by letting the terms' for bs be

aside b
-aou)(lpg,u+,_Y S+ Kﬁﬂ%—_ﬁ < +ro+ﬂ‘Y>§5}'

36D 260 | 1 (R0 SE (418)
¥ 2a-0S5 (S ) o,

[=
ﬂz"l 5 *IRY oV &Y

)

where G (6,t) is represented by

ai"=e.ce>scms1~w cosa8,’ ,
since %{) and 268 have a periodicity of @ as readily seen by taking diffe—

rences for both cases of =0 and 9=.m: with respect' to the coefficient

of 1/H ov 1/HY respectively. Hence (AlS) is rewrltten as. i .

mi““(e"” ur s —‘?>‘="J‘ GHeG -—K—)ao)-@- 2-@':.1)} *h“(‘a%“' s %’f’

‘ Qi B - (a18Y)
+afi(22¢_@12)».- —<e,mch )+ Ka =5 +cw>* ‘_Y )} o .
We have, therefore, from 'the coefficients of . D
Go=0(D=Diitomst.), Gu=0, Gy cons&., ' (a19)

and from the coefficients of D'

&P, j“— b2

z-Y>"' (W)e(‘aﬁ“‘ IR T

* In order to satisfy 5,?&=‘-—?i%~ , G* should be llnear function of

V=G- —%’ , nevertheless, if G"’ contains - v, a discontinuity as
mentioned in 32 occurs at &=arm, We can put G"’-O since Gbo is included
in F® (u)

** No care- is necessary here about that Fo in the second term of the last -
line of (Als) is an arbitrary function of Y . L o »



1ntegratlon of which results

BN = ..‘E; 4“31+ ﬁ:Du. GaCi*Y) Gu, Gt avbitmyy comsts., (A20)
|

while lastly from the remaing terms without & wélhave

Faréy= FowWy, w=, (a22)°

Thus, the h,g —0scillation occurs when TF=0 is satisfied under the restric-

tions such as D=Do : consBt., n=GfD(Gl:const.) and F°' being in a form of
(420) .
As a final form of X, we obtain with references to {A13), (Alé),‘(Al7),

(A19), (A20), and (A21) as follows

/
A = (10 ~2an e Bri-vaealRon-v §5) &z-ao(‘—\riytge«--‘—#"m

= Y;{ D 7—8Y+4Y‘—3Y31-\r‘*— —‘r)

s, -
=4 g (w),

z}‘g

~GiDK 2-2y+ Y ~3G (33 v %

where - H, D, N .are the zeroth order functioms.or t© While K’,Gl’ G2 are

the first order constants.
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