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1. Introduction

Jeffreys (1928) suggested that a constant shear flow in an unstably
stratified fluid stabilizes all modes of perturbations in a vertical
plane parallel to the flow except for one mode of infinite wavelength.
Then he conjectured that convective disturbance occurs in strips instead
of in the symmetrical Bénard cells. His conjecture was supported by
laboratory experiments on thermal convection in a shear flow performed
by Terada (1928), Graham (1934) and Chandra (1938). A theoretical study
of hydrodynamic stability of a stratified plame Couette flow has been
made by Taylor (1931), Case (1960), Dyson (1960), Riis (1962) and others.
They concluded that a stably stratified Couette flow is’hydrodynamically
stable. Kuo (1963) extended the theory to a plane Couette flow in an
unstably stratified fluid layer and proved Jeffreys' conjecture. Based
on perturbation analysis, Kuo concluded that the preferred mode of
perturbation is roll-type convection parallel to the basic flow.

Asai (1964) made a numerical experiment on thermal convection in
a shear flow andvdiscﬁssed the dynamical structure of convection and
the related energy conversion. Asai showed that the éxis of convection
cells tilts toward thi. shear with height. This results in the interaction
between the convective motion and the basic flow which transforms the
kinetic energy of convection into that of the basic flow through upward
transport of horizontal momentum against vertical shear, i.e., counter-
gradient momentum transport. Thus, vertical shear tends to suppress

development of convection in a vertical plane parallel to the basic flow.
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Moreover, the discrepancy which develops between the central axes of an
ascendihg region and of a warm region of‘convection reduces the conversion
of potential to kinetic energy which is a principal cause of the develop-
ment of convection. This result is, however, restricted to two-dimensional
convection along the basic flow. In contrast to the predominantly one-
way flow of energy toward higher wavenumber in three-dimensional turbulence,
energy is cascaded toward lower wavenumbers in two-dimensional turbulence
(e.g., Lilly, 1969). The tendency to convert perturbation kinetic energy
into mean flow kinetic energy may be regarded aéian example of a general .
result of two-dimensional turbulence. Therefore, wé cannot rule out the
possibility that the conclusion obtained above might be peculiar to a two-
dimensional convection. In dealing with three-dimensional convection in a
nonlinear hydrodynamic system, Qe shall still encounter some practical dif-
ficulties. A perturbation analysis of a three-dimensional convection is
useful because it affords an insight into the dynamical processes involved
in a thermal convection in a shear flow.
v

Recently, Deardorff (1965), Gallagher and Mercer (1965), Ingersoll
(1966) and Asai and Nakasuji (1968) analyzed the full sixth-order stability
problem numerically instead of Kuo's incomplete treatment on diffusion
terms. Then they showéd neutral stability curve for various ranges of
some physical parameters such as Raylgigh number, Reynolds number, Prandtl
number and horizontal wavenumber of a perturbation. In this paper we will
- extend the previous papers (Asai and Nakasuji, 1968) by examining in detail

the structure of the unstable perturbation and the associated energy con-

version.
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2, Basic equations

Consider a horizontal fluid layer which is bounded above and below
by horizontal planes at z = 0 and z = h, respectively (see Fig. 1).
The coordinate axes x and y lie in a horizontal plane, while z is the
vertical axis. In the undisturbed condition, the distributions of

temperature and velocity in the fluid depend linearly omn z, i.e.,

&1

=u_ + Az (2,1)

Hl
1
=

- Iz (2.2)

where ['(Z =3I/ %) is the constant lapse rate of the temperature and
A= EEYEZ) is the constant vertical shear of the basic flow which is
taken to be parallel to the x axis. To and u  are the temperature

and the velocity at z = 0. The relationship between temperature T

and density E is expressed by

p=p {1-a(T-1)} (2.3)

where @ is the thermal expansion coefficient and p, is the density

at z = 0. The pressure ; can be derived from the hydrostatic equation

Z

P -7 h To-Th (2.4)
%




where g is the acceleration due to gravitational force.
The linearized equations governing small amplitude perturbation

motions under a Boussinesq approximation may be written as follows:

' af xu 1 ¥ )
—_—t g ——F g —= .= — 4V u' (2.5)
ot x oz SRS
dv'  _ ov' 1 v
-—-+u——=-—-—+\)V2v' (2.6)
3t x p_ oy :
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b —=e— —4ga'+y VW (2.7)
ot ax P dz . *

—_—t—+—=0 (2.8)
ax oy X

x' _ I iy

—-—+u-—+w'—=nV2T' (2.9)
ot x Xz

where u', v', w', T' and p' are the velocity components in the x, y,

and z directions, the temperature and the pressure of a perturbatiom,
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-respectively, v is the coefficient of kinematic viscosity, » is the co-
R . .o 2 . :
efficient of thermometric conductivity, and V" denotes the three-dimensional

Laplacian operator.
Eliminating u', v', and p' from (2.5) to (2.8), we can reduce (2.5)

to (2.9) to the following two equations for w' and T':

o _ 09 2. 2 2
(—+u — =vv) vw' - 8oV, ' =0 (2.10)
dt x
d _d 2 ‘ :
(—+u — -x9)T -Tw' =0 (2.11)
ot dx
where »
) a2 aZ
Yo = =, + =
H
ax2 ay2

On the other hand, differentiating (2.5) with respect to y, (2.6)
with respect to x, and taking the difference, we can derive the equation

for the vertical component of vorticity:

¢! _ o' ' 2
—_—tu—-A—=y V¢ (2.12)
ot x vy
where
A '
' =—— - — (2.13)

x y



Since we can write

) ac'
e = -— - (2.14)
y Xz
and
¢! Bzw'
V}zl vl o= — - (2.15)
x dy oz

with the aid of (2.8) and (2.13), the horizontal component of motion

can also be obtained.

3. Boundary conditions
We assume both the upper and lower boundary surfaces are fixed and
smooth. This means that both the normal components of velocity and the

tangential stresses must vanish at the boundaries, i.e.,

w's——=—=90 at z = 0 and h (3.1)

with the aid of (2.8) and (2.13).
Furthermore, the constant temperatures are assumed to be maintained
at both the upper and lower boundaries, respectively:

T'=0 at z = 0 and h (3.2)
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4. Formulation of the problem

Now we take solutions of the form

w' \= |w (2)\ exp {i (kx x + kyy) + ot}

T' ® (z)

¢’ Z (2)

u' U (z)

v' V (z) (4.1)

where kx and ky are the wavenumbers in the x and y directions, respectively.
A real part of the frequency o denotes an amplification rate. Let us
define the following dimensionless quantities denoted by the super-

%
script :

* -1 * 1 %*

k. =k h ",k =k h", z=2z h
X b4 y
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U=U vh ™y, V=V vyvh ', W=W vh (4.2)
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Substituting (4.1) into (2.10), (2.11), (2.12), (2.14), and (2.15)

and using (4.2), we obtain

a? a?
% * % * * % - *9 %
(F R K 7 - (- KD} (=g, KD W +P]RE O =0
e X 2 2 r - a
. dz . dz e (4.3)
d2
* r iRk Tz - Pt K2y e - 4.4
{o iRk 2z =P/ (=%, - )3 -Ww =0 (4.4)
dz
2
* * % d %2 % % % .
{o" +iRk 2 - (—g, -k H}Z -ik W =0 (4.5)
e x dz y
*.
N B
=i (k, o R, y ‘ »(4.6)
Z
R % AW Rk*z*
= i (ky dz* - Rk ) | (4.7)
* %2 % 4
where k 2 = k. 2 4 ky 2, P_= v/% (Prandtl number), R = golh /nv

(Rayleigh number), and R, AhZ/v (Reynolds number). In deriving the

—% %
above equations, we used the relationship u =z , which can be obtained
assuming u, = 0. ‘The Richardson number Ri = goIYAz will be adopted
instead of Re’ which is related to the other dimensionless parameters

in the form Re = {Ra/(PrRi)}%' Note that Ri defined here has a sign

opposite from that customarily used.
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Dimensionless forms corresponding to the boundary conditions (3.1)

and (3L2) are

2 %
L 4w az *»
W =—gms=—3=0 at z =0 and 1 (4.8)
2 *
dz dz
%* *
® =0 at z =0 and 1 (4.9)

5.. Numerical procedure

The system of ordinary differential equations (4.3) and (4.4) is
transformed to a set of algebraic equations by approximating the deriva-
tives of W* and ®* with respect to z* by finite differences. A frequency
equation is then derived under the condition of a nonzero value for W*
and @*. Asai and Nakasuji (1968) showed that a solution of good accuracy
would be obtained using a rather small number of grid points in the
layer, in particular, for a perturbation of the lowest mode in the
vertical which would be of primary interest here.

In the present paper, we will proceed to a further calculation to
solve the eigenvectors W* and ®* for each eigenvalue o*. Then Z* can
Be obtained by solving (4.5) and U* and V*‘can be determined from (4.6)
and (4.7). The numerical method to solve (4.3) to (4.7) is summarized
in thebAppendix.

Using the solution obtained above; we can investigate the structure
of perturbations and the related energy conversion processes, as well
as stability characteristics. In the following, the Prandtl number, Pr’
is assumed to be 7 which is nearly equal to the one for water at s.t.p.

A 16-layer representation is used for the numerical calculation, unless

specifically stated otherwise (see Appendix).
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6. Stability characteristics and structure of unstable perturbations

First, the amplification rate of unstable perturbations will be
examined for different values of some parameters relevant to stability
properties. Figure 2 shows the amplification rate as a function of the
Richardson number Ri and the dimensionless vectorial horizontal wave-
number of the perturbation k*. Another representation of stability
characteristics is made in Fig. 3 in which variations of the amplifica-’
tion rate with k* are shown for different values of Ri' Both are for

5 * % .

the case of Ra = 10 and:kX = ky . As seen in Figs. 2 and 3, the?e is
a preferred perturbation for which the amplification rate attains a
maximum for‘a given value of Ri and the preferred perturbation shifts
its wgvenumber slightly toward a larger value with an increase of Ri'
The neutral curve, at which the amplification rate is zero, shows two
cut~off ends of instability, one at a small Wavenumber and the other at a
large wavenumber., As the value of Ri increases, the amplification rate
increases and tends to approach the one for Ri = 105 which actua;ly may
be regarded as the case of no shear. On the other hand, no unstable
perturbation exists when Ri is smaller thaﬁia certain critigal value,
It is evident that the shear of the basic flow exerts an influence on
reducing development of a perturbation. The stability characteriétics
described above are quite similar to those obtained for the smaller value

of Ra (Asai and Nakasuji, 1968).



It is, however, worth mentioning that the instability doméin in
Figs. 2 and 3 can be divided into two portions having different char-
acteristics, as indicated by the dotted line. One is the region of
longer waves in which a préferred pertufbéfibn eiists, and the other is
the fegion of4shorter waves in which the variation oﬁ amplification
rate'witﬁ wavenﬁmber is relétively sﬁail. The characteristic difference
bétweén the two‘types ié shdwnrmdre clearly in Fig. 4 which illustrates
the phaée veiocity of an unstable pértufbation as a function of wéve-
number for differént values Ovai' Thé ordinate indicates the phase
velocity of an unstéble pertﬁrbation'c relative to the basic flow
velocity at the midlevel G%. Hereié = -Oi/kx’ and o deno;es an ima-
ginary part of 0. While the longer unstable perturbation moves at the
velocity G%, the shorter unstable pertﬁrbations consisting of two
solutions propagate at the same speed in the opbosite direction relative
to the basic flow at the midlével. Following Kuo (1963), the longer
unstable perturbation is hereafter referred to as aistationary unstable
perturbation and the shorter ones are called transitive unstable per-
turbations. When the thermal stratification is less unstable (in other
words the Rayleigh number is smaller), the transitive unstable pertur-
bations vanish,

As shown in Fig. 3, one or more other sfationary unstable waves

may appear as Ri increases, They are characterized by a smaller ampli~



fication rate and a higher mode in the vertical. They seem to be
insignificant for the present linear stability theory because the
most unstable perturbation of the lowest mode is of primary importance.
We now examine the structures of both the stationary and the transi-
tive unstable perturbations. Figures 5(a) and (b) show distributions
of vertical velocities and temperatures of two types of perturbations
in a vertical plane parallel to the basic flow, respectively, for the
case of R_-= 105 and Ri = 1: (a) is the stationary unstable perturba-
tion for kx* = ky* =1 (k* = /2), which is nearly a preferred mode, and
(b) is a transitive unstable perturbation for kx* = ky* =3 (k* = 3/2).
The ordinate indicates the dimensionless height;~and the abscissa indi-
cates the phase angle in the x direction. Contours of vertical velocity
and temperature are shoﬁn‘by,éolid and broken lines, respectively. A
central axis of ascending motion, denoted by a thick solid line,
tilts with height in the directiﬁn of the basic flow. The tilt of an
axis of warm air is large compared with that of the ascending motion.
Nevertheless, the warm core coincides with maximum ascending motion
and the cold core with maximum descending motion. As far as these features
of unstable perturbation are concerned, there is no significant differ-
ence between the present linear theory and the nonlinear.numerical
experiment (Asai, 1964).

For the stationary perturbation, ascending warm cores, as well as

descending cold cores, are located at the midlevel
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but for the transitive perturbation the locations of ‘the cores are
different. These circumstances are c¢learly illustrated in Figs. 6(a)
and (b) which show vertical distributions of vertical velocities and
temperatures for both perturbations. The vertical profile of the
amplitude of vertical velocity and that of temperature are asymmetric
about the midlevel for the transitive perturbation. The maximum
amplitude is located lower than the midlevel. The other of a set of
two transitive‘perturbations not shown here is exactly symmetricél
about the midlevel with the one shown here. The ''steering level,"
denoted by an arrow, at which the bésic flow is coincident with the
phase velocity of a pefturbation, is also at the level of maximum amp-
litude for the transitive perturbation.

Figures 7(a) and (b) show vertical profiles of vertical transports
of heat and horizontal momentum (u) by solid and broken lines, respec-
tively. As could bé expected from the structure described above, we can
observe upward heat transport at every level for the stationary unstable
perturbation and mainly in lower levels for the tramnsitive unstable
perturbation (see Fig. 7). Averaged over the whole layer, both the
pertufbations transport heat upward and transform potential energy
into kinetic energy of the perturbations. The downward transfer of
momentum is shown for each case. This is opposite from the result ob-
tained by Asai (1964) in the numerical experiment for a two-dimensional
convection parallel to the basic flow. The momentum transfer and the

related properties of perturbations will be discussed in the next section.
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7. Vertical momentum transfer and energy conversion
Let us describe the energy conversion mechanism of the problem.
The equation for kinetic energy of perturbations can be derived from

(2.5), (2.6), and (2.7) by making use of (2.8) and (3.l) as follows:

° ' 2 2 2 :
— &'y = ga(T'w') - A 'w') - v (EH+ W+ D) (7.1)
3t

where K' is the kinetic energy of perturbation which is defined as

2, w'z) and €', TN' and (' are the x, y, and z components

K' = %(u'2 +v'
of perturbation Vorticity, respectively. Angula¥ brackets ( ) denote
an average over a volume bounded by the‘ﬁlahes z =0 and z = h and by

one wavelength in the x and.y directions respectively. Let us define

kinetic energy of the mean flow K and potential energy P as follows:
K = %u and P = -gerT

The first term of the right-hand side of ' (7.1l), go {T'w'), indicates
the conversion between the potential energy and the kinetic energy of
perturbation, while the second term, A {u'w'), indicates the conversion

between the kinetic energy of the mean flow and that of the perturbation.
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They will be denoted by:

ga (T'w') = (¢, K')
and | o (7.2)

A ue') =K', K)

The last term of the right-hand side of (7.1) expresses dissipation due
to viscous friction.

Our primary concern here is with the conversion processes between
the kinetic energies of the mean flow and the perturbation which may
change its features drastically with changes in the configuration of
the perturbation. In the preceding sections, however, éur discussion
was restricted to the perturbations of kx* = ky*‘

Now our discussion is extended to the perturba-
tions of transverse and longitudinal modes. Figure 8 shows variations
of vertical momentum transfer, (U*w*), and amplification rate o?'f with
the ratio of the wavenumber in the y direction to that in the x direc-
tion, (ky/kx). Vertical momentum transfer is indicated by a solid
line and the amplification rate by a broken line for different values
of Ri' This is for the case of Ra = 104 and k* = 2, A decreasing
value of Ri results in a reduction of the amplification rate of a trans-
verse perturbation for which k /k << 1, whereas.little difference in

y X
the amplification rate of a longitudinal perturbation characterized by
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ky/kx >>1 is found among the cases with different values of,Ri. Since
a small Richardson number corresponds to a large shear of the basic
flow, it is evident that wind shear is effective in suppressing develop-
ment of a transverse perturbation, but this is not the case for a
longitudinal one. On the other hand, it is shown in Fig. 8 that
vertical transfer of momentum is upward against the shear for smaller
values of ky/kx’ whi}e it is downward for larger values of ky/kx.

This indicates that a transverse perturbation (ky/kX << 1) results

in transforﬁing the kinetic energy of the perturbation to that. of the
mean flow through upward transfer of horizontal momentum against the
shear., This is exactly what Asai (1964) concluded for a two-dimensional.
thermal convection in a vertical plane parallel to the mean flow with
vertical shear for which»ky/kx tends to zero., On the contrary, for a
longitudinal perturbation, i.e., ky/kx >>1, the kinetic energy of the
mean flow is converted to that of the perturbation through downward
transfer of horizontal momentum.

Since the energy conversion processes are closely related to the
structure of perturbation, each perturbation flow pattern may be ex-
pected to be different from the others. Figures 9(a) and (b) show
‘contours of vertical velocity (solid lines) and the X component of
horizontal velocity u (broken lines) in a vertical plame parallel to the
basic flow for two cases: (a) is the case of ky/kx = 0.1 as an example

of transverse perturbation, and (b) is the case of ky/kx = 10 as an
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example of longitudinal perturbation. The Richardson number is fixed
at unit?’and again Ra = 104 and k* = 2 for both cases. Tﬁe warﬁ axis
(thick dotted line) and the cold axis (thin dotted line) are inserted
in‘Figs. 9(a) and (b) to form a general picture of the temperature field.
The most remarkable feature is that the pattern of vertical velocity
is in phase with that of the x component of velocity u for the trans-
verse perturbation, whereas they are out of phase with each other for
the longitudinal perturbation. These features agree with the vertical
momentum transfer mentioned above.

Taking into account the distribution of the y component of velocity
v not shown here, as well as w and u, we can draw a three-dimensional
flow pattern of perturbation. Typical streamlines are schématically
illustrated by thick solid lines wifh'érfows'in Figs. 10(a) and (b) fdr
both the perturbations. Projections of the streamlines on the x-y plane,
the x-z plane, and the y-z plane are also shown on the reépective planes.
The most significant difference between tﬁe:céses'can be found in their
streamline pattern projected on the x-z plane. The streamline pattérn
tilts with height toward the shear for the transverse perturbation, as
is expected from the result of the two-dimensional convection. The
longitudinal perturbation tilts against the shear with height. The
reason for this may be given by (2.12) which states that variation of w
witﬁ respect to y, i.e., in the direction across the basic flow; twists

the horizontal component of vorticity into the vertical component.



An inspection of Figs. 10(a) and (b) indicates that the kinetic
energy of perturbation is produced by release of the potential energy
contained in the unstably stratified fluid(layef through upward heat
transport regardless of the difference in the modes of perturbations.
The energy flows associated with the pérturbations of two modes are
summarized in Fig. 11. Making use of the dimensionless quantities
defined by (4.2), we can rewrite the energy transformation terms

(7.2) as follows:

ke *
(P,K'Y = galv @ W )
and ' ‘ (7.3)

—_ ! % %X
&R = ViR A WW)

Then the ratio between the two terms is:

@, © p W)
= ( ) o
(P,K'Y . RR, (®%w")
at (7.4)
% %
. PrRe {UW)
- % %
R @w)
a

1f (P,K') is normalized to unity in the examples of both transverse (a)

and longitudinal perturbations (b), the values of (K',E> become
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(K',K) = 0.23 for (a)
and

(K'",K) £ -0.75 for (b)

A

]

for R = 10, R,
a

i 1 and Pr = 7. Reduction in the value of the Richardson

number increases the magnitude of (K',E}. The conversion of potential
energy to the kinetic energy is usually larger than that between the
kinetic energies of the mean flow and the perturbation. The latter
mechanism, however, plays an important role in determining a preferred
mode of perturbation. Finally, it should be noted that the longitudinal
pérturbation, which is most favorable for development, inevitably results

in a three-dimensional motion.

8. Conclusions

Three-dimensional features of perturbation in an unstably strati-
fied plane Couette flow were investigated by solving numerically a
system of linearized Boussinesq equations. Our main concern is with the
dynamical structure and the associated energy conversion of the stationary
unstabie perturbation of the lowest mode in the vertical which is of
primary importance for thermal convection.

Conversion between kinetic energy of the basic flow and that of the
perturbation through vertical transfer of horizontal momentum takes place
as well as conversion of potential energy to kinetic energy which results
from upward heat transfer. In particular, Qertical transfer of horizontal
momentum depends crucially on the three-dimensional structure of the per-

turbation. It is upward against the shear of the basic flow and results
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in transforming the kinetic energy of perturbation to that of the basic
flow for a transverse perturbation. For a longitudinal perturbation,
however, it is downward and transforms tﬁe kinetic enérgy of the basic
flow to that of the perturbation. Thus it is suggested that a two-
dimensional thermal convection in the vertical plane parallel to the
basic flow will result in thé vertical momentum transfer peculiar to

a transverse perturbation which tends to intensify the shear of the
basic flow. The longitudinal perturbation, which is most fa&orable for

development, naturally leads to a three-dimensional motion.
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