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Optimal Control of Markov Processes

with Average Cost Criterion
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Keio University
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1. Case of Markov Processes
1. Formulation of the problem
Let (f),g?,P) be a probability space with points w and consider
the following stochastic differential equation
(1) ax(8)=a(x(t),u(t))atrb(x(+),ul+))dB(t)
. x(0)=%
where:
)
1) B(t, w)=(B,(t, W ),By(t, u)),"',Bn(t, W )) 1is a vector Wiener
‘process with its elements mutually independant,
2) ;( W) is a vector random varialble being independent of
B(t, W )-B(0, W) for any t&[0,90),
3) x(t, w )z(x‘(t,u) )y xo(t, W )""’x'ﬂ(t’ w ))T takes a value in R“z) ,
4) alx,u)=(ay(x,0),a5(x,u), " *,an(x,u))" and blx,u)={bij (x,u);
].éi,jér% are continuous in u in ﬁ“ and satisfy the Lipschitz
condition with respect to x in R" uniformly in u (to be precise
this condition need to hold only for u in U and x in X where
U and X are specified below),
5) u(t,W)=(u,(t, W ),us(t, W ),"_',um(t, w ))T is an element of C
defined below.
Fof a given set IIEIf“, consider all the stochastic processes of
u(t, W ) such that u(t,w)éUa for all W in AEL]).,

Assumption 1.P(&A)> 0.

*). Graduate Student ab the Ypt. of Administration Engrg.
1). T denotes a traspose.
2). n-dimensional Euclidean space.
3). U may not be a stochastic process. For if U=U(t,W ), the
: furctisn u(e) of C" defined later will depend on (t,Ww ), and
the following theory will not apply.:
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Let (A,Aﬁ,PA )4) be a probability space with points W reduced to 4 ,
where P, is defined by Pjp (-)=P(-)/PA).
Definition.Admissible classes of control; C, C', o
1). C is the class of stochastic processes {u(t,w 2}‘") such that
a).u(+,W )€U for all wé€l,
b).{a};u(t,w ).‘.c}éoﬁ{x(s, w),s< ‘c}s) for any ¢ €U and any ‘té[O,DO).
2). C' is the class of stochastic processes {u(t, w }} in C such that
e). {w;u(t, w)& c}éAf{x‘(‘t,w )} for any c&U and any tGEO, oo ).
3). C" is the class” of stochastic processes {u(t,w )}in C' such that
a).u(t, W ) is a B-measurable function of x(t, W ),i.e. there
exists a Baire function u(x) satisfying u(t, w )=u(x(t, W ))
for a.a.W in Aq)a.nd any té(O, c3).
Thus by definition C3 C'2C".
Assumption 2.C"% Qe)
The existence and uniqueness of the solution to (1) for every u
in C is proved in the similar way as is found in Theorem 66.1 ofr
(6] *),' by which the solution x(t, W ) of (1) exists a.a.W uniquely

for any teE), ©3) and u in C. It is also shown by this theorem that

4). Af¢ is the Borel field of sets of g contained in A .

5).Ay£{x(s, w ),s!.t} is the Borel field generated by {x(s, w ),O;’-.sét}-.
6). The element of C" is considered as a feedback control law.As an

element of C-C' we may consider, for example,W(t, W )=F(x(t-n & , w),"°,
e x(t-@, w ), x(t, w )) where §(>0) is a (random or nonrandom)
constant,n>0, and F is a function which describes the controller.

7). In the following we write a.a. @,

8). 47 denotes a null set.

*). Numbers in brackets refer to the references cited at the end

of this paper.

f). We assume that u(t, W ) is Lebesque integrable with respect to t..
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x(t,Ww) is measurable inwwith respect to P. measure and in 1
with respect to Lebesgue measure, and that it will be a Markov
"
1

. . - . A 9 n
process with an infinitecimal operator Au=§' a;(x,u);ii-f- 3 F‘.:L
. 'Jn 3§

b;k(x,u)bjk(x,u)sz% . For further results about (1), refer to (2]
and the Appendix of (7).

Let X be the given state space in R" (XER" ).

Assumption 3. For a.a.w and any t&[0,%),x(t,w) e X.

In the sequel we consider only (4,a%, Pu )'instead of (ﬂ,‘;@, Py,
and the distribution function of transition probabilityr ‘
corresponding to u in C is denoted by P,(t,x;s,E) for D<t< s<oo,
x €X, and E€f3, where {3 is the Borel field over X.

Our purpose is to find an element of C which minimizes the cost-

~

criterion which depends on u€cC

Qu(x(0))= Tinm == E*Pk(x(t,w),ult, w))at?

where k(x,u) is assumed to be continuous in x and u, and x(x,u)> 0
for any x € X and ué€ U.

In th‘e‘ fields of operations research and system science there

are many problems where the state of the controlled system is
approximately described by (1), and its control is to be decided
by the average cost criterion for a long time period. Our 'res‘ul‘b
shows that under certain conditions a stationary control, i.e. an

element of C" is optimal over the wider class C, as might be

expected intuitively.

2. Sufficient Condition for Optimality

At first the following assumptions are made.

Assumption 4.x(t,w ) is completely observable for ant 1;6[0,05) a.
a.Ww. '

9). EX? denotes a conditional expectation (over &) given x(0). -



Assumption 5.k{x,u)Xee for any x in X and u in U,

Here let us denote a subset of U, {u(t,w )& Uswea} for each t, by
C(t), and a subset of X, {x(t,w )€ X;weaJ for each t, by R(t). Note
that “m(t)ed . '

Assumption t.C(t) is compact.

Assumption 7.There exists a T<e@ such that for any t>T, at least
one u satisfying the following (2) does not depend on t explicitely
a.a.u),‘i.e. it has a form : u(t,u)):u(x(t,uJ)) for t >T.

Note that by Assumption 7 x(t,w) will (a.a.w ) enter an ergodic
subset of X. for a certain u.

Under the assumptions that we have made the following theorem -
holds. The derivation of the theorem is an analog of that presented
for a discrets time system with a denumerable state space by
Derman E4]_. |

Theorem 1. If there exists a pair {e(constant), v(x);xe Xy bounded
and v(x) being B-measurable in x such that for an arbitrary small

AH 170, and for sufficiently large t
(2) gAt + v(x(t,w))=uien§t) { k(x(t,w),u)at +

+ JPu(t,x(t,w);t+at,dy)viy)} 4.a.
then u*(t,u))e C" such that for any w in C
Ju (x(0))-Q«x(0)) 2 0 ' a.a. W .

exists uniquely and g={ ,»(x(0Y)) a.a.W.

Reﬁark. By As umption 5 and by the assumptions on v(x) and k(x,u),
the righf; side of .(2) is (a.a.w ) well defined for any t€ LO,»).

Proof.‘Let {un*},n=1,2,°-' be such that {k(x(t,w), uyf) at o+
+ ijqu (t,x(t,w); t+at, dy)viy)} converges to the right
side of (2). (Note that 4" which satisfies (2) belongs to C' for
sufficiently large t.) Then for each n, by Assumption 7, we may

consider that it has a form -of VE(H,W) = un*(x(t,9)).

10). Note that the infimum exists uniquely.



Now let us define the distance in C" by sup fu,(x)-u,(x)|, where
u, and u; are arbitrary elements of C".

To show that u,*(-°) 'is B-measurable, we consider a set E, defined
by Es=fx;un¥(x)< c}for any ¢ in U.Since to any ug*(x(t,w ))E“U
corresponds a x(t,w )& X for any t a.a.wW, E,éB by the definition
of & , and {u,*(-), n:l,2',"} is B-measurable by Theorem 20.2D of [6] .

Since C(t) is compact, t;{:'Elm()l(t) is also'compac_t by Tychonoff's
theorem and thers exists a convergent subsequence {unf, V=1,2,"'}
such that vl_%org u,,v*=u*.Since each u, * is a. Baire function, so is
u¥.Therefore u*e& C".

Since {(k(x(t,w),unv*)At + fouiv(t,x(t,x(t,bU);t +A'b,dy)v(y)}

v =1,2,-++ is a subsequence of a convergent sequence
{k(x(t,w),us*)at + jxpuf‘(t,x(t,w);t +at,dy)viy)} ni=l,2,---
its limit coincides with that of the latter, i.e. the infimum of ’
(2) is attained by u¥*.

Fo_r any element of u&€C", x(t,w) is a stationary Markov processl,l)
so‘tha’t’, the transition probability distribution is described as
P(x(O);t,x(t,w)eE) for E€@ .Thus (2) becomes for u*

gat + vi(x)=k(x,u*(x)) at + [ P lx: at,dy)v(y) ,
Multiplying both sides of the above by iju.(x(O);t,dx)
gAt +)’xP“,(x(o);t,dx)v(x)=jfxpu*(x(o);t,dx)k(x,u*(x))At +
+LPu*(x(O);t +at,dy)v(y) .
By taking the time average in the above, we obtain
gat + 1im — TfPue(x(0)5t,dx)v(x) =0 (x(0)) &t +
+ E—_:_-j:fxl’u*(x(o);t +A‘b,dy)v(y_)
and |

gat=0 (x(0))at or g=0 «(x(0)) .

To prove the optimality of u* over C, we define the optimal total

. — — o e S T e o S Q4 S S S S —— — — —

11). Theorem 66.1 and 66.2 of 16).
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,costu) up to time t + At for each W, by g,t‘.,at(x(t+ at,w)):i.e. for
sufficiently small At>0, »
gm,t(X(ﬂA t, W))=i}2§&){k(x(t, w),u)at + ‘YEtEu (t,x(t,w);
t +a t,dy)gt(y)}
(3)
g, (x(0))=0.

As is shown in Appendix, there exists (a.a.‘w‘} a unique solution
of (3) on (0,%°)x T (t) for any te[0,v0).That g_t_mt(x(t+At,w))
denotes an optimal total (expec{;ed) cost up to time t+A+t for a.a w.
comes from the principle of optimality.

Next, we prove the existence of M(At)<'°o such that for some finite
g'20 and any te[0,™):

(4) (‘b+At)g'-—M5gtut(x(t+At,w))éM+(t+At)g' a.a. W.

To prove the second inequality, assume that it does not hold; i.e.
for at least one u€& C,t€(0,00) and w with positive provability
gtut(x_(t+At,wh))> M+(‘b+At)g" holds for all finite M independent
of t. Let t*¥ be such that this holds and let M be such that
gt,,ﬂt(x(t* +4t,Ww)< M.Then (t*+A+t)g'< 0, contradicting that
g'2 0.The first inequality of (4). follows in a similgr way.

- Thus from (4) it follows that for any t€[0, 20) |gpa{x(t+Aat, w))/
[(t+at)-g'| <M/ (t+at) a.a.w, and letting t-»ove ,lim{g,u(x(t+2t,wW))/
/(t+at)} =g' a.a.w .This shows that g' is an optimal average cost.

Next, we will show that g=g'.At first, note that by (2) and (3)

12). Let gm,‘(x(t+ At,w)) be an optimal total (expected) cost up-
to time t+ At incurred by the process which passes x(t,Ww) at
time t, where t€[0,v0).Then

trat
Breap(X(t+ 2 t, W) ):}eréizt'){Ex“'w’ )’o k(z(T,w)aT } -

. e (tE
=inf {E { k(x(7,w),w)aT + gl (t,x(t, w)jt+rat,dy)gy (¥)]
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rad X(t+at, w))=g & t+v(x(t, w)+ f(const.) pho1ds for sufficiently

large t.

Assume that g'> g.Then as g=Q ,4(x(0)) @ia. W, contradicting

the definition of g, x(%+at,w)).Now assume that gieg.@hen by the
derinition or g°*, gtht(x(‘mat,w)): g . (x(t,w)) +g'at 4+0(a 1) hold
Lor surriciently smell at. Thus gmaéx(t+43t,00))=ézt(x(t,u)))%
+g'at +o(at)vg ativ(x(t,w)) +f . Put v(x)2 v(x)+o(at) anew. A
contradiction follows from (2) and (3).Thus g=g'.
Let u(t, w) be an arbitrary element of C and its corresponding
total (expected) cost up to time t Dbe ht(x(t,u))), then for a.a.W,
Lin(he(x {6, ©0))/6) 2 Lin(goalx(t at, w))/(++51))=g
T2 o =700
proving that for any u in C
0, (x(0)2w(x(0))2 0  a.a.w.
Q0.E.D.
Example.Let n=m=1,a(x,u)=u,b(x,u)=1,k(x,u)=u+e™ ,X=Y0,02),C(t)=
= [1—1/(t+% )gﬂnﬁht@)where €¢>0 is sufficiently close to 1, and
B(t,w) is a Wiener process with a reflecting barrier of 0.It is
assumed that P(x(0)=0)=P(B(0)=0)=1.Consider a control u, such
that u,(t,w)=0 (0£t21-¢ ),u,(t,w)=1-1/(t+ € ) (1-f<t<w). Note
that u€ C-C".For 0 £t21-¢ ,k(x,, (t,w),u,(t,w))>0 since x,(t,w)=
=B(t,w) is (a.a.w) small. For t21-€ ,x  (t,w )=t-log(t+¢)-
~(1-¢ )+B(%t,w), whence x“l(t,u))-—?m ,(a.a.w)as t —»o Thus
2y, (x(0))=1.
Now let {g,v(x);xeX} be {1,0} and consider (2),i.e.
(A) A t=inf {(u+e’x(t'w) )At},*
“C—.C&)‘
Let u, be such that u,(x)=1 for all x in X.Then xua'(t,w)zt+B(‘b, w ).

By substituting xuz(t,w) into the brace of (A), we obtain for

(continued)
—inf [E*9c(x(t, w),u) 8t * o(At)}'—FSn(Eu(t,x(t, w);t+at,

UeCtt) ‘
ay)gy ()] =ipf {slx(t,w),w)at + o(at) ,yjagu(t,x(t,w);

t+At1dY)g-t (Y)} .

Thus we obtain (3) by omitting o(at).(See ﬁfppendix.)



1R, t—inf{At% , meanlng that for sufflclently large
t,u, attains the infimum of the right side of (A).It follows that

u, is optimal by Theorem 1, and that Qu,(x(0)) = g = 1.

Thus it has been shown in this example that under the assump-
tion of Theorem 1, though there may be optimal contrels in C-C",
there 1is an  optimal control in C" which attains the same
average cost as 18 incurred by those in C-C".

Since Theorem 1 contains an unspecified quantity At, it does
not provide us with a concrete method to obtain u* in C.For this
reason the following theorem is useful.

Theorem 2.If the assumptions of Theorem 1, with v(x) and Av(x)
being twice differentiable and continuous in x¢ X respectively,
hold, then (2) is equivalent to the following (5):

(5) g=§rélci‘“{k(x,u(xa)) + A,v(x)}
and u* which attains the infimum of the right side of (5) is
’(a.a.d)) optimal over C.Note that A, is an infinitecimal operator

of our (stationary) Markov process corresponding to u in C" and

n n n
; ; . — R |
is given by: A, = é‘ a . (x,u)ax4+ 2 4_’,‘1;_.”2' bL (x, u)bw(x u)ax %]

Proof.To prove the theorem it suffices to show the equivalence
of (2) and (5).S8ince the right side of (2) is attained infimum
by an element of C", (2) is written as

gat= 1nf {r(x(t,w ),u(x(t, W))At+5PM(t x(t,w); t+at,dy)v(y)-

- Jpu (6x(t,w)5t,ay) v (y)Y

or for x in X

gat:&élét’" [k(x,u(x))At+7{£‘p“(bt,x;t+at,dy)—fo“(t,x;t,dy)}

v(y)] . Since at»0,dividing both sides by at, and letting

ot—> O,we obtain (5).
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To prove the converse, we use Vynkin's formula ({2] ) that
E* §SAv(x(s, w))ds=E*v(x(t,w)) -v(x).

Then for sufficiently small At)O‘,a)
E""‘""’Av(x(t,w))At:E"“"")v(x(tmt,w ))=v(x(t,w )A) + o(at)

or l
Ay vix)At= SxPu(t,x;t+At,dy)v(y) -v(x) +o{&t).

Substituting the above into (5) multiplied by & t,it follows that
gat =“izlcfu{k(x,u(x)) at + (LPult,x;i+at,uy,viyi= vix))
+o(at)}

or gat 4 v(x):&gg{k(x,u(x))At+LP'u(t,x;t+At,dy)v(y) +0(At)}‘

Tnus! putting v(x)a2v(x)+o(At) anew proves the assertion.

Weidalde
Remark.Theorem 4.1 of Wonham [8] has a similar form as Theorem

2 above, but for narrower classes of u.
Remark.Suppose that ,{g,'v(:x)}satisfying (5) exists, where n 22.
Then (5) becomes a partial differential equation of v(x),i.e.

g = k(x,u*(x)) + A, v(x)
for x in X.The boundary condition of v(x) is not specified.
Example.Let m,n =1l,a(x,u)=1-u,b(x,u)=1,k(x,u)=¢*+ u,X=10, ©0 ).
U =[0,1] and B(t,w) is assumed to be a Wiener process with 0
being a reflecting barrier.Note that the infinitecimal operator
is defined on (0, oe).Then (5) becomes

(6) g = inf. [e*+ u(x) +{(1~u(x)) di + % d‘; 3 v(x)] .

Let P(x(0)=1)=1.Then for u(x)=0 (x eX),x (t,w)=1+t+B(t,w)
a.a.wW, where we have assumed that P(B(0,w )=0)=1.Thus Q , (1)=
_oqa b T axtey =l t 4B E,w) Z 14 U T ~(t) o, o i
= lim = §, E™™e 97+0)dt £ lim ——f e dt=lim -5
e S;r ¢ 'dt=0, where B Blw¢ 1 is used.Since Q (1) is nonnegative

for any u' in C by assumptions on k(x,u),it follows that u(x)=

=0 (x¢ X)‘is optimal over C.For this u(x), (6) becomes

13). Auv(x) is assumed to be continuous in x&X. (for all u in cny.
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dv
dx

'+ % dzv
axt

O=g=0 +
or v(x)=c;e?X ¢, where we take ¢, and c, as bounded oonstants.
Then v(x) is bounded over X, showing that for this system (5) is
necessary too for optimality.Sufficiency for the optimality'of
u(x)=0 (x & X) is seen by the existence of a pair (g,v(x))=
=(0,c,e2X 4c,) satisfying (6).The right side of (6) in which
ihis (g,v(x)) is substituted is minimized by u(x)=0 (x € X) if c;
is taken té be nonnegétive.

3. Poiicy improvement Procedure

Hereagfter it is assumed that the assumptions of Theorem 1 are
satisfied.The methods of proving the following assertions are the
continuous version of the work of Derman &O for denumerable
Markov chains.

Assumption 8.For any u in C", its corresponding Markov process
x(t, W ) is positive recurrent, i.e. for any x in X and for any
measurable function f(x), there exists P|A(y) such that
up St brutsman ey .

Assumption 9.For some uz in C" exists {g(constaht), v(x);x & X}
bounded with v(x) twice diffefentiable such that
g=k(x,u; (x)) + Auiv(x) and Au.-\.r(x) >'.

Let X be xz[x éX;k(x,u;(x)+Au‘,’v(x):\"i‘g%‘{k(x,u)ﬂ\uv(x)ﬂ .We may
assume that‘x#é .Unless so, u; is optimal over C by Theorem 2.

Let ;' be such that

u“(x)zu;(x) x € X—;(
ug ! (x)=u?(x) x €%
where u® is such that
(7) k(x,u’(x)) + AoV <k(x,ui(x)) + Auiv.
Here- let us assume that:

Assumption 10.For P, (<) ig Assumption}S, ff{nj;P (dx) >0 for any .

nonzero subset A in X.
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This assumption shows that any nonzero subset of X is positive
recurrent.

Lemma 1.If Assumption 1 - 10 hold, Q4.<Q.&.

Proof.Let €(x) be the right side of (7) minus the left side of
(7),i.e. e(x)z(k(x,ui(x))—Au‘:v)—(k(x,uo(x))—Auav).Then €(x)>0
if x€X, , and E£(x)=0 if x € X- %X .

Since

J;Puf(x(o);t,dx) € (x)= 5Py (x(0);,dx) [ g- {k(x,uz’<x))+Au£V}]

= g- fPuf(x(0)5t,ay) 0] v - LPuf (x(0)5t,ax)k(x,ug”(x)),

1

averaging the above by T,
1/T)fLP / (x(0) 5t,dx) € (x)=g- 1/T)f _LP £(x(0) 5t Jax)Af v db-
- (l/T)IJP (x(0);4,dx)k(x,u% (x))dt,
and letting T>weo , it follows by Assumptions 8 - 10 and f#$ that
SPu(@) € () + [Rur(a0)agiv=g- 2, (x(0)) >o0.
It is noted that the interchange of integrals above comes from
Fubini's theorem.
9.E.D.

Lemma 2.Under the assumptions of Lemma 1,if u; is optimal over

A
C", then u; is optimal over C.

Proof.If u; is optimai over C", then 2§ ¢ and (5) holds.Then
Theorem 2 applies.

Q.E.D.

In the following it will be assumed that:

Assumption 11.For any u in C" there exists {g“, v'ﬂx)} which
satisfies Assumptién 9.

Assumption 12.U is compact.

Theorem 3.If Assumptions 1 - 12 hold, there exists a u¥* in C"
which is optimal over C.

Proof.By Assumption 11, for any u in C", g¥=k(x,u(x)) + A, ,v%x),

0 ’ . .
X € X.Let g¥= oo, {g“k. Let {un(x)}ec" be such that }tl"rgog“":g*
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uniformly in x €X.Since - ;ngx is compact by Tychonoff's theorem,
there exists a subsequence {unJ, V=1,2,---such that \%.%g’a U, =u*
uniformly in x.Since C" consists of Baire functions, u¥* belongs to

%
C".Let v¥ be such that lim vw"—_—v*(x).Then by Assumptions 9 and 11,

5)

v*(x) is bounded.Since Au is continuous in u , 1t follows that
Au..,"”A“x as v-7w ,.Since g is a subsequence of g¥ , it follows
that g - g* as V —» @ |

Consider g““’:k(x,unv(x)) +Au”vv“’fv(x), and letting véyuo,

:{g*, V*(X)} o‘

For this u¥* in C", (5) holds.Otherwise, by Lemma 1, policy im-

g*=lim g"™ =k(x,u*(x)) + 4 ,v*(x),it follows that {g*¥ , VY (x)] =

provement is poésible, resulting a smaller average cost than
g*, which contra.d.icts that g* = “125 g*.Thus (5) holds, proving
the fzxistence of u* in C" being optimal over-C.
Q.E.D.
Let ¢4x) be such that
e (x)=(k(x,u(x))+Auv"(x) ) -(k(x,u’ (x})+A,v*(x))
=g* - (k(x,u'(x)) + A,v¥(x))
where u(x)eC", and u'(x) is an improved policy by the iteration.
Lemma 3.Assume that Assumptidns ‘1 - 12 hold.Let ﬁ.eC" be arbitrary
‘and {u,} be a sequence of the policy‘improvemént procedure.Then
%_iixgi“"(x) = 0, and lim Au"”v“"(x) =0 for all x€ X.
Proof.As in the proof of Lemma 1, wsing Assumption 8,
(%) g4 - gu"*'{‘PuM,(dx)Eu"(x) +§xP\*w( dx )AuMV Uiy 0.
Since {g““} is a decreasing sequence and gy O,‘%_i’ﬁ g4 exists.
Thus g‘;;" - g¥™¥5 0 as n—y oo and the r4ight side of (*) goes to
"*0 as n—»vo .By Assumption 10,¢"(x) = O and Ay, v*(x)=>0 as n—yoe.
g.E.D.
14). It is seen that this convergence does not imply the ordinary
convergence of {v“"V‘ vel, 2,000 i

15). Note that a(x,u) and b(x,u) are continuous in u( € U).
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Theorem 4.If Assumptions 1 - 12 hold, for any uy€ C" a.sequence
of the policy improvement procedure {u&kconVerges to u¥ in C"
which is optimal over C.

Proof.Let {u& be a policy improvement sequence.Then using the
compactness arguments and the property of Baire functions as we
did in the proof of Theorem 3,a convergent subsequence§uhﬁ such
that %3}20 u, = u* uniformly in x ¢ X and u¥*e C". can be chosen.Let g¥
and v* he such that® lim g =g* and lim v""{(x) =v*(x).Note that

'2e 2 - Ve o
%gg g4n (x)=0, and &3£ Auh"yu“%x)zo.
For any Uy, , by Assumption 11, g"w =k(x,u“v(x))+Au“W‘v“M(x).Let—

*
ting vow , g¥=k(x,u*) + Apv*(x).Thus g*:gu*and v¥ =y ¥ |

Since

* > Tim inf { k +A, V"

& 2 GF gk Crlont) sh o]
and

g“”sagg{k(x,u(x))+A“Vu“(x)}+€u“(x) +Auh“quKX)
hold, using Lemma 3 and letting vt in the above, we obtain
¥ 143 . Un *
g "&iﬂ hggl{k(x,u(x)) + Ay vWM(x)F .
However 7
. . ’ W .
g g (00u0)) + A (0} £ Limfileut)) + A0}
Thus '
£ =Hip o {k(ou(x) v ()}
inf lim{k(x,u(x)) + Au v (x)]
wel" vvw
=inf {k(x,u(x)) + Auv*(x)} .
“ech . )
If we put u=u*,g¥=k(x,u*(x)) + Auxv*(x) holds, showing that (5)
holds.This proves the theorem.
Q.E.D.
Remark.Let b(x,u) = O for all xe2 and ueg U.Then our system

becomes deterministic, and Assumption 9 and Theorem 2 take a form

16). See the footmnote 14.



of

pedk(x,u(x) + 2 ag (x,ulx)) 3423

" iy

2 (xyulx)) &¥(x) 5 o

e X4

g =1
n
z a

=

which is the Hamilton-Jacobi equation.The second condition shows
that the value of v(x(t)) is nondecreasing along the trajectory
of x(t) as t-»vo.

Remark. The relationbetween v(x(t,w)) and g&x(t,u))) can be
interpreted as follows.Suppose that g.,,.(y) can be expanded into

a Taylor series about any t¢[0,%°) uniformly in y €X:

(y) =g¢ly) + _f‘;_‘it_(ﬁ At +o(at).

g ttat

Then, considering that an optimal control exists in C", from (3)

D&{x(t+ a5, W)) Ay 4 o(at) = ierg’{k(x(t,bO),u(x(t,w))At +
ot uec”

+{ P (t,x(t,w)st+at ,dy)g, (y) - g4 (y)]:
Dividing both sides by at, and letting 4t -» O, with the use of
a.a.w continuity of x(t,w ), we obtain

3Ge(x(t,w))

9t
where it is assumed that g.(x) is twice differentiable in xeX.

ﬁaaa{k(x(t,uo),u(x(t,u))) + Augt(x(t,u)))

Thus under appropriate conditions an optimal total (expected)

cost satisfies a partial differential equaion along x=x(t,w ):

) inefi(x,ulx)) + Aggg(x)}.
21 welr ‘
The above result shows that g{x(t,w)) and v(x(t, w )) coincide

if we take into account that for an optimal control

99¢ (x)

J a.a.Ww for sufficiently large t.
91t X=X(t,w)

g::
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II.Case of Finite Markov Chains
1. Formulation of the Problem
In this and following sections the optimal control of the follow-
ing linear stochastic difference equation
(8) Xper = 8X, + U, + B,
is considered where for each integer n z0:
ajinteger gain of our system
Xy;state of our system at n
ugjcontrol at n
B,jrandom noise at n

and wliere u, and B,, are gpecified below.

l-‘b is assumed that u, and x, may take values in the specified
integer sets U and X in R! respectively‘,q) where X is assumed to
be a finite set.

Let an(w),nzO} be a mutually independent random variables over
the probability space (L1, # , P) vith points wsuch that

P(Bw =1)=p (O<¢p<l)
and P(By =-1)= 1-p.

Note. To extend the followiﬁg theory to the case of P(Bu=by)=p,,
where Oxp.¢l, épx' =1, is not difficult.

To define the admissible control, let us consider all the
stochastic processes of fu, (w)} suck that u. (w)e Ulg)for all wea
in 2. |
Assumption 13.P(a )> 0. _

Let the probability space reduced to & be (kA,A:/ﬁf',PA ) w‘ith points

17). ¥We may extend our theory to a vector control process such
that xu¢, =Ax, + Bu,+ Bu where:x. e:R':l u.eR“:Bnis a n-dimensional
stochastic process, A and B are nxn and nxm matrices ¥spectively.

18). See the footnote 3.



w, where P, is defined by Pa (-) = P(-)/P(a).
Definition.Admissible classes of control;C,C',C".
1). C is the class of stochastic processes {un.(u) )} such that
a).u.{w)e U for all wea,
b). {wiug(w) = c} € agef{xs(w),s <t} for any ¢ €U and any
te[0,1,2,+-+),

2). C' is the class of stochastic processes (u,,(w)} in C' such

that ,
c). {wiug(w) = c}ebﬁfxt(w)} for any ceU and any te€[0,1,2,--

3). C" is the class of stochastic processes (uh(w H in C' such
that

d). ug(w) is a B—measurable function of x4 (w),i.e.there

exists a Baire function u(x) satisfying us(w )=u(x(w)) for

%)

a.a.w in A and any te¢[0,1,2,°-°).

Thus by definition C2C'2 C".

Assumption 14.C"% ¢ .

Assumption 15.x,(w ) is measurable with respect to P, measure.

By Assumption 13 and by the definition of C the solution é‘u(“’):
nz0} to (8) is measurable with respect to F, measure.

Now suppose that to each elemetn of x in X and ¢ in U is attached
a cost g(x,c) which is positive and finite.,i.e.if the state and
"the control are x,(w) and u,(w) at time n respectively, we
need to pay g{xn (w), u, (w)) then.

Though our interest is a total amout of the cost incurred by
each {xn(w)} and fu,(w) _g.o g(xe(w),ue(w)) diverges a.a.w
by the definition of the cost, therefore instead, we consider
the average cost Qu(x, ) = :l_zro;o (1/1) El‘ég(x.t(w),ut( w)) which
depends on the choice of- {un(w)} in C.

Thus our problem is to find an optimal control {un*(w)g which

19). See the footnote 7.
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minimizes the average cost y,(x,) a.a.w ,where X, (w) is assumed

to be independent from (Bn(uJ),nz.O}

2. Algorithm of the Solution

Since fxn(uﬁ} is a measurable stochastic process for every
u in C as was pointed out, a conditional probability of Xu+, (W)= 1i
given Xgo ,X, ,"***,X, and ugy, ,u,,’""*,u, is defined as P(xpp=1/xg,
u;;0¢s<n). For u in C" it is seen that{xn(q))} will be a.finite
Markov chain with stationary transition probabilities:p¢é=P(xn“=
=j/xq =1);i,jeX.

Before seeking an optimal control of our problem the following
version of Derman's Theorem 1 ([3]) is stated without proof.

Theorem 5.If Assumptions 13 - 15 hold, there axists u* in C"
which is optimal (a.a.w ) over C.

By this theorem we have:ronly to consider the elements of C" to
obtain an optimal control.The following theorem gives us an
algorithm to obtain an optimal control.

Theorem 6.Under the assumptions of Theorem 5, an optimal control
u* is obtained in finite steps.

Proof.We first compute the transition probability of a Markov
chain for u in C".For m and N such that meX,m+N & X;

(9) P, mey =P(Xpp=m+N/x =m)
=P(axp+u,+ By= m + N/xq=m)
=P(am + u(m) + By=m + N)

=P(By=(1-a)m - u(m) + N)

P if (l-a)m-u(m)+N= 1,
=1-p if (1-a)m-u(m)+N=-1,
0 if (1-a)m-&(m)+Ngt 1.

(9) is written in terms of u(m) as:
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(10) P if u(m)=(1l-a)m+N-1,
Py = 172 if u(m)=(1-a)m+N+1,
0 if ul(m)= otherwise,

whefe by Assumptions 13 —'14 there exists at least one u in C"

for which (l-a)m + N x 1@13 always holds.

By (10) and that X is finite, the number of elements of C" is
flnlte.whether U is a finite set or not.Let us denote by R, ={fp%}
the transition probabiliﬁ& matrix cdrresponding to each u in C.Let

: w) '
us consider a partition of X as X =,Xf

foeet XP 4 XY 4ot XN
where X’ denotes a positive class and X¥ a null class'fespectivelyg

Then compute '{\‘f‘(j €X) and g% by

4> Wo 3 TMPpE.
LEECTI A LREREE
wm .
z P4 gr  ifx=die U X{
(11) ot )
g =
g if x,= ieX§(1< k< n)
where ‘
. u . . |4
(12) ey = ’e,w,gﬁh u(j)) ieXg
IV S W, (n)
%= Lz o

and where p:f7is a n-step transition probability.It is easily
seen by the ergodic theorem for Markov chains that g¥= Q . (xo).
Thus by evaluating g*for each u in C",Vwe can find u* minimizing

the average cost in finite steps.

. = - = = Z,
Remark sp ‘([ i, where i veu' v P My veux’

To compute g“ (1e-X) above we mav use the policy improvement
procedure as is stated in:
Theorem 7. g‘ (ieX) in Theorem 6 satlsfy

20) Apartition of X depends on u.



4= “. gY
(13) gi= L P4 8]
v+ gy =(i,u(i)) + Z pi vy

2EX “4 1

which are solved for v{ and g% by setting one of v{ 's (ieg XP )
for each k (1£k< n) to zero.
Proof.This theorem follows directly from the arguments found in

Chapter 6 of Howard [5] .

Remark.wWwe now have two methods to obtain u*;We can choose one
of ﬁhem that provides us with a less task of calculationg®.

Let us assume that P(x,=i) = g;(0<psl, Eéxp‘z i) is known a
pfiori.Thedrem 5 will have the following corollary:

Theorem 8.Let P(x,=1)= p;, as stated above, be lknown a priori,
and assume that other assumptions of Theorem 6 hold.Then u¥ in C"
which is optimal (with respect to a priori dist;ibution of xp )
over C is obtained in finite steps.

Proof.It suffices to note that g4 1is given by

p;-8'+ T P;Epl - gl
K " ‘el ]

4 €0 xY
= lllk

(14) gt=x
AEU
i

Q.E.D.

3. Nemerical Example

Suppose that X = (0,1,2,3), U =(-w,--+ ,-1,0,1,---,00), P(x=0)=1
a=1, and p=3.The cost is assumed to be:g(0)=2,g(1)=6,g(2)=4
and g(3)=8.Thus in this example the cost is independent of
control.As will be seen in the following, Assumptions 13 -~ 15 are
satisfied and an optimal control exists in C".

‘Using (10) we obtain the following sixteen elements of C".This
follows from Assumptions 13 - 14 which imply that P, for eaéh u
in C" is a stochastic matrix,i.e.each u(x) (xeX) may take only
values of:u(O):l,2;u(l):O,1;u(2)=-1,0;u(3)=—2,—l.E1ements of

C" are shown in Table 1.Pu for each u in C" are given in Appendix.
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Table 1.

X uour W ut WS ub Wt ud ulfoult ok @ ot e

ol 121 2112 21122112 2
1] 00112 010100001111

5|-1-1-1-1 0 0 0 0-1 0-1.0-1] 0-1 ©

3| =2 =2 -2 =2 -2 <2 =2 -2 -} -1 -1 -1 -1 -1 -1 -1

Next we calculate {'n'a‘-‘,je.X} .They are given in Table 2.

Table 2.

C( B
T W d W wdE uq. SR AT T LR L)

TS e Vs Vs s e e B el b 0D
T 0 % O % Y Ve Y V350 %3ty oalal
WWive Vs % B VY Y% Ve Vi Y % Y, Y2 0 0 o0
TS o Vo O Voy YaValVs 0 Yoo l30 Valh Vs

“'Then compute g:.‘ for each u in C" and for each i in posgtive sub—
classes of X.For example, for ul  ,X is decomposed as X:X,P + va +
4+ x¥ vhere X[ ={0,2} ,X¥={1}, and XY ={3}.Thus the initial state

d is in a positive subclass and g4 =3.by (12).For u' ,X is decomposed
as X = Xf + X+ X¥ where Xf:{l,B},Xf:{O},Xf:{Z}.‘ Thus in this case

A : ® 3
X, is in a null subclass, so we need _,po“' =%, and sP:;

=%.Then
n
since gf‘: g: =7, we obtain g**=3(7+7)=7.In this vay we can

compute all g% for u in C".They are given in Table 3.

Table 3.

i =

WEC" [u w* ud u ¥ uwb o of uwt ool bl "!‘L’

STy s s s 5 9.3 5 sy 7 17
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From Table 3.it is seen that an optimal control is givén by
either u', ud, u?, or u.If one of these control laws is used, the
expécted average cost incurred by the process will be 3, being
not larger than any other control law in C.

To obtain g% (u€C"), we may use the policy improvement procedure
shown in Theorem 7 instead of calculatingtq,szX.For uS and u't
this method is illustrated below:

For u®,(13) becomes;

gW= g = g¥ (i,jeX), v g¥ = 2+ (v 4 )
| v,“s+ g = 6 + %(v,“;+ v

vz“.s + gw¥ =4+ %(v,“; + Vs“s)

V;‘g

for all i in X.

+ g = 8 + %(v‘;‘; +vv"5).

a

Putting vf'= 0, we obtain gf'z 4%

For u'* ,(13) becomes;

gfb =3(g +g ) : v+ g:%= 2 + L(ve®+ v;w)
g =3 ) W g6+ 3 r )
ik (O whegsa s 3 v )
g =2 ") e gut= 8+ 5 ")

Putting vf‘: 0, we obtain gfuz gfb

= 7. '

In this way gf can be obtained by either method for all u in C".
Note that g; in the same positive class coincide for all i, and
that T‘for a null class are zero.

As is found in this example, the optimal control is not always
unijue.

A simulation study for some of u's in C". is given in Figure 1l.A

sequence {Bn (LD)} used for this case is given in Table 4.

Table 4.

Nzl el3 4| &6l 789 | /o]t |l2]13])%|l5
N R IR Y A R L R R R R RO R I E A NV AR B
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Nl el iq)18]79 2020 122]23]24 |26 |26]27 28|29 | 30
Balw)| / [=/\=1 |~/ T T )

4, Appendix
4-1. Existance and Uniqueness of a Solution to (3)
The existence and uniqueness of a solution ot equation (3)
() g(0,x(0)) =
g(t+4~.t x(t+at))= 1nf fk(x(t),u)at +j Pu(t x;t +a t,dy)
(+,5)}

for sufficiently small 4t >0 and t€[0,00) is shown as follows.
Note that W is fixed and gt*ltx(tfdt,u))) in (3) is denoted by
g(t+at,x(t +41t)) here, and that g(t +at,x(t +41t)) is defined on
[0,%) x T (t).
Let us define g,(ttat,x(t +4at)) for integers n>0 by:

go(t,x) =0 (te[0,%0 ),xeX)

By (b +at,x(t4at)) = &c{lg&){k(x(t),u)ét +}'E£)u(t,x;t +at,dy)

ga(t,y)}

Then for n2l,

12y, (t +At,XUJ+At)%gnH;+At,xH;+At)H

1

]inf {k (4),u) &t +j_‘ Py(t,x;t +&t,dy)g Sy Y -

-1nf {k(x(t),u)at +j_‘Pu(t X3t +at,dy)g aq(t, )}

ueltty
£ su ult,x3t +41t,d )I (t,y) - (t,y)
“C&);{ P y) | g, (t, g, (t5y)
£ su (t,x(t)) - g, (t,x(t))
: x(t)ép(f)lgm Eu |
where an inequality 1nf (a, + by, ) - inf (a“ + Cu )% sup (b= cu )
®

has been used, and

lg, (. +at,x(t +at))-g, (t +24,x(t +41))]

inf {k(x(t) At + t,x3t +At,dy)g, (t,y)} - 1nf k(x(t),u)at
lK&C(t){ yu) _J’ )IA( Y18y ’Y}' el ’ i
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IN

sup (t,x;t+a t,dy) (t,y)
“C_Ca_)fumu y) leo(t,y)|

x$880 lgo (t,x(%))],

Define vu(c) for any c by

IN

vale) = sup lgm_ trat,x(t +at))- gn(t + &t,x(t +a t))|
ttat4C ! ’
X(trat)e T (trat) (¢>0)

valc)=0 if c<O.
Then

vale) £ cigfx&)ecff"(t x(1)) = gou (t,x())]

e EPuegh ' x(4)) - g, (4,x(2))]
= v, (c-4t),

hence vyulc)s vy(c-at)< v.n_,(c-2 at)é **£v,(c-nat).Since
v.(*) 2 0 and 2t»0,it follows that %_%r; vn,(c)=0,meaning that |
rgnﬂ(r't+A t,x(t +41t)) converges to some g(t + &t,x(t +4at))
uniformly in t for t +4t £

That g(t +at,x(t +at)) is a solution of (*) is shown as follows:

[g(t +at,x(t +at))-inf {k(x(t) w)at + o Pult,x;t +at ,dy)

g(t,y)}l

= lg(trat,x(t +a1t))-gu(t +at,x(t +at)) +

el

+ 32£t?;k(x(t),u)a t .—tjakl;u(t,x;t +At,dy)g.m(t,3f')}

- ipffe(x(t),u)at + L Pult,x;t +at,dy)g (t,5)}]
f._ig —-gm*‘l+linf{}— inf{}l |
< gt +at,x(t +at))-g, [ t +at,x(t +at))|-

- sup |gm, (t,x(t)) -g(t.x(%))]
l&)&u&)

~—» 0 as M-yoeo.
Now by definition of {ga(t +4at,x(t +41t)), n20} ,g,(0,x(0))=0,it

follows that g(0,x(0))=0.Since

ll

glat,x(at)) inf {k(x(O),u)At -+J l;u(O,x;t,dy)g(O,y)}

inf {k(x(0),u)Ad t},
u&lle)

letting 4t -» 0,it follows that g(0,x(0))=0,proving the contlnulty

of g(t+at,x(t +a4t)) at t +at= 0.
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To prove the uniqueness let g(t +at,x(t +at)) and G(t +at,x(t +41))

be two solutions of (*) continuous at t +aAt =0.

Let v(c) be

V(C)ﬁt“’t‘f-x(tmx»g‘(gﬁg +at,x(t +A1))-G(t +at x(t+a.t))\ (c>0)

v(c)= 0,(c<0),
Then in a similar way as above, we obtain that

v(c)< .  sup suoSPu (t,x3t + at,dy) l(g(t,y)—G(t,y))l
" (;:5 40 W EC(GE®
G"(ﬁdﬁ)
lg(t,x(t))-6G(t,x(%))]
t-‘-c-at KOET R
= vic-at).

Thus it follows that v(c)g viec-at)< *+<¢v(c-nat).Since

g(t +ot,x\t +at)) and G(t +at,x(ttat)) are confinuous at

t +&% = 0, lim v(c-nat) = 0, and v(c)

iim = 0 identically, proving

the assertion.
Now let us consider the eyuation (see the Zfoot.nate 12)
(¥*) g (0,x(0))

2 (vt +at,x(t +a1t)) =jnf {kxtw u) at o+

{LMMQEX't+At dy) 2(t,y) + o(a t)h
[

It is clear from the above argument that there exists (a.a.u))
a unique solution Z(t +4 t,x(t +At)) of (*%) uniformly in
té[Q, bo). It follows that for any t¢[0,09) and a.a.w,

| 8(t +at,x{t +at)) -g(t +at,x(t +at))]

< use%%; (& L (x5t +at, dy)]gtx(t))-gtxt))l+[o at)]

In

| &(t,x(+))-g(t,x(1))] +10(At)l

su
X(t)eg_%&,
<
<lolat)].
Thus 1im JE(tta t,x(t +at))-g(t +at,x (¢ +at))]

A 2 - =0 (a.a.t)
9 0o
t +4at




2€

A A :
g(t +at,x{t + t))= g 8 W,

or lim a.

It has 'been shown
t-yvo i

t +at
that we need to consider only (*) instead of (**),
4-2. Measurability of g(t +a+t,x(t +at,wW)) with respect to W
There may occur a c-se where g{t +4t,x{t +at,w)) is not
measurable in w.In such casesa proposition containing a term
a.a.W may be false.We can circumvent such cases by introducing
esieégf (essential infimum) instead of 32&a in the right side of
(*).Then we can replace C(t) by its countable subset D(t),i.e.
ess inf = ess inf, and g(t +a t,x{(t+4t,Ww)) will be measurable

deCw e D)

in W . No change is necessary in other parts of 4-1 and in the
proof of Theorem 1.

4-3. Py, for u in C"

$ 0% 0] 030 %] -%O%O-l TO%O%—
L, 12030 | 7030 10 30 3 0 +o0%
U W | w? ut
7070 207320 2030 j}o01%o0
F020]  LFOFO0f. [F030]  ]30%0]
1030l [rosol o forosl  Jokod]
1 1 1
7z 030 1 1 1 1 0 +0 1
o1z 2 0% 0 3 z 030 2 2
W n 1 W | 1 ut 1 1 u‘; ‘
0202 03503 0203 0701}
e 0ol ypozd lFoFo 5030
-1_ 1 —‘ rl J_- T 1 l—r 1molo_:_-
20320 2020 0202 2 0 2
1 1 1 1 1 1 1 1
quozo uszgO u“zozo U\ugOzO
030 03 0% 7030 07073
0 50 %] 10303 103 50 {0303
toro]l  Jyoio] [0 4 0 {] fo 4o il
5 1020z 0z 03 0303 0703
[} ul'l- ulr q“:
3030 0703 7030 0303
L-O%O%d L.O%O%_. O%O%_a l.(.)%o%_
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