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An Implicit Onc-Step Method of High-Order
Accuracy for the Numerical Integration

-of Ordinary Differential Equations

MINORU URABE

(To appear in Numerische .Mathematik)

Abstract. For a differential equation dx/dt = £(t,x) with
ft(t,x),'fx(t,x) computable, the author presents a new one-step
method of high-order accuracy. A rule of controlling the mesh-
size is given and the method is compared with the Runge-Kutta

method in two numerical examples.

=
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1. Introduction. Let

(1.1) = £t,x)



79
be a differcntial equation such that the function

(1.2)  g(e,x) = £.(t,x) + £ (t,x)f(t,x)

can be evaluated on .a computer. In the present paper we shall »
present a new one-step method of high-order accuracy for solving

differential equations having the above property.

Let
(1.3) 'ti =ty + ih (i=0,1, 2),
(1.4) fi = f(ti, xi), 85 =-g(ti’ xi) (i =0, 1),

then our integration formula reads as foldows:

A N
(1.5) xl = Ll(xo, fo: f1: fz;_g0: gl’~g2)

A h N
=Xy + (101f0+128f1+11f2)
240
2 .
h SN
+ (13g,-40g,-3g,) ,
where
A ) A A
(1.6) fz = f(tzs xz), & =.g(t2? XZ)
and
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N
(1.7) Xy = LZ(XO’ X1 foa fl’-gO’-gl)

&
= -31x0 + 32x1

-h(14£+16£;) + hi(-2g5+4g;) -

Suppose that (tg, Xg5) is known. Then by means of a well-
known iterative method; one can solve equation (1.5) numerically
with respect to x,, if necessary, using'the formula

12
(1.8) Xy = Xg * hfo *578)

for starting the iterative process. The value of Xx; found
gives a desired approximation to x(tl), where x(t) is a
solution of equation (1.1) such that x(to):c.xo. The value
of QZ obtained in the course of solution of equation (1.5)
gives an approximation to x(tz), but it is not adopted in our
method as a final approximation to x(tz) since it is inferior
in the accuracy. Once the value of Xq has been found, one
repeats the above procéss replacing ty, xl; fl and g1 by

ty, Xg» fO and g, respectively, and so on. When one proceeds
‘from any step to the next one, the value of Q} found in the
first step gives an approximation to xXq in the second step
if the mesh size h 1is not changed. In such a case, clearly
the formula (1.8) is unnecessary for starting the iferative

process in the second step.
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In the numerical solution of equation (1.5); solution X
should be computed as accurately as possible. As will be
shown in 4, from this requirement follows a rule of controlling
the mesh size h.

In the present paper, the derivation of the integration
formula (1.5) will be given in 2 and the convergence of our
one-step method will be proved in 3. A rule of controlling the
mesh-size h will-be given in 4 and two numerical examples
will be presented in 5.

Computations in the present paper have been carried out
"by the use of TOSBAC 3400 at Research Institute for Mathematical

Sciences, Kyoto University. The author wishes to acknowledge

the assistance of Mrs. S. Asako who has written the program.

2. The derivation of the integration formula. Let x(t)

be a solution of (1.1) and put
(2.1) ty =t + ih (i=0,1,2 ) ,

(2.2) X

;(ti) (i=0,1,2 ) .

If x(t) 1is analytic in t,nthen we have the equality of the

following form :

(2.3) NpXg * o(lx1 + O(sz ‘
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= B(Bgxg * Prx1.* fox))
# BE(Hgxg + Vixp * ,%,) + T ( =d/dt) ,
where T is of the form
= ChP (=P (¢ .
(2.4) T = Ch¥ (g x(ty) +
In order to determine the coefficients a}j Fi’ X;((i=0,1,2),
C and the positive integer p, we consider the following

polynomials:

f)()\-) =ely + oA+ o\,
(2.5) T = po v frA+ BN,
T =¥y » LA+ 1N

Let E and D be the operators such that

(2.6) Ex(t) = x(t + h), Dx(t) = x(t)

Theﬂ%e can write eqqality (2.3) in the following form:
LF(E) - h(E)D - h*T(E)D?1x(ty) = ChPDPx(ty) * -

Since



Ex(t) = x(t + h) = ™ x(t) ,

we then have formally

ehD

hD
(2.7) /oce ) -7 (
which is equivalent formally to

(z.8) . ﬁ(g) - T($)10gS - TS logh = Clogh + -

In (2.8), clearly §'~> 1 and log§~> 0 as h—=>0 .

Hence in the limit we have

(2.9) f(l) = 0.

(2.10) <=1+ 7§ ,
then clearly E‘—) 0 as h-=0, a;'ld from (2.8) we have
l-i-g i -
(2.11) 'IGPE%IT;%‘ - 0(1+3) - T(1+5)-log(1+3)
= Clpgp-1(1+§) 4 v

By (2.9), f(l-ﬁg) is of the form -

)hD - T (ePPyn?p? = cpPpP + ---

83
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(2.12) pa+3) - S * P13)

Clearly 0'(1+§) and T_’(1+§) are of the forms

{ 71 +3)
(2.13) g
T +3)

> ~2
0‘04-0“134-6‘23 s

— <2
To * Gis + 5357,

Now it is clear that

Z 1
(2.14) Ealz—ﬁ/ (1+$)%au

' 0

i ,
YRS o
where
1

(2.15) “r =A u(u-;)'~.;-(u-r+1) du (r=0,1,2,"°*).

By elementary calculations, it is easily seen that

R 1 1
Co =1, €1 =3, Cp=-1#@ C3 =725
(2.16)
19 _ .3 _ __863
€4 "~F20° S5 7T60* ©6 80480
Now



3

—

>
o © s 0
7 »

o)

- > ~2 -];
log(1+5) = ¥ - 332 « 4

hence we can write (2.11) in the following form :

(2.17) (o * P1f) (Aveqhoc,Bree-0)

=2
- (T.+T
(qo+dl$fﬁé§ )

. . 2217 .3
- ErnpnhedEash e

= Cap‘l R
J
Let us consider the two cases.
Case I : /o(/\) =-1+A.  In this case
pPa+$) =1+ a+3) =%,
therefore by (2.12) we see that

fo =1 f1=0

Then from (2.17) it follows that

N
Iy
~

(2.18)

if and only if the following equations are satisfied by

U} and "Ci (i=0,1,2)
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0
cq - V& - Tb =0 ,
c, - T, - (- %“To +TH =0,
(2.19) \ €5 (3T -3T +T) =0,
St CFTrET -5 =0,
5 - (TTp - 7T + 5Ty =0

Solving (2.19) with respect to J&'and 7Ti, we find that G'il

and 'Ci'satisfying (2.19) are

. = - e —11

To=1, Tp=7%, 03=755
(2.20)

: = -.._1.‘.. —_—-&. =-_1__

To="% C1=-T20° C2 80 °

For these values of'O‘i and 7:1, from (2.17) we have

(2.21) p =7
and

1 1 1oy 1.
(2.22)  C=cg - 5T *50 ~ 75 = 5450

Since

T = T+ T A1)+ TAD7

T\

Ty + T A-1) + TA-1)2
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by (2.13), for the values given by (2.20) we have
TO) === (101 + 128 A+ 11)\2)
240 ’
(2.23)
TIA) === (13 - 40A - 3)\’7'
240 )
which by (2.5) means
(FO’ Fl’ /32) = 2}10 (101, 128, 11) ,

1 .
(Xo.v Xl’ XZ) =—2—4—6_(131 '40: '3)

Now for solution x(t) of (1.1), it is evident that

£lt, x(t)1,
gle, x(v)].

x(t)

X(t)

Hence from (2.3) we have

h
(2.28)  x; = xg *=a5-[101£(ty, xg) + 128£(t;, x;) + 11£(ty, x,)]

2
h
"'m[ng(tos XO) - 4Og(t1, xl) -Sg(tza Xz)]

1 757 ‘ .
* 5750 h'D x(to) +
from which one obtains the integration formula (1;5) by

neglecting the residual terms.

10
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Case II :

(2.9),

2
.f)(/\) =a/o +0«’1)\+)\, F2=)’2=0. By

0(1 = -(1 +0(0) ’

therefore we have

pa +$) =3101-o) +31,

which implies

(2.25)

in (2.12).

(2.26)

in (2.13).

(2.27)

fo=1"% f1=1

Since _ﬁz X} = 0, we have

'CZ =0

G}
Then corresponding to (2.17), we have:

([DO +§)(l + Clg"' ng +oere)

Similarly to Case I, we then have :

11



(2.28) p=6,
fo = '30,
(2.29) 7y = -30, 7y = -16,
to = 2, T_’l = 4’
S S
(2.30) C=35 -

From (2.29) readily follows

J /o(/\) = 31 - 32\ + A2,
(2.31) TA) = -14 - 16\,
T(A) = -2 + 4N

Thus by (2.28) and (2.30), from (2.3) we have

(2.32) X, = -31x0 + 32x1
- h[14£(ty, x5) + 16£(t), x)]
v nPl-2g(y, xg) + 44(ty, x)]

+ j% h6D6x(tO) + o,

from which one obtains the formula (1.7) by neglecting the

residual terms.

12
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3. Convergence of the method. Let x(t) be a solution
of (1.1) and suppose that
(3.1)
(n=0,1’2’...)

Then by (2.24) and (2.32), we have th@ equalities of the

followiﬁg forms :

~

~ ~ A . ~ -

(3.2) Xn+1 T X 7 hn[fsof(tn’ xn) * Flf(tn+1’ xn+1) + sz(tn+2’xn+2)]
2 ~ ~ |
* hy " [Vos (g, X)) + rlg(tq+l’ Xpe1)

+ Zg(tn+21 xn+2)] + Tn 2

~ ~ ~
L ~ t ~
+ hn[For(tn. xp) o+ Prflt s x )0
'2 N ~ a/' ~
+ h "t X)) v Figlt g, % ,1)]
t
+ Tn R
where

13
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e —1 1 7
(3.4) T = h

7 .
'‘n T 9450 Dix (T )*e e

3

6,6
(3.5) Tn =-éﬁ'hn D x(tn) o,

Let x_ be approximations to §;=x(tn) obtained by our
numerical method. Then by (1.5) and (1.7), corresponding to (3.2)

and (3.3),we have

N\
(3.6) xn+1 - Xn * hn[ﬁﬂf(tn’xn) M Plf(tn+l’xn+l) * FZf(tn+2’Xn+2)

2 N A
* by [Xog(tn’xn) ¥ 2Ilg(tn+1’xn-r-l) * ng(‘n+2’xn+2

+ Rn s

N
(3.7) xn+2'

[

-31xn + 32xn+1

*’hn[Féf(tn’xn) * Fif(tn+l’xn+l)]

2.y L ‘
*h “[¥og(t ,x)) + Vgt 1,%,,10]

where R =~ is a round-off error arising in computation of

X 41
. We assume that functions £(t,x) and g(t,x) satisfy
a Lipschitz condition with respect to x, that is, there are

positive constants Kl and K2 such that

[£0t,x") - £(t,x) [ = K |x"-x" ],
(3.8)

[g(t,x") - g(t, x| = Kyfx'-x"

14
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for any x' and x"..

Put
(3.9) X, - X_ =€ (n=0,1,2,""),

then subtracting (3.2) from (3.6) and making use of (3.8),

we have

(3.10) Jegoy| = [ enl® Ingl K Upollen] + 1811 lega |

+ [le'l£;+z ";;+zl) * ’hnlszchOITIGnl‘

* lyll'len+1l lX [ l Xp+2 §;+2]) +IRnl +'lTn{ .

However subtracting (3.3) from (3.7) and making use of (3.8),
we have

A
- (3.11) X

n+2 n+2 L‘ 31' ¥ 3216

n+ll

[raf ol feal + [Fo]" lennaD
A AR

1l'leﬁ+1 )

1

[Tl

Hence substituting (3.11) into (3.10), we have

e5+1125 lenl * lhn’chlﬁoj‘l n “911 l n+1

15
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bl K€Y [ Jenl * 100]¢ [enaa])
¥ (Ihn!Kl{PZI * [hnlzKZJyZI)[Sllen; +_3218n+l]
Pl Cfsol - fon] + J82] emea])

3] lensald + [l

+

* }hnlsz([Y;['len

* ‘?n] .

+ \Rn
Then we have

(3.12) 11 - | ng|X (gl v |f o M)
. 2 . '
) lhnI chlyllf ]XZ)Mn)]}en+11
= [+ lhﬁlxlclfof * ]FZ‘Nn)

N A AR AT P ey

where

R I AR WA
(3.13) ‘Nn = 31+ ]hn[Kl’ﬁél * ‘thZKZJXé[?

fn = IRD‘ * ,Tnl * {hnfcxlile * lhnIKZJYZI)]T;J'

(3.14) [hn]_—<_ H (n=0,1,2,+++) .

16
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Then for small H>»O0, by (3.4) and (3.5), we may suppose that

(3.15) [ Ty] < CO(hnI?’ [Tnig Cl}hnlé .
For Rn’ let us suppose that
(3.16) ENEI N h | (n=0,1,2,+++)

where g€(h) is a monotonously increasing function such that

g€(h)y 0 as h < 0. By (3.15) and (3.16), we then have

(311 Py =p P cIngl,

where F(ﬂa is a monotously increasing function such that

f(h)*& 0 as h{ 0. Now from (3.13), we have

[ M =32« HK|f ]+ K[V, ]),

N = 31+ H(Kll}g(')l + HK,| ¥4 [)

(nnoil’zi...) ’

therefore by (3.14) and (3.17), from (3.12) we have the

inequality of the following form :

(- |ho|Kg)|eqer | = (4 |ny[Kp) e +f(H)lhn[ ,

17



that is,

| 1+ |y [X LA
(3.18) ‘en+11 < jf:TK;Tii—wen) +/a1hn[

(n=0:192:".') ’

where K; and K, are positive constants and

A P
(3.19) P =T

By elementary manipulationms, it is easily seen that

1 + |h.lK
l G §']'+ ’hn]KS
i- thn(KS
(n=0,1,2,"')
whete
Kz + X
Ky = 13- HK4 .
3

Hence from (3.18), we have

(3.20) [ener | = @ ¢ Ih, X9 [en | +F 12,

(n=0,1,2,*)

from which by induction readily follows

18
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(3.21) [en[ < l}'o (1 + ]hi{Ks) -leolA
A N-1
v 3=0[\ }l'l;rllu + |hg[Xg) ]
(n=0,1,2,"-*).
However
n-1 n-1
L = h.|K =
"% gzb[l(1»+ | ji g) -1 2 J*.1(1 + {h IKS)]
1 % n-1
"k j=o [ s 1+ |[hyfKg) - T*l(l VLR
n-1
=f%;[ 0 7 |5 %e) - 21
Hence from (3.21) we have
n-1
(3.22) len{ = 1—”=:) (1 + lhilKS) -le0{
? - n-1
Pl TG bk - 1

(n=0,1,2,°+")

Let aﬁ be the length of the interval I on which the numerical

integration of (1.1) is carried out. [hem

19
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i=0

therefore we have

n-1 n-1
RN 1+ |h;] %) < H, exp[|h;]X;]
n-1
= exp[ 2 [hy| - Kg]
= exp(eKs)
Then from (3.22) follows
A ,
(3.23) e, | = |eglt expuxy) " x; [exp(aKg) - 1]

(n=o,1,2,....) ,
which by (3.19) implies
e l=>0 (n=0,1,2,"-*) as '[eol,H—> 0
This proves the convergence of our integration method.
Remark 1. For the proof of the convergence of an

integration method, it is clear that no generality is lost

by the assumption.

20
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‘Remark 2. By (3.4) dnd (3.5), from (3.13) we have

fn = [Ra| * i [ma) " [07xce 2|+ 90 BN f296X§tn3{

. o(lhnl75
(o] <5t [l 7]+ Bty
+ o (|, [
Hence by (3.16) and (3.19), we have
(3.24)  f < e [1+0(H)]
* 9150 H [max]D x()| + 1L 16 X - max{D x(t)] ]
+ o(u%),

by which from (3.23) we see that our integration method

possesses the high accuracy.

21
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4. A rule of controlling the mesh size. In the function
in the right-hand side of (1.5), fix X, and substitute the
right-hand side of (1.7) for QZ' Let ?(xl) be a function

obtained. Then equation (1.5) can be written briefly as
(4.1) xX; = ﬁp(xl)

and the iterative process for solving equation (1.5) can be

written as
(4.2) x (ML) = @ (M) (m=0,1, 2, oo ).

Now from (1.5) we have

N
dx
. 8 11 A 2
(x,) = —hf_(t,, xq;) + hf_(t.,, x,) —=
’ 1 15 XL TN g0 X TR gy,
. . dA
1,2 1,2 A X2
- =h®g_(t x.) - —h%g_(t X,) — ,
x+"1” 71 xt 22 72
6 80 dxl
where ' = d/dxl. From (1.7) we have
A
dXZ 2 .
E—— = 32 - 16hfx(t1, xl) + 4h}gx(t1, xl).
X1 v

Hence we have

22
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P RU o (X)) - gy Bogy(ty, Xp)1X

2

x[32 - 16 h £,(ty, x;) *+ 4 h gx(tl; x1) ]

8 11 2
h(15 * S 32)fx(t1, xl) + 0(h%)

| 2
2hf (ty, xg) + O(h?).

Taking a small positive number H, let us restrict the mesh

size h so that
(4.4) [h| = H

Then from (4.3) it follows that if

(4.5) 2 |n. |£e(tgs x) | < K,
then
(4.6) (PG - Papl = x |x) - xy

1 "
for any X1, Xy . mear Xq.

Suppose that h is chosen so that (4.5) may be valid for

23
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for k << 1. Then an approximate value to the solution x of

_ 1 -
equation (4.1) can be indeed obtained by the iterative process
(4.2) (for details, see [1]). Let & be a bound of a round-
off error in the -evaluation of ¢ (x) and take a positive number

~x such that

’ 2 E
(4.7) 0\____?—1—_—-?—.

Then as is proved in [2], we can stop the iterative process

(4.2) by the criterion

(m+l) _  (m)| <
(4.8) X M| < «
and moreover, if kX satisfies
(4.9) k l\/ _'__:’ £ >

a final value obtained by the iterative process

x£m+1)
possesses the similar accuracy as the value in the state of
oscillating numerical convergence, that is, the best approximate
solution that one can get by the iterative process (4.2).

From the above results, we get a following method of con-
trolling the mesh-size h.

Namely, taking into account inequalities (3.24), (4.7) and

(4.9), we specify the numbers H, X and k before excution of

24
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of computation. In the course of computation, we ‘then determine
the mesh size h by halving or doubling so that h may be
a maximal mesh size satisfying both of inequalities (4.4) and

(4.5).

5. Numerical examples.

dx _ 1 .2 -
Example 1. T =T X x(0) = 1.

In this example, it is evident that the exact solution 1is

S
5 -t

x(t) =

Specifying H, k and & so that

-8

H=0.125, k=10.1, « =10 and 10 7,

we applied our method to the given equation. The values of the

solutions obtained are shown in Table 1. The errors of the
also
9 are,shown in Table 1. In order to

N\

compare our method with the Runge-Kutta method, we computed

solutions mniultiplied by 10

the solution by both methods for a constant mesh size h =
0.0625. In our method we specified & so that K= 1D'9.
Errors multiplied by 109 for the solutions obtained by both

methods are shown in Table 2.

X dx _ 1 8475 iy o 15 _
Ekample 2. it St( 7 )C) » VX( 1) = 77 0.46875.

25



In this example; it is easily seen that the exact solution

is

233,

o

x(t) = 5 .- (1 -
Specifying H, k and & so that

10° and 107,

X
]

H = 0.0625, k = 0.1,

we applied our method to the given equation. The values of the
solutions obtained are shown in Table 3. The errors of the

10 are also shown in Table 3. In

solutions multipiied by 10
order to compare our method with the Runge-Kutta method, we
computed the solution by both methods for a constant mesh size
h = 0.03125. In our method we specified X so that =
10'9.:Errors multiplied by 1010 for the solutions obtained

by both methods are shown in Table 4.

Tables 1 ~ 4 show the practical usefulness of our method.

26
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0.00390625

-

0.00390625

4.69921875

4
.

4.75

16.62337 433(-2290)

-

19.99999 667(-3330)

27

Table 1
Solutions (Errors x 109)
h t
% = 1078 = 1077
¢ 1.00000 0000 1.000061.00000 0000

0.125 0.125 1.02564 1025(-1) 1¢0256411026(0)
0.0625 0.1875 1.03896 1038(-1) 1.03896 1039(D)
0.0625 2.5625 2.05128 2025(-26) 2.05128 2047(-4)
0.03125 2.59375 2.07792 2050 (-28) 2.07792 2074(-4)
0.03125 3.78125 4.10256 3972(-131) 4.10256 4081 (-22)
0.015625 3.796875 4.15584 4022(-134) 4.15584 4134(-22)
0.015625 4.390625 8.20512 7654 (-551) 8.20512 8110(-95)
'0.0078125 4.3984375 8.31168 7746 (-566) 8.31168 8214(-98)
0.0078125 4.6953125 16.41025 417(-2240) 16.41025 602(-390)

16.62337 622(-400)

°

19.99999 941(-590)



Table 2

Errors X 109

28

t Gur one-step method Runge-Kutta method
0 0 0
0.5 0 0
1.0 -1 -1
1.5 -1 -1
2.0 -2 -4
2.5 -3 -10
3.0 -7 -32
3.5 -17 -138
4.0 -132 -1051
4.5 -19499 -33167
4.5625 -55860 -64280
4.625 -194950 -137680
4.6875 -910920 -337710
4.75 -6882850 -1005330

100
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Table 3
Solutions (Errors x 1010)
h t
of =108 = 107°
-1.0 0.46875 00000 V-O.4687S 00000
0.00390625 -0.99609 375 0.46751 25336(3) 0.46751 25333(0)
0.00390625 -0.91796 875 0.43511 52891 (49) 0.43511 52840(-2)
0.0078125 -0.91015 625 0.43101 16566(55) 0.43101 16509(-2)
0.00&8125 -0.63071 875 0.17782 33175(398) 0.17782 32782(5)
0.015625 -0.,62109 375 0.15747 36963(413) 0.15747 36555(5)
0.015625 -0.37109 375 -0.19998 03843(674) -0.19998 04515(2)
0.03125 -0.33984 375 -0.24274 17954(703) ~0.24274 18654(3)
0.03125 -0.18359 375 -0.41852 61361(822) -0.41852 62182(1)
0.0625 -0.12109 375 -0.46387 43081(843) -0.46387 .43934(-10)
0.0625 0.25390 625 -0.34888 98249(830) -0.34888.99026(53)
0.03125 0.28515 625 -0.31258 61465(799) -0.31258 62213(51)
0.03125 1 0.37890 625 -0.18903 76135(708) -0.18903 76799(44)
0.015625 0.39453 125 -0.16690 02795(690) -0.16690 03442(43)
0.015625 0.64453 125 0.18780 92069(373) 0.18780 91719(23)
0.0078125 0.65234 375 0.19766 31599(362) 0.19766 31259(22}
0.0078125 0.92578 125 0.43905 38383(99) 0.43905 38291(7)
0.00390625 0.92968 75 0.44096 19448(96) . 0.44096 19359(7)
0.00390625 1.0 0.46875 00053(53) 0.46875 00004(4)
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Table 4

Errors X 10lO
t - Ouy one-step method Runge-Kutta method
-1 0 0
-0.75 58 39602
-0.5 144 92887
-0.25 216 1 40186
0.0 243 1 59239
0.25 214 1 40193
0.5 141 92918
0.75 58 39237
1.0 3 3849
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