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ABSTRACT

A necessary and sufficient condition for attaining capture in
pursuit and evasion problems described by nonlinear differential equa-
tions are presented. It is shown that the "epsilon technique" developed
by A. V. Balakrishnan for computing optimal control can be applied for
solving the pursuit and evasion problems. The existence of the solution
for the epsilon problem is proved, and the relation between the original

pursuit problem and the epsilon problem is shown.

1. Introduction

In this paper, we shall discuss pursuit and evasion problems Tre-
lated to a max-min problem first considered by Kelendzheridze [1]1. A ne-
cessary and sufficient condition for attaining capture will be presented,
on the basis of an inclusion relation between two attainable sets of a
pursuer and an evader. The "epsilon technique" which was developed by
A. V. Balakrishnan [2], [3] for computing optimal control will be applied
for solving the pursuit and evasion problems. The advantage of the epsilon
technique lies in the fact that the optimization problem containing dif-
ferential equation constrains can be reduced to a nondynamic optimi%ation
problem. It will be shown that the solutipn of the pursuit and evasion
problems described by differential equations can be obtained by solving
a nondynamic sup-inf problem. The existence of the solution of the epsilon
problem is proved, and the relation between the briginal pursuit and eva-

sion problem and the epsilon problem is shown.
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2. Statement of the Problem

Let there be two players, the one called pursuer and the other

called evader. The states of the pursuer and the evader at any time
t, 0 < t< o, are represented by m-dimensional vectors x(t) and y(t),
respectively. The dynamics are given by the following differential

equations,

1

axn) /at = £(x(0), u®), 1), K0 =%, | | (1)

dy(t)/dt

g(yt0, v, 1), 30 =y, (2)

where X, and Yo are initial states of the pursuer and the evader,

respectively.

Let U be a nonempty compact subset of an r-dimensional
Euclidean space Rr, and let V be a nonempty compact subset of
an s~-dimensional Euclidean space RS. The control u{:) of the pursuer
is said to be admissible if u(-) is measurable on [0, T] and for each

t €[0, T}
ut) e U. - (3)

Let Qu denote the set of admissible controls of the pursuer defined on
[0, T]. Analogously, the control v(-) of the evader is said to be admissible

if v(-) is measurable on [0, T] and for each t €[0, T]
v(t) e V. ‘ ‘ (4)

Let Qv denote the set of admissible controls of the evader definéd on

[0, Tl.
For the functions f and g, the following assumptions will be made:

Assumption 1. The function f(x, u,t) is continuous onmeUx

[0, T] and continuously differentiable in x. Similarly, the function gly, v, 1)

is continuous on ETxVx [0, T] and continuously differentiable in . y.
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Assumption 2. There exists a positive constant ¢ such that

[% £05,u,t)] = c(1 + [x[|) (5)
for all erm, ueU, and t €[0, T], and that

[y, gly,v,t)] Sc(1 + "yllz)

for all y eEm, veV, and te[0,T], where [ *, '] denotes the inner product,

Assumption 3'. The set F(x,t) defined by
'F(x,bt) = {f(x,u,t): ueU} (6)
is convex for every x and te[O, T]. |
With Assumptions 1 and 2, for each ueQ,,, (1) has a uniciue solu-
tion uniformly bounded on [0, T} which will be denoted by x(-,u), and for

each v eQ , (2) has a unique solution uniformly bounded on [0, T] which

will be denoted by y (-, v) [4], [5].

Let Ax(T, xO), or in short Ax(T)' denote the attainable set of the

pursuer defined by

T
Ax(T’ xo') = x0+ Slo f(x(t, u), u(t), t)dt: u(*) eQu (7)

In the same manner, the attainable set of the evader, denoted by Ay(T, yo)

or Ay(T), is defined by

(8)

AT
Ay(T,yO) = {y0+ S'o g(y(t, v), v(t), t)dt 2 v(+) €Q

Under Assumption 3!, the attainable set Ax(T) of the pursuer turns out to

be compact [4], [5].

Now, let 7 be an nxm (n = m) matrix corresponding to the orthogo-

nal projection from R~ onto an n-dimensional linear subspace. We

say that the capture is attained from the initial states x, and y, if, no

matter what admissible control may be chosen by the evader, the pursuer

4
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can choose an admissible control corresponding to the evader' s control

such that
lrx(T) -7 y(D=s (9)

for some finite time T, where &§2 0 is a given constant. Let Bx(T)
and By(T) denote the projections of the attainable sets Ax(T) and Ay(T)

into the n-dimensional linear subspace, i, e.,
B(T) =7 AT ={r x: xeA (T}C R, \ (10)
B(T)=mA (T) = {rx: xeA (T)}CR",
y y { y }C
Let §6 denote a closed sphere in R" of radius & about the origin,
S, ={xer": [x[= s}, | (11)
Then, it is clear that the pursuit-evasion game can be completed if and

only if
BX(T) +S, DBy(T). (12)

3. Completion of the Game

Let n be an arbitrary point of En. The distance between a point

n and a set Bx(T) is defined by

. - (13)

oln B (1)) - inf[“n -] :geB (T
X b
Further, let us define an asymmetrical distance between two sets By(T)

and Bx(T) as follows:

p*(f,y(T), BX(T)) = sup p(n, BX(T)): ne By(T)

= sup inf ”n -£ U (14)
neBy(T) £eB_(T) ’
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By using the asymmetrical distance between the attainable sets of
pursuer and evader in Rn, the necessary and sufficient condition for

completion of the game is obtained.

Theorem 1. Under Assumptions 1, 2, and 3!, the necessary and

sufficient condition for completion of the game is that the relation

* .
p \B._(T), B.(T))= sup inf |n -8”
(y x ) neBy(T)’s"sBx(T)

= sup inf “7ry -TX ”§ 6 (15)
yeAy(T) xeAx(T)

holds for some finite time T.
Proof. To prove the necessity, let us assume

BX(T) + S DBy(T) . (12)

The above relation implies that for all n eBy(T) there exists a £ € Bx(T)
such that
In-€ll=s.

Therefore, it follows that

inf [[n-gllss forall neB (T). (16)
£eB(T) Y

Hence we obtain

sup inf ”n - & ” 6.
n eBy(T) §eB_(T)

For proving the sufficiency, let us assume that there is a point.
ﬁsBy(T) such that 4\75{ BX{TZ + éa‘ Since the set By(T is compact, it
follows that

p(7/’)\, Bx<T$) =inf {|n -El] : £e B(D}> 6. (17)




Therefore
* A
T =
p (By( ), BX(T)>_ p(n,» BX(T)) >5 .
This is a contradiction. (Q.E.D.)

4, Application of the Epsilon ’fechnique

Now, the problem has been reduced to computing

sup inf ” n-§& H = sup inf ”’ITX -Ty ” . (18)
71€By(T) EEBX(T) yeAy(T) xeAx(T)

Since the sets AX(T) and Ay(T) are the attainable sets, most known methods
for computing (18) will involve the solution of the dynamic equations (1

and (2) as an essential step.

If the epsilon technique [2], [3] is applied, however, (18) can be
computed without solving the dynamic equations. Thus we formulate a
non-dynamic problem for fixed €>0 and e" > 0. We seek a sup-inf of

the following functional, the time T being fixed,

hT(e', e x, wy, v)= ”ﬂx(T)v—_qry(T)“

. _
1 ,

t oo So %) - £(x@®, u®), t)“zdt

1

T
2en
o]

Iy - (e, v, )% e, | (19)

over the class of absolutely continuous state functions x(-) and y(+) satis-
fying the given initial conditions, and over the class of control functions

u(-) and v(-) subject to u(t)e U and v(t) eV for each time te [0, T}]. It

will be shown in Theorem 3 that the solutions of this problem approximate

as closely as desired the original sup-inf problem (18) for sufficiently

small € and €". The epsilon problem can be solved computationally in
-many ways, e.g., by use of the gradient method; or Rayleigh-Ritz procedure,

or Newton-Raphson method, or the combination thereof [3].

"7
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) Now let us formulate the epsilon problem more exactly. Let

)(1 be the class of absolutely continuous functions x(+) over [0, T] subject
to x(0) = X5 with the derivative square integrable over [0, T]. Likewise,
let Y1 be the class of absolutely continuous functions y(-) over [0, T]
subject to y(0) = Yo with the derivative square integrable over [0, T].
Let us define product spaces X and Y by

X=X1x§2u , Y=Y1va. (20)

We introduce new notations defined by

60 = (%00, w6 L w6 = (y0), ve), o
21

€=(e, e").
Further let us define subsets of X and Y, respectively, by
P={¢() = (X(-,u), u(-)) rue }CX,
: (22)

E={y() = (yC.0, v():venlCy,

where x(-,u) and y{(-,v) are solutions of the differential equations )]
and (2) corresponding to controls u e Qu and v €
By using the notation (21), (19) can be abbreviated as

hple’s e x,u; y,v) = hy(e s 65 9).

For proving the existence of the solution of the epsilon problenm,
we shall make another assumption:

Assumption 3. The sets f(x,U,t) and g(x,V,t) defined by

f(x,U,t) ={f(x,u,t) :vueU} ,» g(x,V,t) = {g(x,v,t) : V€V}’ (23)

are convex, respectively, for every x and t.

Concerning the existence of the solution of the epsilon problem,
Wwe obtain the following theorem. The way of proving the theorem follows

Balakrishnan [3} and Choudhury [6].
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Theorem 2. Let us denote the sup-inf of (19).by hT(e‘ ,€") or
hT(s), i.e.,

h, (e) =h_(e',€") = sup inf h (e',€";0;¢), | (24)
T T veY geX T

where the terminal time T is fixed. Let the sets Uand V be compact.
Then, under Assumptions 1, 2, and 3, the sup-inf is attained for each
e >0 and €" >0; i.e., there exist qSoe X and y° € Y such that

hT(e', €") = sup inf hT(e',e";d:;«//)
veY ¢eX

= t en.40. 40 ‘
—hT(€,€,¢°,¢/). | (25)

Proof. Let {xn(- ), un(‘ )} be a minimizing sequence for (19), ¢
being fixed. It can be shown that the sequence xn(') is equi-bounded and
equi-continuous [2]. Hence, using an appropriate subsequence, we may
take xn(') to converge uniformly to an absolutely continuous function
x9(+) €X1. Also it can be shown that >'<n(') converges weakly over L2(O, T)
to X9(-) as in[2]. Now, as in Choudhury [6], let us define xn(-) by

xl(.) ooy Xn(')

x () = - _— (26)

Then, since )'cn(') converges weakly to 5{0(' ), by the Mazur Theorenm
[7],it follows that En(') converges strongly to )ko(-). Also En(') converges

uniformly to x°(-).

By the convexity assumption (Assumption 3), there exists a Gn(t)e U

such that
n v
i—i;lf(in(t), u®,t) = £(% (0, T (0,1). (27)

It can be shown that {§n, Gn} is a minimizing sequence [6]. In fact, let

9
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2, = %0 - £ (x (0, w @1),1),

i

RORES) [f x (0, (0, 1) - £(x (0, uk(t),t)] : 28)

k=

[anry

Then it is clear that

Zn(t) - f(§n<t), Gn(t),t)= 0.0 +7 (1), (29)

where 2.(8) + -+ +z ()
1 n

z (t) =
n n

Now let us show that Lz— norm of Gn(-) defined by

Lo, =[] o

O

converges to zero. Since f(x,u,t) is continuously differentiable in X,
the admissible controls are unifornly bounded, and xn(-) and Sc'n(-) converge
uniformly to xo('), it follows that for arbitrary number € > 0 there is an

integer N such that if k > N, then
B (s w0 ) - (=000, ), )l < 5,]

'Hf(;k(-), u (), ) f(xC’(-), w, (), ) ]|2< €.

(30)

Now it follows that

~2

1 . .
lonnt 5% 55 [k e Ge, w0 ) = 2, 0 w2 1,

I
et

N+n ” o ”
X ('): ('): * - f (.)) (.))’
+k=§+1 f(xk uk ) (x uk ) 9

-

N+n _ :
b T (g 1) 16, )

10
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N )
1 . * . s . . .
. [kgl (e, ) - £ Yy +2me e gy
Letting n—e, we can conclude that

lim || en(-)llz= 0. (32)
n->0

From (29) and (32), we obtain

 lim nx<>-fx<>u<))l|=hm Iz - (33)
n—>00

Since zn(') converges weakly to z°(+) say, ;n(') converges strongly to

z%(-). Hence

. ~q. - Oy. < : l .
um fz (O, = 2% ],2 um [z O], (34)
n —> o n-+»o0
Inequalities (33) and (34) show that $n ={:_<n, Gn} is a minimizing sequence
for h (e ;¢ ;¥), ¥ being fixed. Thus, we obtain ’

inf h (e,qS Y) = lim hT(e;xn, un;w)
¢peX n oo

- 3 . 0 = .
= lim hT(e, x", un,w) . (35)

n-—+c

The existence of an ordinary control that attains the infimum may
be proved using the Blackwell theorem [8] on the range of a vector measure
and Filippov lemma [4] as in Balakrishnan [3] and in Neustadt [9]. Now,
since the function

F(t, W = o7 1000 - £6°(0), u, 0|2

is continuous in u and the set U is compact, the set defined by

F(t, U) = { F(t, u) : ueU}

i;' compact. Hence, by the closure property of the range of vector integrals

11



as proved by Blackwell [8], the set

{ JJ‘a(t)dt :a(t)e F(t, U) }
o

is closed. Therefore, by the same argument as in Blackwell [8] and in
Neustadt [9], there is a measurable function a(-) such that

T T ,
j‘ F(t, ﬁé(t))dt-—~e>J. a(t)dt,
o]

n+o
o

a(t)eF(t, U) for every te [0, T].

[12],

By the Filippov lemma [4]ﬂAFhere is an admissible control uo(-) such that

a(t) = F(t, u°(t)) a.e. in [0, T].

Thus, we obtain that there is an admissible control u° e Qu such that

Ln - hples x°, G5 ¥) = hu(e; x°, u%; y)

n »> o
= inf (&5 ¢;9), | ' (36)
$eX hT
Since x° and u° are dependent on the value of y(T), we write them as

xo(-, y(T)) and uo(-, ¥(T)). Further let

12
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¢°(y(1) = (x°C,. 3T, uC, 3T).

Then
inf h(e;¢;¥) =hy (6% ¥)
peX

= ” 7 x° (T, y(T)) -7 y(T)”

T
1 g o) 2
*3a ) 15, D) - £ (=0, ¥ (T, u (s, ), t) | 2t

. - ; |
1 R 2 o7
e ) [} y(t) g(y(t), v(t), t) [ “at . (37)

If we define a function <I>T by
¢ (e' ;XU y(/T))= l7x(T) -7 y(1)

T
. ‘ .
+"”*2i' So |ty - f(X(t). u(t), t) [ “at, (38)

then (37) can be rewritten as

¢12fx hT(e' L€ B¢ = hT_(E‘ , € % y(D) sy, V)

= & (€5 %0, HT, wO(-, Y (T); ¥(T))

T .
1 . 9
- 26“‘ A ” y(t) - gf(Y(t), v(t), t> ” dt . (39)

Let {yn(') , vn(' ) } denote a maximizing sequence for (39). Inthe same
way as before, we may take the sequence yn(') to be converging uniformly
to an absolutely continuous function y©9(-) € Yl' Let us define another

maximizing sequence {§n s ;n} such that

13
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y B+ 4y

n(t N n ’

g (v, 0, v, 1)= (7,0, v0,t), v ev.

<t

(40).

1
n

ﬁt“ﬂs

1

For fixed y_(T), since ¢°(+, ¥, (1)) = (-, ¥ (1), u°(*, ¥,(1))) attains
the infimum of @T(e'; X, U; ?h(T)), it follows that

@T'( e's x°(, ¥,(M), v, ¥, (M) ?n'cT))
< @T(e'; (5 Y2, w0, YO m); ?n('r)>. (41)

Since it holds from (41) that

hpCes ¢°G, (M5 ¥, V)

A

hp( €5 0°G°(M); ¥y, ¥ for all n, (42)
we obtain

Lin byl e 400,05 V0 V)

N »> o

< lim o h( e ¢°G°M); ¥, V). (43)
N5 .
Since ?ﬁ(-) converges strongly to &0(-); and yn(-) converges uniformly to .

Y°(~], it follows that

lim  hy(e; ¢°G° M) ¥y, V)

n-»> o

= lim  hp( &5 760 (M5 Y0, V-

N+ o

Thus, from (43) we obtain



o

n->x

Lin  he( e ¢°0,M)s ¥, V) -

<lim b (e ¢00°My, VY | ‘o

n->
Since { }7n(-), Vn(-)} is a maximizing séquence for (39), (44) implies that

lim  ho( &5 ¢°G (M5 ¥ V)

n-—> o~

= lin (e 0°0°M Y0, V)

n-+ o~

= sup inf  hp(e; 45 W), | o us)

PpeY ¢eX
The function G(t, V) = H>yo(t) - g6, v, B 2/28” is continuous

in v. Therefore, applying again the Blackwell theorem [8] and Filippov lemma
[4], [12] as before, we obtain that there exists an admissible control
vo(-) eq, such that

im by (€500 GO 50, )

n —» o

= h;[, (e; 622 ¥v°, VO)

= sup inf hT(e;dJ;l,//). (Q.E.D.) - 46)
veY ¢geX

Now the relation between the solution of the epsilon problem (24) -

and the original problem (18) is given by the following theorem.

Theoremn 3. Suppose there exist ¢° €X and v®eY , which are

dependent on ¢ , such that (25) holds. Then
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lim hT(e) = lim hT(e', €") = lim sup inf hT(e; é;¢)
e~ 0 €,e" -0 €e+>0yYeY ¢gpeX
= sup inf  frx -7y l. (47)

y eAy(T) x €A (T)
Proof. hT(e ;05 ¢) is defined by
ho(e; ¢;y) = l7x(T) -7 y(T),”

+ ok STH £ -1 (xt0, u(o, 1) a

o
T
- 2%;.‘5' Iy - g(y(t), V(t),t) H?dt . (48)
o

Now it is clear that the relation

sup inf h (€;¢;¢)2 inf h (e;¢;¥) ' (49)
veY geX peX

holds for all yeY, and € = (¢',€")> 0. In particular, (49) holds for a

¥ = (y, v) which eatisfies the differential Equation (2). Hence,

sup inf hT(e;tﬁ;l//)i inf [”‘nx(T)—Try(T)”

veY pgeX peX
1 T ] 5 ,
tpa ) N5 -1 (o, wo, )] at] (50)

holds for any € = (€', €")>0 and y(T) eAy(T). By [2, Theorem 3. 1] it
follows that |

1 T 2
lim  inf [”” x(T) - 7 y(D) +§-,~S' [ % - ¢ (x, u(t),t)“ dt:]
€ +-0 geX € Y

= inf  frx-7x y(T) . (51)
xe A (T)

Letting € -~ 0 in (50), we obtain

16
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lim sup inf hT(e;qS;l!/)é inf H‘rrx_~1ry(T)” . (52)
€e+0yeY ¢eX xEAx(T) :

Since (52) holds for all y(T) € Ay(T), it follows that

lim sup inf hT(esé;l//)
€e—~+0 yYeY peX

Z sup inf ”'nx - y” . (53)
ye€ Ay(T) Xe€ Ax(T)

On the other hand, since PC X, where P is defined by (22), we obtain:

inf h_(e;d;¢) §-— inf h_(e; ¢;¢). (54)
peX T peP T

Further it is obvious that

inf [7x(D) -7 D] = inf frx-zyD]. (55)
¢e P xeA (T)

Therefore, the inequality

inf hT(e;dml/)é inf‘ “wx—ﬂy(T)”

peX xeAx(T)
1 » T 9
T oen g ¥ .- g(y(t), ‘v(t),t) < at (56)
o
holds for all € = (€', e") >0 and Yy eY. From (56) it follows that
sup inf hT(s s 9sY) s sup[ inf | 7x-7y(T) Il
veY ¢eX YeY XeAx(T)
1 %y 0
o 50 - g (o, v, 9% a] (57)
o

Applying [2, Theorem 3.1} again, we obtain

17



lim ‘usup' [ inf | 7x-n y(T) ”
€" >0 yeY xeAx(T)

26“ S‘ ”y(t> -g(y(t) vit), t)”zdt]

=  sup inf "‘rrx,-ﬂy” . (58)
yeA(T) xeA(T) |

Relations (57) and (58) imply that

lim sup inf h (e‘ ;)
€>0yeY ¢peX :

= sup inf ”nx -7ry” . (59)
yeAy(T) xeAX(T) -

From (53) and (59), we finally obtain"

lim sup inf h (e é;¢)
€ >0 yeY ¢eX

= sup inf ” TX -Ty ” : (Q.E.D,) (60)
yeA (T) xeA (T) .

Theorem 3 shows that the epsilon problem approximates the original
pursuit and evasion problem as closely as desired and prov1dps an approximating
sequence of controls of pursuer and evader that approximates the optimum.
Furthermore, Balakrishnan [3] showed in the particular example of optimal con-
trol problem that the solution may be relatively insensitive to how small ¢
has to be. _ _

If for sufficiently small €' > 0 and &' > 0, and for a suitable value
of T > 0, the value of hT(e’ »€'' ) is smaller than §, then the pursuit may be
regarded as attained. ' ,

In the case where the convexity condltlon (Assumption 3) does not
hold, by introducing the relaxed or generalized controls as in [3], r10]; [111,
we can show that there exist the relaxed controls which attain the sup¥inf of
the epsilon problem (19).

18
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