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Oscillatory Property of Solutions of Second Order

Differential Equations
Taro Yoshizawa

n this paper we shall discuss oscillatory property of solutions of second order differential

equations by applying Liapunov's sccond method. Consider an equation
‘ L L _d
N @Ox Y+t x,x)=0 ( =),
where (¢) > 0 is continuous on 1=+0, %) and f(t, x, u) is defined and continuous on
IXRXR, R=(~00,0), To discuss oscilia{tory property of sojutions of (1), we consider
an equivalent system.
Y - f t L
=t =~ X, 5= ).
(2> X r(t) > y - . ( y %y T(L) )
A solution x(t) of (1) which exists in the future is said to be oscillatory if for every T>0
there exists a t0> T such that x{ to) =0. Moreover, the equation (i) is said to be oscillatory

if every solution of (1) which exists in the future is oscillatory.

Theoremn 1. = Assume that there exist two continuous functions V{t, %, y) and W(, X, ¥)



which are defined on t2>T, x>0, lyl<eo and t2T, x<0, lyl<oo, respectively,
where T can be large, and assume that V(t,x,y) and Wit x, y) satisfy the following
conditions;
(i) V(t, X, y) = oo uniformly for x>0 and o<y <oo 25 t s oo, and
W({t, x,y) = oo uniformly for x <0 and ~oly<oo a5 t - oo, |
(ii) \./(2)(1‘., x(t), y(1)) £ 0 for ail sufficiently large t, where {x(t), y(t)} isa solution

of (2) such that x(t)> 0 for all large t and
¢ —_— 1
Vi) (6 x(0, y(©) = Tim = { V(t+h, X(t+h), y(t+h)) - V(t, x(1), y(1))},
h—o* h

(iii) W(z)(t, x(1), y(t) £0 forall sufficiently laree t, where {x(t), y(t)} isa

solution of (2) such that x(t) <0 forall large t and

Wy (6 x(®, y(©) = Tim_+ {W(t+h | x(t+h), y(t+h)) - W(t, x(t), y(t))}.
2) a—o* I
Then the equation (1) is oscillatory.

Proof. Let x(t) be a solution of (1) which is defined on H ty,°), and suppose
that x(t) isnot oscillatory. Then x(t) is cither positive or negative for gl large t. Now
assume that x(t) >0 for aij t >0, where we can assume g tobe s;xfﬁcicntly large. By
1ave

the condition (i), if t is suiticiently luree, sz t2>t,, we
= )
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V(o, x(0), y(6)) < V(t,%x,y)
forall x>0, lyl <ee, However, by the condition (ii), we have
V(G x(1), y(1)) £ V(o,x(0),y(0)) forall t2uo,

which contradicts V{(a, x(0), y(0)) < V(tj, x(%;),y(t;)). When we assume that x(t) <0
for all large t, we have also a contradiction by considering W(t, x(t), y(t)). Thus we see
that x(t) is oscillatory. .

To apply this theorem, the followinéicmmas play an important role, In the folldwing’
a scalar function v(t, x,y) will be called a Liap#nov function for (2), if v(t,x,y) is

continuousin (¢, x,y) in the domain of definition and is locally Lipschitzianin (x, ¥).

" Moreover, we define \}(2)(t, X,y) by
. - = L . Y Y\
3 vatxy) 1133 « 7 (vQFh, xvh ) , y+hi(t, x, ) ) v(t, x, y)} .

If \:'m(t, x,Yy) £ 0, v(t,x(3),y(t)) isnonincreasingin t, where { x(t), y(t)} is a solution

of (2), see [5],

Lemma 1. For t gT*, x>0, —o<y <oo, where T* canbe large, we assume that .
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there exists a Liapunov function v(t, X, y) which satisfies the following conditions; -
M yv(t,x,¥)>0 for y*0, t>T* x>0,

(i) \"a)(t, X, ¥) £=At), where A(t) is a continuous function defined on t gT* and

4) lim f;x(s)ds >0  for all large T.
{—roo

Morcover, we assume that therc cxists a 7 and a w(t, X, ¥) for all large T such that
72T and w(t, x, y) is a Liapunov function defined on t27, x>0, y <0, which satisfics
the following conditions; |
Gi)  y £wit, x,y) and w(7, x,y) <by), where b(y) is continuous, b{(0) =0
and b(y) <0 (y *0),
(iv) Wa)(t, X, ¥) £- o(OW(t, X, y), where p(t) =0 is continuous and

(5) P expl= ['o(s)d dt = oo

Then, if {x(t), y(t)} is a solution of (2) such that x(t) > 0 for all large t, then y(t) =20

for all large t.

Proof.  Suppose that theic is a sequence {t,} such thatt, —eo as n—e and

y(t,) < 0. We can assume that t, gT* and t, is sufficiently large so that

6) lim f A(s)ds 20, x()>0 fort>t,. -
—>00 in = =

t
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Consider the function v(t, x(t), y(t)) for t>t,. Then we have

Ve X0, YO) S W, (6, Y0 = £ A©ds.

From (6) it follows that there isa Tj; >0 such that forall t 2Ty,

£ A 2 3V, x(t), ),

\
AN

because  v{t,, x(t,), y(t;)) <O0. Therefore, for t2>T;, we have

Vit X(0, ¥(0) € 3ty X, vt <0,

which implies that . y() <0 forall t2>T;.
w(t, X, ¥)

For Ty, thereisa 7 suchthat 72T; and thereisa Liapunov function
defined on t2>7, x>0, y<O0. For this w(t, X, v), we have

t
-/ pls)ds

- f pls)ds
bly@e 7

vy £ wit, x(®),y®) £ wr, x@,y@)e 7

A

f
for t>r Since x*(t) =¥(%))—-, we have

. t
-/ p(s)ds
T

') £ b(y() o °

’

)
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and hence

.1 '~f:p(8)'ds
x(t) £x(@) + bly()) [ O

du.

Since x(t)> 0 for t2>7 and b(y(7) <0, there arises a contfadiction by (5). ‘Thus we sce

that y(t) 20 for all large t.

Remark. In the casc where r({)=1 and p(t) =0, condition (iii) can be replaced by
(i)' aly) £wit, x,y) and W(r, X, ¥) L£b{y), where a(y) is monotone, continuous,
a(0) =0, a(y)<0 (y ¥0) and b(y) is continuous, b(0) =0, b(y) <0 (y ¥0).

By the same argument, we can prove the foliowing lemma.

Lemma 2. For th*,‘ x<0, o<y < o where T can be large, we assume that
there exists a Liapunov function v(t, x, y) which satisfies ihe following conditions;
Oyt x,y)<O0 for y¥o, t>T" x<0,

(i) \}(2)(t, X,Y) g-m), where A(t) is a continuous function defined on th* and.

lim f* N(s)ds>0 foralllarge T. -
t—>oo T

Moreover, we assume that there existsa 7 anda w(t,x,y) foralllarge T such that 7 2> T
and w(t, x, y) is a Liapunov function defined on t>7, x <(, y > 0, which satisfies the
following conditions;

i) -y £w(t, x,y) and w(r, x,y) <oly), where b(y) is.continuous, b(0)=0 and



b(y) <0 (y*0),

@iv) \;v(z) t, x,y) <= p(Ow(t, x,y), where p(t) >0 is continuous and

= 1 aer b e oreVds 1 <
fr G) exp { ff p(s)ds} = oo,
Then, if {x(t), y(t)} is a solution of (2) such that x(t)< 0 foralllarge t, then y(t) L0
for all large t.
If we can find Liapunov functions which satisfy the conditions in Lemimas 1 and 2, we can

prove the following theorem by tiic same idea as in the proof of Theorem 1.

Theorern 2. Under the assumpiions of Lemmas 1 and 2, we assume that for each
6 >0, there exista T(5) > 0 and Liapunov funciions V({,x,y) and W(,Xx,y) which are
defined on t2>T(6), x2>8, y 20 and t2>T(8), x < -8, y L0, respectively, and assume
that V{(t,x,y) and W(t, x,y) satisfy the following conditions;
@) V{t, x,y) and W(t, x,y) tend toinfinity uniformly for x and y as t->oo,
(D) \}(2)(15, xy) £0, as long as ‘{/(2) is'defined,
@) Wey(tx,y) £0.  aslongasWg, s defined.
Then the equation (1) is oscillatory.
Since we assume the existence of Liapunov functions satisfying the conditions in Lénﬁmas ‘

land 2, if x(t)> 0 in the future, ‘then X(t) 28 in the future for some &> 0, because

t
1(t)

x'@®) = 2 0 in the future, and the similar for a solution x(t) <O0.

. Example 1. = Consider the equation (1) and assume that the following conditions are
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satisfied:

(a)

® £ ==

(b) For t20 and x 20, thcre exists a continuous function. a(t_)‘ and an «a(x) such

that

©) lim [ a{s)ds>0 foralllarge T

t
t—roo T

and that xa(x) > 0 (x ¥0), a’(x) 20 and forail large t, x 20, luri<en

10 a(ta(x) LI, X, u).
(c) For t 20 and x L0, there exists a continuous function b(t) and a (x) such
that
an lim fL b(s)ds20 foralllarge T
t—>oo

and that x(x)>0 (x ¥ 0), '(x) 20 and for all large t, x L0, lu [<oo

(12) f(t, x, u) LB X).
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Under the assun{ptions above, if {x(1), y()} is a solution of (2) such that x(t)> 0 for all
large t, then y(t) 20 for \dll large t. To see this, we can'assume that (9) through (12) hold

good forall t2T* andall TST*. For t>T%, x>0, yl<e, define v(t, x,y) by

V(t.x,y)=gé:)_ .

Then, we have

\ENCEY =;2-1(-5 (= 108, x, 75— Jotx) = v ()= )

<= alt)

Hence this v(t, x, y) satisfics the conditions in Lemma 1 with’ A(t) = a(t),

Since the condition (9) implies that forall T QT*, there is a 7 such that 72>T and
f; a(s)ds > 0 Cforall tZ2T,
a function w(t,x,y)=y + a(x) f;_ a(s)ds defined on t>7, x>0,y <0 satisfies the conditions
in Lemma 1 with p(t) =0. Thus the conclusjon follows from Lemma l.j

If we consider functions

v(t,'x,y)=ﬁy5-, 12T, x<0, lyl<es, -
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Wt X, y) ==y~ B(x) [I b(s)ds, t27, x<0, y>0,

from Lemnia 2 it follows that if [x(t), y(t); is a solution of ‘(2) such ﬂl:ﬂ: x(t) <0 for all largé
t, then y(t) £0 forall large t.

Under the assumptions (a)', (b) and (¢), we shall discuss oscillatory property of solutions
of (1). The following results contain Macki and Wong’s result [3 ] Coles’ result [2 ] and others. |

(¢)) If we have

a3 G alsds=ee, P b(sds=oo,

then the equation (1) is oscillatory .
For 12T%, x>0 and -0 <y <oo, st
AT " R
Lax) tip a®ds  (y20)
Vi, x, y) = |

! v

f\fa‘ a(s)ds y<0).
Then, clearly V(.t, X, y) = uniformiy for x>0 and-eo < y <o, and we have

Vaytxy) = o = (- ftt x O 4 = Y (O Fatt)

= at) +a(t)



for th*, X >b and y 20. Thercfore, V(t,x,y) satisfies the conditions in Theorem 1.
Similarly, |
‘; (£ bE)ds (y>0)
Ww(t, x,y) = {
l’ﬁ%f)' + £ oEes (y<0)
.satisfies the conditions in Theorem 1. Thus:the conclusion follows from Theorem 1.
In If we have

(i4) ,{: a(s)ds < oo, f (== ) f a(u)du)ds -+ o a5 t=roo

r(s

t

15) [ bs)ds < oo, L« l(s) [ b(u)du)dg > e s ‘f."°°,,

(16) { oz(u) < oo for some e>0
and
e _GU
an L, p’(u) <o forsome €>0,

the equation (1) is oscillatory.

" For t2T", x>0, lyl<oo, sct

)  Vexy = [ f(‘;) § (R [ aaduss.

- 11 -



For a solution x(t) which satisfics x(t)> 0 for all large t, we can assume that x(t) >0,

y(t) 20 for t2>¢, o sufficiently large, and hence

Vet X0, (1) = = s Y ol o a0

=1 y{) _, 0
TRy U ey Th A

If we set V*(t, x, y) +f°° a(u)du, V*(t, x(t), y(t)) =S ftoo a(u)du, and hence
im VR, x(), y(©) <0.
{—> oo -

On the othler hand, we have.

Vit x,y)=- —2(_){ - 1, x, Rtx)—’a(x) e (x)l(i‘ ~ o

Therefore V* (t, x(1), y(1)) £ 0 and consequently V(t x(t) y(t) L0 for t2>o.

Similarly, if we define W(t, x, y) oy

=~ _du t, 1 oo :
W, x,y)= [ gt h Gy 4 bludu)ds,
this W(t,x, y) satisfies the conditions in Theorem 1. Thus the conclusion follows from

- 12 -



Theorem 1.

Remark 1.~ Itis clear that we can combine the conditions in (I) and (II). For example,

if
f:’a(s)ds=°°, f (*(S) j b(u)du)ds = oo as 1> o0

and

0 -é%—)- <o forsome € >0,
[

then the equation (1) is oscillatory.

Remark 2. If a continuous function a{t) sa‘iisﬁés (9), then f;x’ a(s)ds = oo or
f;o a(s)ds exists. Mackiand Wong assun ned a(x) and B(x) tobe no‘xauc;easm but we can
find an a(x) anda B(x) which have their derivatives, because a(t), b{t) are nonnegative in their
case.

(Ifl)  If therc exist a constant m >0 and two positive differentiable functions h(t) and
g(t) definegi on I such that &'(x) 2m, B'(x)2m and. |

[ aE - 7 L) }1‘1(—(51—)2 ds—> oo as -0,

I 85 (o) - K €52 05> o0 as £ o,

- 13 -
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the equation (1) is oscillatory.

This is a generalization of a result of Opial [4], and in this case,

Vit xy) = s o+ £ 0 (a6 - IR e (x>0, y20),

Wet,x,y) = g am + 86 (06 -5 SR () as (x<0, ¥y 0)

satisfy the conditions in Theorem 1.

Lemma 3. In addition to the assumption of Lemma 1, assume that there exists a Liapunov
function L;(t, X,y) definedon t2>T*, x>0, y>R (R>0: large), which satisfies

) u(t,x,y) = oo ‘uniformly for t, x as y = o, and u(t,x,y) < y(y), where
v(r) > 0 is continuous,

(ii) fl(g)(t,X,Y)§ 0.
Then, if {x(t),y(t)} is asolution of (2) such that x(t)> 0‘ for all large t, then y(t) is

bounded for all large t.

Proof. Let x(t)>0 and y(t)2 0 for t> 0, 0> T*. By Lemma 1, thereissucha
g. Let K besuchthat y(o) <K, K>R. Thereisaconstant y*>0 such that u(t,x,
K) £ v*, and there also exists an M >0 for which we have ¥* <u(t,x,M) forall t 20
and x>0 by the condition (i). = But there aﬁses a contradiction by (ii), which shows that |

0y <M forall t2 o.
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Lemma 4. In addition to the assumption of Lemma 2; assume that there exists a
Liapunov function u(t,x,y) definedon t> T*, x<0, y < -R (R>0: large), which
satisfies _

) u(t, x,y) = o uniformly for t, x as y —-o0, and u(t,x,y)< y(ly D,
where v(r) > 0 is continuous, |

() Gpytx,y) £ 0.

Then, if {x(t), y(t)} isasolution of (2) such that x(t) <O for all large t, then y(t) is

bounded for all large t.

Theorem 3.  Under the assumptions of Lemmas 3 and‘4, we assume that for each
§>0 and m>0, thereexista T(8,m)>0 and two Liapunov functions V(t,x,y) and
W(t, x,y) suchthat V(t,x,y) isdefinedon t2>T(5,m), x> 5, 0 =< y<m and W(,x,y)
isdefinedon t2> T(8,m), x< -8, -m <y £ 0, and we assume that V(t, Xx,y) and.
W(t, x, y) satisfy the following conditions;

@ V(t, x,y) and W(t, x,y) tend to infinity uniformly for x, y as t = oo

(i) \./(2)(t, X,y) £ 0 aslongas \./(2) is defined,

(iii) W(Z)(t,x,y) < 0 aslongas V‘fz) is defined.

Then the equation (1) is oscillatory.

Proof. Let x(t) be asolution of (1) which exists in the future, and suppose thét
x(t) is not oscillatory. Then x(t) is either positive or negative for all large t. Now
assume that x(t)>0 foralllarge t. By Lemma 1, we can see that thereisa t; >0 such
that x(t) >0, y(t) 20 forall t>t, where we can assume that tlg.T*. By Lemma 3,
thereisan m>0 such that 0 <y®<m forall t>t;. Since x'(t) =¥(%120 for
t2t,, wehave x(t)2x(t;)> 0 for t>t,. Consider the Liapunov function V(t, x,¥)

' defined for t> T(8,m), x> 9, |
- 15 -
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proof of Theorem 1, there arises a contradiction. When x{t) <O for all large t, we have also

0Ly <m, where 6 = and we can assume T2t . Then, by the same argument as in the

a contradiction by using Lemma 4 and W(t, x,y). Thus we can see that the equation (1) is

oscillatory.
Example 2. (Bobisud [1]). Consider an equation
(19) x"+at, x, x" X'+ (¢, x,x)=0
and an equivalent system
(20) x'=y, y'=-at,x, y)y - ft, x, y).
The following assumptions will be made;
(i) . f(t,x,y) is continuous on IXRXR and xi(t,x,y)>0 for x %0,
(i) a(t, X, y) is continuouson I X R X R and thereexist continuous nonnegative
functions k(t) and p(t) such that _ \

- =k@®) Lalt, x,y) <p(t) for tE€I,XER, yER,

(iii) forany 8 >0 and m>0, thereexistsa T(6, m) anda g(t;§, m) 20. defined

for t 2T(8, m) such that
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L;(s ‘ n)g(s;‘s, m)ds—> oo as t-—roo

and that 1x[28, lyl<m and xy 20 ixﬁply L, x, iz elt; 8, m),
@)

~f7 plo)do
4 17 ,\’t e 0 =
'0 k(s)ds < oo, Exm g ds

Then the equation (19) is oscillatory..
For this equation, it is not difficult to find Liapunov functions which satis{y the conditions
. in'Theorem 3. For t20, x>0, lyl<eo, the function

-t k(s)ds
efo (s) Y >0

v(t, x,y) =

s

t
efo p(s)dsy (7 <0)

satisfies the conditions in Lemma 1 with A(t)=0. Forany 720, the function w(t,X,¥)=y

defined for t2>7, x>0, y<0 satisfies the conditions in Lemma 1, siace
‘;'(20)(t: X, y) = a(t’ X, Y)Y - f(t’ X, Y)
- < ply

s- p(t)W(t, X, Y)

- ]_7-
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and

: t 1
- s)ds -
et J p)ds . _
Morcover, it is casily seen that u(i, x,y) = yzexp( -2 fé k{s)ds ) satisfies the conditions in
Le:nma 3, since f:’.k(t)dt <ee and f(t,x,y)>0. Furthermore, we can sce that
t p(s)ds
[efo POy @20, x<0, y20)

v(t, X, y) =$
] - [} k(s)ds
C

\ Gy (20, x<0, y<0),

wt,x,y)=-y (t27, x<0, y>0)

and

-2 [1k(s)ds
0 y2

u(t,x,y)=ec (t20, x<0, y£0)

satisfy the conditions in Lemma 4, Next, foreach § >0 and m > 0, define V(t, X,Y)

for t 2T(6, m), x 28, 0<y <m by

. -t k(s)ds .' ‘
= 0 t ofer
Vit x,y)=¢ Y+L[ g 808, mds,
= k(s)ds
where L=¢ 0 ) > 0. Then we have.

- 18 -
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Voot X, y) =e 0 T { =k(i)y - alt, x, y)y - £(t, x, )} + Lg(t; §, m)

"= fik(s)ds . .
<e 07T - k{t)y + Kty - g(t; 8, m)} + Leg(t; 6, m)
$"°f°t k(s)dsz;(t; 8, m) + Lg(t; §, m) 0.

Thus ‘'we sce that V(t, x, y) satisfics thc conditions in Theorem 3.  Similarly,

- fgk(s)ds

Wt x,y) = Gy)+ L os(s; 8, myds

is the desired one.  Thus it follows from Theorem 3 that the equation (19) is oscillatory.

| Example 3. For the equation (19), we assume (i) and (ii), and instead of (iii), (iv),
we assume that
(iii)’ for any & >> 0,there exists a T(8) > 0 and a gt; 3) 20 defined for
t 2'1‘(5‘) such that 7
- A
- d
@b e Iok(s) s}:‘f(s)g(s; 8)ds > as.t->ro0
~ and that [x128, xy 20 imply Gt %, Y 2 e(t; 8),
@)
- , = f; plo)do

: {
im e
tl-»c fO

ds = oo

- 19 -
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Then the equation (i9) is oscillatory.

From coaditions (i) and (ii), it follows that there are Liapunov functions which satisfy

the conditions in Lemmas 1 and 2, as was seen in Example 2. For t>T(§), x =6,

y 20, define

o L
Vi, X, y) = ¢ fok(s)dsy to j;)k(s)ds

t e
Sy BCS; 8)ds.

Theén we have’

Tt

* ‘ K )lS :
Vot X, y) =e fokGs E ~k(t)y - alt, x, y)y = f(t, x, y) }

. - tk - :
+e J (S)G{s = k(t) [ 5055 8)ds + g(t; 8) 3

ge-ff;k(s){0S~ k(@y + k®y - &(t; 8) }

. -k(t); fO‘k(g)ds - [Yk(s)ds

'IT‘(-s)g(S; 8)ds+e 0 glt; 8)

A
)

For t2T(8), x £-8, y £0, if we define W(t, x, y) by

-t is)d - tls)d
Wt x, y)=c e e te Jok® Wk

T(‘5)3(8; 8)ds, -



we have also V'V(,_O-;t,‘ X, ¥) £0. Therclore we can conclude by Theorem 2 that the equation

(19) is oscillatory.

Remark. For the equation (19), Lobisud claimed in [ 1 ] that the equation (19} is
oscillatory under the assumptions (i), (ii) in Exan mle 2 and

(i) given & > 0 there exists a T(6) > 0 and a g(t; 8) >0 defined for t >T(6)
with

(22) %_ ,.(5)(1 - s)a(s; 8)ds > o0 as t >
and such that 1xI>8, xy >0 impiy [£(t, x, y)i > a(t; 8),

(v)* forany t, t,.> 0,

% k(s ds
(23) —f‘ <a>of ®)as
is bounded from above and
lim f‘ c“J;sx p(0) da ds =
t-boo

However, there is a mistake in his proof, and actually his result is not necessarily true as

the following example shows. ~ Consider an equation

x" E-_-;-T + f(t, x) =

- 21 -



where

7
i .
LT 2D
Kt,x)=¢ 25 (ixl<D
\f-t—}:—— x g 1)

This equation satisfies the conditions above, but it has solutions x = t+ 1 aud X=-t=1

which are not oscillatory.

Under the condition (iv)", which is cquivalent to

(iv)"* - for some t, >0

' k(s)ds -
24) LAJKOB oy for t2t,
and
[* plo)de
y_g’looj; Jﬁ‘p( ) ds = o,

if we assume

Lt o 53ds o o0 o
(25) t_[,'m);{;(s, 6)ds - as t—
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in place of (22),. the equation (19) is oscillatory, because {24) and (25) imply (21).

- 23 -
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