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Boundary values of hyperfunction solutions of

. . . . &
linear partial differential equations

By Hikosaburo KOMATSU and Takahiro KAWAI

Let P(x, D) be a linear partial differential operator with
real analytic coefficients in a domain V in Rn+1 and let S CV
be a real analytic hypersurface non-characteristic with respect to
P(x, D). The purpose of this paper is to show that every hyper-
function solution u of P(x; D)u =0 on one side of V \ S has
boundary values on S which are hyperfunctions of n variables
on S.

This fact has been proved by H. Komatsu (6] and P. Schapira
{ 8] in the case where P(x, D) is elliptic. Their method aosplies
with minor modifications to the general operators.

In §1 we show that the Cauchy-Kowalevéky theorem for the
dual equation with the initial values on S 1is equivalent to a
theorem of division of hyperfunctions with supports in S by the
differential operator P(x, D).

We define the boundary values in §2 and piove the uniqueness

of hyperfunction solutions of the Cauchy problems,
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1. Division of hyperfunctions with supports in S.
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Let P(x, D) be a linear differential operator of order m
with real analytic coefficients defined on a domain V in Rn+1
and let S be an oriented real analytic hypersurface in V non-
characteristic with respect to P(x, D). |

We denote by @ and B ('@ and ') the sheaf of real
analytic functions and that of hyperfunctions on V (on S respec-
\tively). When K is a compact.set in V (in S), the cpace
R(K) ('a(K)) has a natural (DFS)-topology and its dual 1is
identified with the space 03K(V) ('&3K(S)) of hyperfunctions

with supports in K wunder the inner product

<§, £>= SV FE(x)dx, $€ AK), £ BV
(<9, f>=SS PxHE(x D)W, P e'AK), f€ '@ (S)),

where dx (dw) denotes the Lebesgue measure on V (on §).

Let P'(x, D) be the formal dual of P(x, D). Then, P(x, D)
and P'(x, D) induce sheaf homomorphisms P(x, D) : B —> ® and
P'(x, D) : & —> (A respectively. We denote by 13P and ﬂﬁﬂ
the kernel sheaves, i.e., the sheaf of solutions of |
(1) - | P(x, D)f = O, fep,
and that of solutions of
(2) P'(x, D) =0, ¥e A

respectively.

Theorem 1. Let K be a compact set in S. Then, there is

no non-trivial solution of (1) over V with support in K:
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(3) B V) = 0.

The quotient space (BK(V)/P(BK(V) is identified with the dual of

the (DFS)-space R (K).

Proof. Consider the complexes:

(4) 0 — ) FHLERL @) — 0
i)
(5) 0 ¢— B (v) DL g (v) «— o,

which are dual to each other in the sense that ¢(K) and BK(V)
with their natural (DFS)- and (FS)-topologies are the strong dual
spaces of each other and that P'(x, D) and P(x, D) are continuous
linear operators dual to each other.

The O-th cohomology group of (4) is aP'(K) and the l-st
cohomology group of (4) vanishes by the Cauchy-Kowalevsky theorem.

In particular, P'(x, D) has a closed range. Thus it follows,
from Serre's lemma (see e.g. (5] Theorem 19) that P(x, D) has a
closed range and that the cohomology groups of (4) and (5) are the
strong dual spaces oi:" each other. Therefore, BK(V)/PBK(V) is
the dual of C{P'(K) and ker P(x, D) =B Ilz(v) vanishes.

Let Cj(x, D), j=1,2, **, m, be linear differential
operators of order m-j with real analytic coefficients on .a neigh-
borhood of S for which S is non-characteristic (e.g. Cj(x, D) =
(Q/Qn)m-j). Then the Cauchy-Kowalevsky theorem yields the topol- |

ogical isomorphism

(6) | P af ® =~ ‘g™
- defined by



(i
(7 PCPY = (6, PG, Qe @F (x).
We have, therefore, the dual isomorphism
(8) Pl B (T & Br(V)/PB(V).

Obviously § can be extended by (7) to a continuous linear
operator /F% L(KR) —> '6&(K)m. Since the open mapping theorem

holds for (DFS)-spaces, the exact sequence

-1 .
(9) 00— ' QO™ L= gy BED pxy —> 0

the
splits topologically and we have [ topological isomorphism:

(10) AK) ~ ' (R"® AK)
defined by
(11) ?»—»(cj(x,,n)?}s)@P'(x, D)Y.

Correspondingly the dual exact sequence
-1
(12) 0 B )" <2 g (v) L&D g (v) — 0

splits topologically.

Since P 1is the composite of the differential operators

(Cj(x, D)) and the restriction to S, the dual ?“ : 'E}K(S)m —
m

(BK(V) is the mapping (fj) —> ZC-%(X, D)(fJ.@SS), where
j=1

Cj(x, D) 1is the formal dual of Cj(x, D) and fjéb SS is the
hyperfunction on V defined by

(13) <fj®8 y P> = ( fj(x')‘f(x')dw, ¢ e A(K).
S

Consequently, each f € BK(V) is uniquely decomposed as
m
(14) £= 3 Ci(x, D)(f; ® SS) + P(x, D)g,
j=1
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where fj € '(BK(S) and g € (BK(V). Under this correspondence

we have a topological isomorphism
~ ! m
(15) R V) B ()" B (V).

In particular, the inverse (?')-1: (BK(V)/PQK(v)Qs '@K(S)m
of isomorphism (8) is the mapping which takes the class of f to
(fj) in the decomposition (14). Obviously fj depend on the
choice of Cj(x, D). However, the sum ZC."](X’ D)(fj® SS) and
P(x, D)g do not depend on Cj(x, D) because neither im f-l =
&P'(K) nor ker T’l depends on Cj(x, D).

The uniqueness of the decomposition shows that the components
fj and - g are independent of the compact set K which contains

the support of f. Namely we have an isomorphism
(16) T (MABg 9 ~ T (B, " T,4dB)| g

which preserves the support, where r* denotes the space of
sections with compact supports and Hg(@)]s the restriction to
S of the sheaf of sections of (B with supportsin S.

Let us denote ﬂg(B)!S by BS for short. Since (BS
and '(@ are flabby, it follows that the isomorphism is extended
to a sheaf isomorphism (see e.g. [4] Lemma 2.3). Thus we have

proved the following theorem.

Theorem 2. 1f C3(x, D), j=1, ***, m, are linear differ-

ential operators of order m-j with real analytic coefficients on

a neighborhood of S for which S is non-characteristic, then we

have a sheaf isomorphism




(17) B ~ 'B" @ By

m
(18) £= > Cl(x, D)(f,® gs) + P(x, D)g,
=1 hj

where f € BS’ fj € '8 and g e @S’ The last component g

does not depend on the choice of C.!(x, D).
i ]

. . .. . P
In particular, there is no non-trivial solution g e B (V)

with support in S:

(19) Bg(V) = 0.

This theorem means that on division by P(x, D) each f € (BS
has a unique quotient g e (BS and a remainder ZC&(X, D)(fj®
SS) with fj € 'B. We have derived this from the Cauchy-Kowalevsky
theorem \}ia the duality of (R(K) and (BK(V) and that of 'QU(K)
and '(BK(S). Conversely Theorem 2 implies the exactness of (12)
and hence that of (9). Thus Theorem 2 of division is equivalent to

the Cauchy-Kowalevsky theorem.



2. Boundary values of hyperfunction solutions.
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Let W be an open subset of V. We have the following com-

mutative diagram:

0 0

l |

0 —_ BP(W) ——-»JSP(W\S) — 0

| o

(20) 0> By L (W) —> B(W) —> B (W N8y~ 0

| P(x, D) LP(x, D) lP(x’,.D)
0 —> By (W) —> BW) —> BW\S) — 0,

¥

0

where ¥ _ (W) denotes the space of hyperfunctions on W with

Saw
supports in S A W. Since 3 1is flabby, the last two rows are
exact; the last th columns. are exact by the definition; the 0-th
cohomology group of the first row and that of the first column
vanish since there is no non-trivial solution with support in SN W.

For the remaining cohomology groups we have a natural homo-
morphism

b BRWNS)/ BT —> By (0 /2 B, (D),

Let u € b?,P(W \S) and let § be an extension in R (W). Since
P(x, D)a‘go on W\s, P& beloqgs to ﬁSnW(W). if ?1'1 :i.s»
another extension of u, '13'-?1’1 ‘belongs to Bsnw(W). Therefére
the class of P4 in BSnW(W)/P BSAW(W) "‘is‘;‘determihed
uniquely by u. If u is the restriction to W\S of a Ue

BP(W), we have PU = 0. Thus we can define a homomorphism b

which assigns for the class of u € BP(W\S) the class of P&

S(\W(w) .
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Theorem 3. The homomorphism

2D b BIWNS)/BIW) —> B (D/PB LD,

is injective for any open set W in V and commutes with restric-

tions. b 1is surjective if and only if

(22) P(x, D) B(W) D B g yy(W).
Proof. By the definition it is clear that b commutes with
restrictions. To prove the injectivity, let PO = Pu1 for a uy

€ ﬁSnW

is equal to wu, the class of u 1is zero.

(W). Since G’-ule BP(W) and its restriction to W\ S

Let b be surjective. Then, for each g € ﬁSnW(W) there
exist h € OBSnw(W) and U € B(W) such that g+Ph = PU. Thus
B (W C PBMW).

Conversely suppose that for each g e ﬁSnw(W) there is a
T e B(W) such that g = PU. Then, the restriction u of U
‘belongs to @P(W\ S). Therefore b 1is surjective.

that
It is knownY(22) holds if the coefficients of P(x, D) are

constants or if P(x, D) is elliptic.
Now, let «w» be an open set of S and let W D W' be two
open sets in V with SN W=8nW =w. The restriction

03P(W \S) —™ JSP(W' \ S) induces a homomorphism

(23) r: proiNs) /85w — 8w \s)y/ 8 w").
Since ﬁSnw(W)/PESM'J(W) = ES(\W'(W')/PES{\W'(W‘) and since
the injections bW and bw, commute with r, it follows that r

is injective.

r 1is surjective if and only if BP(W' \ §) =



7
aF W \s) ans * BP(W')lw'\s and this holds if
(24) B w, 89 =0
by the Mayer-Vietoris theorem,
It is also known that (24) holds for any open set W 1if the
coefficients of P(x, D) are constants or if P(x, D) 1is elliptic,
Taking the inductive limit with respect to the open neigiibor-

hoods of W we have the injection

(25) bt (By(w) © BE(w) /BT (w) —> B (w) /P By(w),
where Bz(w) (Blj(w)) denotes the space of germs of solutions
on W\S which vanish on the negative (positive) side of &,
53; are sheaves over S which describe the boundary behavior of

solutions outside S,

It follows from Theorem 3 that b in (25) is surjective if
and only if
(26) | P(x, D) B(w) > Pglw).

Furthermore, noticing that the sheaf associated with the
presheaf (]55((0) 4] B?(w))/ﬁp(w) is the restriction ﬂ,é(&P)ls '
to S of the first derived sheaf with support in § (see [4]),
we have the injection
(27) b: (B — Bg/PBg
which is surjective if and only if
(28) P(x, D)B|g2 Bs.

Obviously (28) is satisfied if P(x, D) 1is locally solvable
on S i,e, if

(29) ‘ P(x, D) : B(x) — PB(x) is surjective for x € S,
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This is known for operators with constant coefficients or
of elliptic type, Moreover, T, Kawai [3] proves the existence of
local elementary solutions and hence the local solvability of
operators P(x, D) of simple characteristics with real principal
parts, Thus (27) is an isomorphism for such operators, Combining
this with the isomorphism BS/PBS ~ ' BT given in Theorem 2,
we have an isomorphiam

(30) Me(BH| = B .

Definition, Let W be an open set in V, let w=SAW

and let W, be the positive part of W\S, For each solution

u € ﬁP(W+) we define its boundary values (fj) E'B(w)™ on S

to be the image of u undef the composite of mappings 33P(W+) —
BL(w) — (B (w) @ 8 (w) /B (0) 2y B (w)/PB ((w) —
'43(a))m, wheré the last mapping is the isomorphism obtained in
Theorem 2 as an extension of ( f')-l in (8). In other words,

(fj) € 'J3(a))m is the unique m-tuple of hyperfunctions on w

which satisfy

m
(31) P(x, D)u = >_ C!(x, D)(f.® SS)
j=1 J J
for an extension U € J3 (W) wvanishing on the negative side of W\S,

As we remarked earlier, the extension U which satisfies (31)

is uniquely determined by u and does not depend on the choice of

Cj(x, D), so that we call T the canonical extension of u,
Let 6g be the characteristic function of W, in W, Then,

there are unique linear differential operators Bj(x, D), j =1,

m, of order j~1 with real analytic coefficients in a

.
b b

neighborhood of S such that S 1is non-characteristic and that

- 10 -



.c" g

P(x, D) (9g(x)u(®)) - 6(x) (P(x, D)u(x))

m
2.
e

(32) CJE(X, D) (Bj (x, D)u(x) (1@ &)

(-

m
=;§cgu,vﬂu%u,nmooﬂsgg§

for any u & Q(W) or more generally for any u € B(W) which is
real analytic in the normal direction on S (see [1] for the real
analyticity in parameter and the restrictions of hyperfunctions to
submanifolds),

Conversely if Bj(X, D),. j=1, -+, m, are linear differen-
tial operators of order j -1 with real analytic coefficients for
which S 1is non-characteristic, we can find linear differential
operators cj(x, D) of order m-j such that S is non-charac-
teristic and that (32) holds, This is only a local formulation of
Green's formula,

Therefore, if u is the restriction to W, of a solution
u; € &P(W) we have
(33) £, = By(x, D)uljs, j=1, «+-, m,

This holds also for the restriction u of a solution ule

P . . . . .
B (W), because u is real analytic in the normal direction on

1
S by Sato's fundamental theorem of analyticity (see (1D,

Taking this into account we will write the boundary values
(34) ‘ fj = Bj(x, D)UIS+’ j = 1} cee. m,
Similarly we can define the boundary values Bj(x, D)ulS

of solutions u on the negative side of W\S, The following

is clear from the definition,
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Theorem 4, A solution u € JSP(W \S§) 1is extended to a solu-

tion u € J3P(W) if and only if
(35) Bj(x’ D)U'S+ = Bj(x, D)uls- ’ j = 1, tre, m,

This may be regarded as a generalization of the classical
Painlevé theorem,

If the operator P(x, D) is locally solvable on S or if
(28) holds, then the isomorphism (30) shows that the Plemelj
problem
(36) Bj(x’ D)ulS+ - Bj(x) D)uls- = fj’ j = 1, ces, M
has a local solution wu € ()?,_I:_(X) (O] Blj(x) for any fj € ' B(x)
on S, i

{21
Lastly the Holmgren theorem by T, Kawaihand P, Schapira [QJ

asserts that
P P P P
(37) B (w) n B (w) =0} and B_(w) ndB (w) =10},
Therefore the mapping Bf(w) —> "B (w)™ is injective,

Thus we have

Theorem 5, A solution u € d3P(W+) on the positive side of

W\ S vanishes in a neighborhood of w =W NS if and only if the

boundary values_ Bj(x, D)ulS vanish for all j =1, *++ m,
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