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THE SUCCESSIVE UNCONSTRAINED LEAST-SQUARES ESTIMATION TECENIQUE
( suLsET )

Yoshiharu Okamoto
and
Siak-Hoo Ong

The University of Tokyo

Abstract : An algorithm of the class of the SUMT to solve the non-
linear programming problems with inequality and/or equatity const-
raints is described. We call this technique " the Successive Uncbn-
strained Least-Squares Estimation Technique ( SULSET ) "L Ve propose
the acceleration technique and derive the rate of-convergence in this

paper.

1. Introduction

In order to solve the nonlinear programming problem :
(&) ninimize £f(x) subject to gi(x) 40, i=1,...,m , and x €E",
the SUMT ( Sequential Unconstrained Minimization Technique ) has been
proposed. This method is based upon the property that , when the prob-
len (A) is transformed into a sequence of unconstrained minimization
problems of.apprépriate penalty functions , the convergent point of the
sequence of the unconstrained minima is the optimal solution of the pro-v
blem (A). Carrol first proposed the CRST ( Created Response Surface
Technique ) in his well-known paper [4] and later Fiacco and McCormick
established this technique theoretically and préctically in [5] - [12].
They called it the SUMT.

Fiacco and McCormick first proposed the " interior point method "

in [7]. This method can be stated by introducing the following penalty
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function :
(1) Plxyr)= £(x) 4,0, /e (x)

where {FkJ is a monotonically decreasing scalar sequence which tends -
to zero. The sequence of the minima of (1) converges to the optimal
solution x* of the problem (A) as r»0 ( k—w).

On the other hand , Zangwill proposed the " exterior point

method " in [28]. The penalty function can be defined as follows :
m 1+¢€
(2)  mlx,t )= £(x) + t,}lm [ max( 0,g;(x) ) ] ,€>0 .

The sequence of the minima of (2) converges to x* as tg+o°( kv ).

In the former method , the so-called " barriers " on the
boundary of the feasible region , which the penalty functions con-
struct , prevent the sequence of the minima {xk} from jumping out of
the interior of the feasible region, While in the latter method , the
so-called " walls " are constructed outside the feasible region and
the sequence of the minima {xk} slips down to the optimal solution of
the problem (a) along them.,

Furthermore the generalizations of various types of penalty
functions have been considered and the convergence préperties have
been also discussed by Fiacco and McCormick [11] , Fliacco [6] ’
Fiacco and Jones [12] and Stong [27].

Afterward Fiacco and McCormick proposed the SUMT without
parameters in [9] and [11]. They called this method the " Q-function

type SUMT ". The following penalty function was proposed :
k-1 k-1 il
(3) Az, x ) = /[ e )-2(x) T =307, /g (x) .

This method can be classified to an interior point type.

On the contrary , the Q-function type eiterior point methods
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are proposed by Morrison [22] and Kowalik , Osborne and Ryan [18]. For
the most part of this paper , we will discuss the method of this type
and name this class of methods the " Successive Unconsitrained Least-
Squares Estimation Technique ( SULSET ) ™.
Section 2 mainly gives the results of [22] and [18] » Section
3 gives our acceleration technique , section 4 gives the comparison
with the numerical results of [18] , section 5 gives the derivation
of the rate of convergence , and section 6 gives the generalization
of the SULSET, |
Por unconstrained minimizations , recently the conjugate gra-
dient type methods are very prevalent ( [14] , [3), [13], [15] and
[i6] ). However for unconstrained least~squares estimations , we would
like to recommend the Marquardt's Maximﬁm Neighbourhood Method ( [2] ’
[17] ’ [20] and [24] ). Because this method converges rapidly and is

very stable in characteristics .

2. The Successive Unconstrained Least-Squares Estimation Teohniqﬁe

Let us consider the following nonlinear programming problem :
{8) minimize f(x) subject to gi(x)=0 , i=1,¢0.,m , and xesEn .

Forrison suggested the algorithm to transform the problem (B) to suc-
cessive least-squares problems :

(c) minimize S(x,Xk) subject to x&EY

where

(1) 7 s(xx) = [ 2()-x, T+ % o g, ()?

i i=1,.,..,m , are positive constants and
{Xk} is a monotonically increasing scalar sequence which tends to the
minimum value v* of the problem (B).

The next theorem shows the validity of the above transformation.

3



a7

THEOREM 2.1 _ ( Convergence Theorem of the SULSET ) If (a) f and g »
x:?,..;,m » are continuous functions of x , (b) S(x,Xk) is the function
as defined in (1) , (e¢) ka} is a monotonically increasing sequence and
converges to v* , (d) A* is the set of the optimal solutions of the
problen (B) , and (e) x* is the minimum of s(x,X,) , then

(1) (=8 v,

(11) £()$ (=)

(1ii) there exists a limit of the sequencé {xk} and this limit point

belongs to A* , .and

k
(iv) 1imk_ws(x ,xk) =0 .
Proof. See the ref. [22] and the proof of Theorem 6.1 .

It is a question of how to construct the sequence {Xﬁ} to converge

towards v* from below. The Morrison-parameter sequence is following :

(2)  xN, =x +[stx

In order to ensure that the Morrison-parameter sequence converges

) 1V2

to v¥* , the following assumption is necessary.

ASSUNPTION 2.1 ( Continuity Condition ) Let v*{q) be the minimum value
of the problem :
minimize f(x) subject to gi(x) =q; » i=t,e.0m .

v¥(q) is continuous at q=0 .

This assumption is quite natural , because it means that if the
constraints changes only a little bit , then the minimum value .changes
only a little bit. The following theorem shows that the Morrison-para-

meter is effective.
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THEOREM 2.2 ( Convergence Theorem of the Morrison-Parameter Sequence )
If the coﬁditiona of Theorem 2.1 and Assumption 2.1 are satisfied ,
the the Morrison-parameter sequence -{Xk} , such as defined in (2) ,

converges to v¥* ,

Proof. See the proof of Theorem 6.2 .

The relation between dual feasibility and the SULSET is stated

in the following theorem .

_THEOREM 2.3 Let the conditions of Theorem 2.1 be satisfied and f(x)
and gi(x) ,» i=1,...,m , be continuously differentiable functions with
respect to their arguments ; let (x*, A*) be the stationary point of

the Lagrangian
(3) Lz, A)=2(x) +27 0%, g(x)

corresponding to the ‘solution x* of the problem (B). If gi(xk) ,

i=1,...,m , are linearly independent for each k large enough , then

(4) cy gi(xk)/[ f(xk)-xk ] -A* as k»® for i=1,...,n .
Proof. See the proof of LEMMA 1 in [18] .

Furthérmore Kowalik , Osborne and Ryan proposed the tangént

parameter sequence :
(5) Xy = X +sGx)/ | #()x, |

The next theorem indicates the validity and effectiveness of tan~

gent parameter sequence.

THEOREM 2.4 » Let the conditions of Theorem 2.1 be satisfied. Then
. , T M
@) X e X,



(ii) If the conditions of Theorem 2.3 hold and if there exists a

set containing (x*, A*) in its interior such that
8o that

(a) L has the saddle point property in
, and

L(x*, 2) £ L(x*, 2*) & L(x, %)
(b) for & such that (x,i) € 3 there exists an X such that
, L(X,X) 2 L(x,A) for all x such that (x,a) e

(x,A)e 2
and (x, ) is the unique solution in 2 to the system of equa~

tions
v L(x,i) =0

then v* Z'Xk31 provided Xk is sufficiaently close to v*.
Proof. (i) It is obvious that xkfrzxk . Prom the definition of xX ,

(X% ) 2G| 2 (eG5x )2 .

Therefore
(6)  (x7-x )2 |e()x |
Since |

S(xk,Xk) and

Cr 5o ) o),
( xkl-:ka )

from (6) ,

(o 0% 2 (o0 )2

T M
xkfiz xk+1‘
(i1) See the proof of Theorem 1 in [18] . Q.E.D.

S(xk,xk) Ty

Thus

Por an inequality constraint h(x) € O , we will use the equi-

valent equality constraint

g(x) max{ O ’ n(x) ) =0
By the above stated discussion , we can solve any constrained

e

nonlinear programming problem.
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3. The Accelerated Successive Unconstrained Least-Squares Estimation

Technique

Morrison proposed the subfunctions such as (2.1) and gave Xk+1

such as (2.2). This situation can be illustrated as Fig.3.1 .

Fig.3.1 Pig.3.2
That is , the contours (f~x)2+g2=const. represent circles wirh
the center (O,X) . If S(x,X) = (f—X)2 + t g2 (t>1 ) ,‘the contours
represent ellipses which are long in the derection f-axis such as Fig.
3.2 . Since the discussion in section 2 are all valid even if ci » 1=
1ye0eym , are different at each k , we will take the following system
which is expected t%i;;e more rapidly convergent property. We willfro—

pose an algorithm to transform the problem (B) to the successive least-

squares estimation problems :

(D) minimize S(x,xk,tk)

where | |

() s(xx,t) = [ tx)-x P+ ‘tkz;; o, g, (0% .
Let _ -

(2) 1M ox e[ st 12

(3)  teq=ct (o>, 4>0) , and

T
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TA k k
(4) X5 = X+ 8(x, X, 60/ | e(x)-x |
vwhere xk is the minimum of the problem (p).

A

The following theorem shows that the above system has an accele-

rated convergence property.

MA M
T
TMEOREM 3.1 If tk> 1, then Xk+1 > Xk+1 .

Proof. X 1-x . - s(xk,xk)‘/z- S(xi,xk,tk)1/2
0s s(x"‘,xk) s s(x’Af,xk) 2 s(x“t.xk,tk) Q.E.D.

We use the following algorithm which is like that of Kowalik et al..

ALGORITHM
0. Preparation Phase .
(1) Choose an arbitrary e E" .,
(i1) Move the solution to xoe R by appropriate algorithms such that
of [5] , where R is the feasible region.
I. Initial Phase .
(1) Set Xo = f(xo) , k=1 and step = stepld .
(ii) Minimize S(x,‘ b ) to find xk +» Here = J - step and
k -1 v
tk=1 ]
(ii1) 1 [ S(xk,X.k,tk) ]’/2< eps then step = 2 * step ; k=k+1 ;
go to (ii) ; else BU= X _4 i proceed II .
II. Iteration Phase .

3

(1) Set BL = X, and t

k ket =S B e
.. MA TA .
(i1) Compute Xk+1 ’ Xk+1 . .
(iii) k=k+1 ; BL = XI;A ., If X}T:A<BU » then Xk = %‘i else Xk = XiA.

(1v) Minimize S(x,X,t) to find &£ .

(v) r [ S(xk,Xk,tk) ]1/a§reps , then go to II(ii) else BU = X s

If BU-BL<eps then go to end else X = BL and go to 1I(iv) .

8
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It can be proved that this algorithm converges .

4. Numerical Results

In order to illustrate the acceleration performance stated in
section 3 , let us show the numerical results of the following problems.

In each table , (b) , (c) and (&) are the results showed in [18].

(1)

Rosen-Suzuki prodblem :

f = x2+x2+2x2+z

3¥%y —5x1-5x2-21x3+7x

4

subject to

2 2 2

X5 3 4 -X +x2-x3+x4+8 20
2 2 2 2

-x - - =
x1 2x2 3 2x +x +x4+10 20
2

2
-211 -x2-13-—2x +x2+x4+5

The function has a minimum {=-44 at x=(0,1,2,-—1).

2.
X
20

(ii)

Beale problem :

2. .,.2 2
f = 9-8x1-6x2—4x3+2x1+2x2+x3+2x b4 +2x?.(3 |
< =
x120,x2 ,x4,_,,3&nd x4x+x+2x.

20, x g Hxptexs

*3 =z
The function has a minimum £=1/9 at x=(4/3,7/9,4/9,3) .

subject to

(i1i) Post office parcel problem :

f = -x xzx3

0 sx3 4 = X1+2X2+2X3 .

The function has a minimum f=-33%00 at x=(20,11,15,72) .
Table 4.1

THE ROSEN~SUZUKI PROBLEM
(a) The accelerated tangent parameter sequence (c=256)

subject to Osx1§20 R Oéngﬂ ’

=42 , Oﬁ»x4 %72 and x

k f(xk) X, x, x3 x4
0 -46.190235 0,09807343% 1.0508771 2.1330896 -0.97308568
1 -44.392404 0,.02013741 1.0103326 2.0257672 -0,98555903
2 -44.037648 0,00197659 1.0010217 2.0025327 ~0,99835910
3 -44.002755 0.00014774 1.0000768 2.0001833  ~0.99988065
4 -44.000182 0,00001172  1.0000049 2.0000108 ~0.99999372
5 =-44.000012 0,00000026  1.0000007 2.0000009 =0,99999925
6 -44.000000 0.00000007 1.0000000 2.0000000 ~1,00000000
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(b) The tangent parameter sequence

X
k f(x ) x1 x2 x3 x4
0 -44.810 0.05034 1.0236 2.0555 -0.9555
1 -44.029 0.00200 1.0010 2.0023 -0.9971
2 -44.000 0.00010 1.0000 1.9999 -1.0001
3 -44.010 0.00110 1.0005 2.0011 -0.9985
4 -44.009 0.00063% 1.0003 2.0007 -0.9991
5 -44.005 0.0C039 1.0002 2.0004 -0.9995
6 -44.00% 0.00023 1.0001 2.0002 -0.9997
8 -44,001 0.00003 0.9999 2.0002 -0.9998
10 -44.000 0.00000 1.0000 2.0000 -0.9999
(c) The Morrison-~-parameter sequence
k
k f(x ) x1 x2 x3 x4
0 -44.810 0.050340 1.0236 2.0555 -0.9555
1 -44.460 0.031718 1.0147 2.03%37 -0.9663%
2 -44.,273 0.019428 1.0090 2.020% -0.9772
3 -44.160 0.011706 1.0054 2.0122 -0.9855
10 -44.004 0.000301 1.0001 2.0003% -0.9996
20 -44,000 0.000024 1.0002 1.9999 -1.0001
(d) The SUMT transformation
T f(x(r)) x1 x2 x3 x4
10°  -41.468 -0.01564 0.0125 1.8992 -0.8350
1070 Z43.326 -0.00874 0.9709 1.9674 -0.9572
1072 _43.758 -0.00369 0.9933 1.9888 -0.9886
1077 -43.924 -0.00127 0.9985 1.9963 -0.9966
1074 ~43.976 -0.0004 1 0.9996 1.9988 -0.9989
107 -43.992 -0.09013 0.9998 1.9996 -0.9996
10-6 -43.,998 ~0,.00004 0.9995 1.9999 -0.2998
1077 ~43.999 -0.00000 0.9999 2.0000 -0.9999

10
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Table 4.2
THE BEALE PROBLEM

(a) The accelerated tangent parameter sequence ( c=256 )

k f(xk) x, x, X X4
‘0 0,08902419 1.2983708 0.801C8687 0.50271733  3.1027244
1 0.11101519 1.3331901  0.77787364 0.44468401  3,0004219
2 0.11111105  1.3333333  O.T7777774  0.44444461  3.0000003
(v) The tangent parameter sequence
k f(xk) x1 x2 . 13 x4
0 0.0423% 1.2054 0.8629 0.6572 3,3829
1 0.1104 1.3322 0.7785 0.4414 3,00%34
2 0.1111 1,3336 0.7779 0.4442* 32,0000
3 0.1111 1.3334 0.7778 0.4444 3,0C00
(¢) The Morrison-parameter sequence
X
k f(x ) x1 x2 x3 x4
c 0.0423 - 1.2054 0.8629 0.6572 3,3829
1 0.1091 1.%30% 0.7798 0.4494 2,0089
2 0.1110 1.3333 0.7778 0.4446 3.0002
3 0.1111 1.3333 0.7779 0.4444 3.0001
4 0.1111 1.3333 0.7778 0.4445 35,0000
(d) The SUMT transformation
r f(x(r)) x1 x2 . x3 x4
10°  0.7037 0.8952 0.7052 0.4285 2.4576
107" 0.2328 T 1,2929 0.6973 0.3314 2.6503
10"°  0.1459 1.3793 0.7375 0.3516 2.8202
107 0.1126 1.3356 0.776% 0.4407 2.9933
10‘; 0.1113 1.3336 0.7776 0.4441 2.9993
10~

0.1111 1.3333 Q.7777 0.4444 2.9999

1



Table 4.3
THE POST OFFICE PARCEL PROBLEM

(a) The accelerated tangent parameter sequence ( C= ¢4 )

)
(91

k
k f(x ) 11 x2 x3 x4
0 -3538.8889 20.381124 11.496137 15.103793  72.79C492
1 -3537.178S 20.378465 11.492997 15.102620 72.784848
2 -3503.6666 20.325985 11.430291 15.080436  72.673719
3  =3317.4940 20.028554 11.041133 15.001921 72.057332
4 -3300.0180 20,.000029 11.,000043 15.000001 72.000059
5 =3300,0000 20,000000 11.000000 15.,000000 72.000000
(b) The tangent parameter sequence
k
k £(x") X, x, X5 x,
o} -3%05.0 20.013 11.018 14.988 72.026
1 -3300,0 20,000 11.000 15.000 72,000
(¢) The Morrison-parameter sequence
k
k f(x ) x1 x2 x3 x4
o ~3305.0 20.013 11.018 14,988 72.026
-3%204.8 20.012 11.018 14.988 72.025
20 -3304.1 20,010 11.015 14.990 72.021
100 -%3302.5 20.006 11.009 14.994 72.013
200 ~3301.8 20.004 11.007 14.996 72,010
(d) The SUMT transformation
i o f(x(r)) 11 x2 x3 x4
10°  -3283.6 19.868 10.892 15.175 72.000
107" -3204.8 19.959 10.964 15.057 72,000
10-2 =-3298.1 19.989 10.984 15.022' 72.000
1077 -3299.0 19.997 10.989 15.012 72.000
1072 -3299.3 20,000 10.991 15.009 72.000
10-7 ~3300.0 20,000 11.000 15.000 72.000

12
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From these nilmerical results , it can be said that our algorithm

has the more rapidly convergent property than that of Kowalik et al. .
5. The Rate of Convergence

Let us defive the rates of convergence of the ordinary and acce-
lerated Morrison-parameter sequences in the néighbourhood of the optimal
solution x* of the problem (B) .

If the sequence {an} converges to of and if there exists real

number P and c+0 such that
' Bper T l

lim ——————
DW! a, = o le

then P is called the rate of convergence of {an} and ¢ is called the
asymptotic error constant.
In order to prove the asymptotic convergence theorems of the SULSET

, the next lemma is necessary.

LEMMA 5.1 Let P be an n x k¥ - matrix , the rank of which is m , H be
a positive definite nxn - matrix and A = P PT . Then there exists

() ve=lin [ ta+u]”

and the rank of V is (n-1) , where 1 = min( n,m ) . And

(2) veP=0 .

Furthermore , if t +00 , the approach of [ tA+H ]-1P towards null-

matrix is elementwisely the order of 1/1: .

Proof. If man , the rank of A is n and A is positive definite. Thenfore

= -1 1 PP L HPN R
(3) v=lm [ta+u] =1itht[A+tH] =lnm, A =0,

by which the conclutions are satisfied.

If m<n , let us form an nxm - matrix P of rank m which consists

13



of a set of m linearly independent column vectors of P and an n x (n-m)

- matrix N which consists of a set of (n-m) linearly independent column

vectors which are orthogonal to all the column vectors of P. Then the

nxn - matrix [ PN ]is nonsingular ., Let

(4)

Let

(5)

2Ty =1
V() = [ PN ][ ta+n ]-1L};TJ

| [PTP P'p p] [PTH P PH N) -1
= |t + -
o ol (vfsr yfaw
= =r

Q

]

PP PP, q = PE P, Q, =PEN,

Then by using the partial inversion of matrix ,

(6)

V(t) =

Lo xror.Euc "

1 - -1 - -1
Q5[ 0r,-0,9; Q] [2,-0;[tarq, 17"a, ]

= PH N and Q.=

4

NE N .

[ta+q -0, ™" Lrare I "o, [0,-a,lvar, 17N, T

Since [ tA +H ] is positive definite , V(%) is positive definite.

Therefore |[ tQ+Q1-Q2Q;’Q3 ] ena [ Q-0 tase, ]'1Q2 ] are positive

definite and invertibdle. And since Q and Q1 are positive definite , from

the discussion of the case mxn ,

(7)
(8)

Thus

(9)

t,,t,‘,[ tQ + Q, Q2Q'1Q3 M=o, ama

[tQ+q I .

t-)oo

~ - c 0
V= lim, V(t) = -1
0 Q4

Since Q4 is an (n-m)x (n-m) - positive definite matrix , the rank

of V is (n-m). And since [ PN ] is nonsingular , the rank of V is (n-m).

From (4) ’

14
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(10) v=[§n]x7[;$]

v
¥

-1
N[ NEN N .

Therefore , from the definition of N ,

VP=0 ,thatis, VP=0 .
Since
5T
(1) v(t) =[ta+HE ] '=[ PN ] V(t){ TJ
N
_z o o-lg 11T - o o=l ST
= P[ AR J R R R
- 2 sanq, 17, o,-a,[tarq, 17, 17T 4
. “1,  7=4yT
¥ [ Q- taxq, T, I7N ’
=7 IO BRSNS o o=la 7-13T
(12)  v(£) P=P [ tQ+Q - QQ o 7P P - NG 'Q[t+Q,-0,q, ', ] PP .
Therefore
. -1, _ S4=13T -1, o=13T
ling, ¢ [ ta 1 ]7'p < PQ PP-NQ41Q3Q PP,

that is , if ¢t %00 , the approach of [ tA + H ]-1P towards null matrix

is elementwisely the order of 1/t . Q.E.D.

THEOREM 5.1 ( Asymptotic Convergence Theorem of the Morrison-parameter
Sequence System ) If the conditions of Theorem 2.1 , 2.2 , and 2.3

are satisfied and Zi: A : Vzgi(x*) is positive definite or P P' is
positive definite , then for k large enough , the rate of convergence

of the Morrison-parameter sequence of the SULSET (C) ( ci= 1, i=1,...,m ) ’

| - )

(13) Ry = w3 2

- x* u

K , Where

[ Y B

(14) K =1im,, v ()" o[ [ PPy Ve(x)T] + T 2 A v, (297
' v £(x*)

15
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and

(15) P = [Vg1(x*)...7gm(x*) ] .

Proof. From the Taylor's theorem ,
(16)  £(x) = £(x*) + Ve(x*+65)T §  ana
(17) gi(x)= gi(x*) + 2 gi(x*)Vgi(x*)T S + -% ST[ 2Vgi(x*f618 )‘

Vgi.(x*+ 6,8 4 2 gi(x*+ 015') Vzgi(x*ﬁ- 918) 1§

where x = x*+ § , 056,915 1 and i=1,...,m .

Since k is large enough , from Theorem 2.1 , 2.2 and 2.3 , xk is
near enough to x*, Theref:ore

v f(x*+ 6§ ) = vr(x*)

Ve, (x*+6.8) 2 Ve (x*) , i=t,ccem

Ve (x*+0.§) = Ve (x%) , 1

=1,.0e,m , and
g (x*+6.8) / [ t(x*)-x_]= Ap o+ i=heeom .
From (2.1) , (i5) and (17) ,

(18) &%=-[t WL PP+ o(x*) v(x%)T] + 3 i‘:{x:vzgi(x*) 710 £ (x*)
where
(19) =T o =1 /[ £(x*)-X, ] .
Since T X is large enough , from Lemma 5.1 ,
o) x z! P P
s Rl Tt £(x%)- X,

=1- S(xk,Xk) 12 /¢ £(x*)-%, ]

([

1-[1- Vf(x*)TTk['Ck[ PPT "'Vf(x*)Vf(x*)T] +
21217\IVZ,31(?‘*) Iy s(x%) 172

X Q.E.D.

n

N =

THEOREM 5.2 ( Asymptotic Convergence Theorem of the Accelerated Morrison-

parameter Sequence System of the SULSET ) If the conditions of Theorem

16
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5.1 are satisfied , for k large enough , the asymptotic convergence

property of the accelerated Morrison-parameter sequence system of the

SULSET (D) can be described such as

“xk+1 _ x*" - M

A E x| 2t

(21)
k

where

(22) M =1lim, V £(x*)Tt [ ¢ ppT +Zj:17g:7zgi(x*)]-1Vf(x*)

Proof. By using the same formulation of the pfoof of Theorem 5.1 ,

(23) & %= -fT,[P" +-,l—;v 2z v (x0T ]+ 3 %A, Ve, ()] v £(x¥)

where
t
(24) T k= S JE—
' f(x*)-xk
Therefore
k+1 *)_
(25) RAEHE " I T gt
18 ¥ Tiket € p(x)- X,
where
£{x*)-x, 1 T T o1 s
(26) -—(—:)——;k—-]—= 1-[1- - V(x*) ’ck[‘ck[ PP +-£—Vf(x*)7f(x*) ]
fix*)- k k
£ P x0) Thesan) 12
M
T2ty - Q.E.D.

6. The Generalization

Let us give the genaralized formulation for the SULSET. For the
problem (4) , we will take the following function :
of
(1) s(xx) = [ £)-x [+wz) , &>0 ,

where W(x) is a continuous function with respect to x and

17



0(if g (x)80, i=1,..em )

(2)  W(x) ={ 1 ,
>0 ( otherwise )

Let the feasible region be denoted by R = { x| gi(x) =0, i=t1,

eeep,m} and

if inf f£(x) < Xk< sup f(x) ’
xéR xéR

then inf s(x,JSc) =0 .
x¢ E

It can be proved that if there exists a solution of the problem
(4) and the sequence { Xk} converges to the minimum value v* from below
» then under appropriate conditions , the sequence of minima , {xk} ,
of S(x,Xk) converges to the solution.
In order to prove the convergence property , the following definition

and lemma are necessary.

DEFINITION 6.1 A nonempty set M¥CM is called an isolated set of M if
there exists a closed set E such that EOD M* and such that if x ¢E-M*

then x¢M ,

LEMMA 6.1 If a set of local minima A* corréspondirig to the local minimum

value v* of the problem (A) is a nonempty isolated compact set , then
there exists a compact set S such that A¥* cs® , and for any point ye RS

» if y4A* , then f(y) > v*.
Proof. See the ref.[‘H] » P47,

The proof of convergence follows the format used by Fiacco and

McCormick,

THEOREM 6.1 ( Convergence Theorem of the Generalized SULSET ) If (a)

£, 8, »+-+, g are continuous functions of x , (b) S(x,Xk) is the fun-

18
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ction as defined in (1) R (c) a set of points A* that are local minima
of the problem (a) corresponding to the local minimum value v* is a non~-
'empty isolated compact set , and (a) {Xk} is a monotonically increasing
sequence which converges to v* from below , then
(1) () sve
(i1)  there exists a compact set S , given in Lemma 6.1 , such that
A s° , and for k large enough , the unconstrained minima
xk of S(x,Xk) in S° exists and every limit point of any sub-

sequence of {xk} is in A* .

w(xk)
k)

(1ii) 1

imk_"o o

"

(iv) limk’“f(x v*

(v)  um s(xx)=0 .

Proof. Since

]f(xk)-Xkldé S(xk,Xk) = S(x*,Xk) = ( v*-)(k )o‘ ’ .where x*¥€ A¥ ,
if f(xk)> Xk then f('xk)-}ik gv*-xk , that is , f(xk)Sv* else f(xk) 2
Xk & v* . This proves part (i).

‘ From the conditions (a) and (c) , there exists a compact set S
where AXC 5° such that £(y) > v* for all yeRAS and y& A*.

Lot x* be a minimum of S(x,Xk) in S. Since {xk} is on the com-
pact set S , there exists a convergent subseguence. For simplicity , let
it aiso be denoted by {xk} .

Let T be the convergent point of {xk} end let us assune §¢A* .
Then S(x,v*) > 0. Since lim X, = v*, if x°e A* , then nmkws(xk,xk)
= S(Q.v*)}O = limi{_”o S(xo,Xk). Therefore for k large enough , because
of the continuity of S(x,'Xk) with ‘respect tc x and Xk , this contradicts'
the fact that x* is the minimum of S(x,X, ). Hence TeA* . But since A*cs®
, for k large enough , xk must be in 5°, This proves part (ii). Parts

(111) = (v) follow from the fact thet lim (%) = v=,

19
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The Morrison's type parameter sequence is following in this case :
M k 1/
(3) xk+1=xk+[s(x,xk)]/ .
In order to prove the convergence of the Morrison-parameter se-

quence to v* from below , let us provide the following assumptions.

ASSUMPTION 6.1 Let the minimum value of the problem :

minimize. f(x) subject to gi(x)é ., qi_z_ 0, i=1,.0e,m
be a function of m-vector gq = ( Qpreeerqy )T and be denoted by v*(q).

Then v*(q) is continuous at q@ = 0 in the region { qlqiz O,i=1,...,m} .

ASSUMPTION 6.2 For YE€> O there exusts A (€) > 0 such that

2 2, [max( 0, g (x) ) <€ for Yxe{xl W(x)< A()} .

THEOREM 6.2 ( Convergence Theorem of the Generalized Morriscn-parameter
Sequence ) If the conditions of Theorem 6.1 , Assumption 6.1 and 6.2
are satisfied , then the Morrison-parameter sequence {Xk} , such as

defined in (3) , converges to v* ( = v*(C) ) from below.

Proof, If Xké v* , then Lo = v* , because xk+1'>‘ X, and
(%% )% = s(x,x)
£ lf(X*)—Xk\d +w(xx) , Yxxeax
[v* - x |

Since {Xk} is monotonically increasing and bounded above , it
converges to X . From Assumption 6.1 , for Y€50 there exists § >0 such
that [v*(q)-v*(o)]<€ for Vq = {ql"q{(<é‘ ' 42 0 ,i=1,...,m} .
Let k be large enough so that )H{+1-JS<< [A (&) ]1/& . Then S(xk,}(k) 4
A (8) . Therefore W(xk)< 4 (§) . From Assumption 6.2 , || qku <d
where qE = max( O,gi(x) ), i=1,...,m. So IV*(qk)-V*(U)l< g .

Since v*(qk)év*(o) , v*(qk) >v¥(0)-¢ .
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From the definition of v¥(q¥) |, v*(q¥) s £(£) .
Hence O & v*(0) - f(xk) <€ .
Therefore f(xk) ~ v* . Thus Xk-) v* as k +00 , 1,6, X =v* ,

QCE OD‘

For the accelerated SULSET of section 3 , a generalized expression

can be described as follows :
(8)  s(x,X,8) = [£(x)-x [+ p(s) W(x) , d>0

where p(t) has the property that if 0 < t, <t, , then 0 < p(t1) < p(tz)
and if {tk}‘ is a monotonically increasing sequence of positive values
where lim .t =00, then hm’k-raop(tk) =c0 .

Here it can be said that if Xke»v* and tk+co, the sequence of

minima of S(x,Xk,tk) converges into A* and its convergence is accelerated.
7. Conclusions

Comparing with the Fiacco and McCormick's algorithm , this type
of constrained minimization technique is better. The rate of convergence
depends mainly upon the strategies of how the parameter Xk being chosen
and the types of the penalty functions being used. The suggested accele
ration technique performs excellently in‘practice. Our SULSET routine |
can solve any nonlinear programming problem with an arbitrary starting
point., It automatically adjusts the solution to jump into the feasible
region. From that point , in the case that the optimal solution is on
the boundary of the feasible region , it moves the solution towards the

boundary , where the optimal solution is located , until the solution

begins to function until the grobal optimal solution is obtained. In the

21



case that the optimal solution is inside the feasible region , after
the value of Xk is less than the optimal solution value , as in the
former case , the parameter sequence routine functions to give the op-
timal solution in a single iteration.

Several techniques are under consideration to improve the conver-
gence and numerical stability property of the SULSET routine, An exten-
sion of applying the convergence theorem of Lagrange multiplier to our
technique is also under consideration.

And our algorithm uses the Maximum Neighbourhood Method which is
believed to be the best least-squares estimator. Therefore the computation
is very stable.

At last , we would like to point out that the SULSET will be the

leading technique for constrained minimizaton problems.
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