goooboooogn
0 1190 19710 1-27

ON THE PROGRAM SCHEMATA WITH META—FLOW

A,SHA (KYOTOC UNIV,)
I.0KINAKA (KYOTO UNIV.)
Y,KAMBAYASHI (UNIV. OF ILL.)
§ 1 Introduction |
According to the different programming techniques, the
Structure of programs will become différent even if they have
the same algofithm. Principally the programming techniques
are used to control dynamically the flow of computation during
execution. It is natural to think that the segments, the flow
of which 1is used to control the flow of computation, differ
.from other program segments from a hierarchical poiht of view.
So we introduce the new concepts called meta-flow in this paper.
Then the 1important question is how ¢to .formalize the
interpretation of meta-flow. So we will’try to formalize it
by means of automata as defined below, Here we divide the
elements of a meta-program segment into two kinds--i.e., when
the flow of computation reaches meta-flow, ohe kind gives a
certain input to automata and the other branches according to
the state of automata. Nekt, we formally define program

schemata with meta-flow,

L Program Schemata with Meta-flow

-1~

2. 1. Definition of the Model
Definition 2. 1: A program schema which is augmented with
meta-flow is defined by the following seven-tuple.
a = <F, P, E, M, W, B, T> -
Where

}.1

{fy, f2,...., £} 1s a finite set of operator symbols,
P = {pis Posyecess pn} is a finite set of predicate
symbols, '

Q = {p;, D1, DP2s Dosessy Ps E;} is a finite set of
interpreted predicate symbols,

1 = {IN, OUT} consists of starting node IN and terminating
nocde OUT,

M= <X, S, 6, 85> 1s a machine mocdel which interprets
meta-program segment and the four-tuple 1is dnMinad as
foilows;

X is a finite set of input symbols,
S5 1s a set of states,

§: Sx X+ S is a state transition function,

59€S 1s an initial state,

W= (W(x;)y eeees | x, €X} shows inputs to the machine M,
as defined above, where w{x.) wmeans that input to I is Ls e

B = {B(5;), B(s3), eouve | s;eS} 1s a set of the expression
of branching wherr 3(s5.) i5 drfined as a mapping from & te (0,

RE
1), and when the flow of program schemata reaches a node B(Si)
and the state of M is not 545 B(Si) is mapped to 0, however
when the state of M is 5 N(si) is mapped to 1.
I shows the connective relation between nodes "of flow

chart of program schema. The relation between a program
schema and 1its fundamental one-dimensional expression is shown

in Fig.2.1.

A Yangv’s program schema 8 1s generally defined to
pe 8 = <F, P, E, T >, S0, 1n a program schema o« With
meta~flow, M, W and B are added to 8 . Next, we define two

concepts called 'meta-program segment' and 'meta-flow!'.

pefinition 2.2 : Meta-program segments are the ones which
are constructéd by erasing all elements of FVQ from a given
program schema a . Namely, W and B are elements of
meta-progam segments. L

When the flow of a program reaches a nodé, B(si), B(si)
selects either of the two branches according to the state of

the machine M at that time. Then, meta-flow is the flow of

meta~program segments settled by 2 branch of B(Si)'

By means of a program schema with meta~flow, we will
provide several conveniences. for some purposes. For example,
while a program is being executed, according to the flow of
computation in a certain part of a program we can control the
flow of the other parts of it. In particular when several
parts of program have some similarities, we can reduce them to
the same one part and make the modified program play the same
role as the original program by Ausing meta-program segments

properly. " Namely, we can regard'this'model of a program as

one in which only particular nodes are assigned the fixed

interpreﬁation be fore execution.

2. 2. Equivalence Problem
Next we consider the extended definition of usual strong |
equivalence. As a preparation, we define two

mapping functions fz and 8y at first.

z

homomorphic and are defined in the following manner.

Definition 2.3 : Two mapping functions f and gz are

I =15VI;,
= FVYQ s
.22= BYW .
Then fz is defined as follows.
if x ez, £ (X) = A,
if'x € I, , fz (x) =x ,
and if X1, X6 &, £ (x3+xp) = £ (x1)-f(x2);
g; is a mapping such that '
if x e & , g; (x) =x,
if x e Z; , 8y (x) = 2, ,
and if X3, Xze L , B8, (X1°x2) = g; (x1)-8g, (x2) 3

where A is a null symbol.

Next we define the set of strings M(a). Intuitively

speaking, it is constructed by elements of FVYQ during

Y-

program execution considering only the behavior

of the machine M interpreting meta-program segments.
The formal definition is as follows.
Definitilon 2. 4; Let © Dbe any set of strings.
Then &, is defined as follows,
Ir f(w)eo , g (w) =g (u);
If f(w) #0 , gle) =23
where « 1s any string.
Let L(a) be the set of one-dimensional strings of program
(A
schemata o . Then, © 1is any set of strings which is

interpreted by the machine M, Informally, the assertion
that a string ws fz(L(a)) is interpreted by a machine M means

that if w = w(xi)w(x).'.B(S}) W(xk)..-B(Sm)-“: Starting

J

from an initial state s of the machine M,xixj...is fed to W,

1° and later when Xk"'is fed to W,

the state should be sm,...etc. . Then the set of strings

then the state should be s

M(«) which is constructed by elements of F\’Q is defined as

follows. pyrq) = g, (L(a))

The extended definition of usual strong equivalence

is followed.

Definition 2.5: Any program schema a is strongly
equivalent to other program schema «, 1f and only 1if the
following relation holds.

L 3

o

$3 Program Schemata with Meta-Flow Controlled

by a Finite Automaton

In the previous Chapter, we made a general definition of
a program schema with meta-flow, There, the machine M, which
was regarded as the model of meta=program segments, was
defined by both finite and infinite automata.

In this Chapter, we discuss the case in which the automata
are restricted to finite state automata. Then we show that

several decision problems can be decidable.

3.,1. Definition of the Model
Here, we make a definition 1in order to discuss decision

problems in the section 3.2 of this chapter.

Definition 3.1: In a program schema a =<F, P, E, M, W, B, I'>
with.meta—flow, the machine M = <X, S8, § , sg> which inéerprets
meta—program segments 1is defined as follows. In this case,
the machine M is called a finite automaton.

S = {sgs 515 «0005 5} is a finité set of states.
Then,’ § (a state transition. function) is defined in the
following qgnner.
V]

wWhen s &S, x &X, 6(5{, x) = sy -

i’ J

-6~

7

In such a program schema as defined above, a set ©
which 1s interpreted by the machine M (Refer to Definition
ygtu.) becomes a regular set. The explanation 1s as follows.

We consider the followlng finite automaton M.

M'= <X', S, &', qq, q.>
Wnere X'= (W(xy)seeeasW(xy), B(sg),B(s1),...,B(5y), A}

S'= {B(Sg)yeeses B(gz), Qgs qt} s 1l.e., S' is a set
of nodes which remain when the nodes 'FVYQVYW' are erased
from a glven program schema a.

qg 1is an 1initial state, 1.e., corresponds to a
starting node 'IN'.

q is a final state, 1i.e., corresponds to a
terminating node 'OUT'.

Here, we consider a diagram D constructed in the following
manner. When a program schema o is given, we erase the
nodes FYQV W and the left nodes are connected according to
the connective sequence of the schema a . Then, &' 1is
defined as follows.

(1) When qy leads to qj directly anrd between qi and qj,w(xk)
does not exist in the schema «,

_ §'(C Ay qy) =ay .« (ay, ay e57)

(it) When only one W(xk) exists between a and qJ s

Ll ap) gy |

(m) When’W(xkl),..., and fokh) are between q; and ays
8" ¢(W(xkh), qi) = qy “(h=l,.,., n-1)
§'(Wlxyp)s) = ay .

(iv) When a predicate p exists in the schema a ', a non-

..77_

deterministic branch occures in the diagram D. At that tire
IEUETH Q) = aq,
§'(x', q,) =q . (r#s) (x' eX')
(V) 6'(B(s;), a5) = qy .

Then we consider any string w € fz(L(a)). w is
accepted by the machine M when the initial state 1is qy and
the final state is q - Namely the flow starts in 'IN' and
terminates in 'OUT'. fhe set of strings which are accepted by
the finite automaton gefined above is regular,

That 1is , @ 1s a regular set.

A simple example of this program schema with meta-flow 1s
shown in Fig.3.1.. In this example, the machine M=<X, S, ¢,
sg> is as follows.

X={0, 1}, S={sg, S15 ++4» S/},

(1=0, 1, ..., n=1)

]

§(s 0)

1° S1+1
g T %
As shown in this example, it is very easy to express a

é(s 1) (j=1, 2, ..., n)
program schema such that a certain segment in the flow
of the program loops n-times, and when the flow reaches the

other segment with a 1loop, make it 1loop n-times if we

use this model.

3.2. Decision Problems
In this section, we will show that the following decision
problems become decidable in such a program schema with

meta~-flow a§ defined above.

Theorem 3.1. : A program schema with meta-flow, which 1is
controlled by finite state automata, is translatable into a

regular program schema which is equivalent to it and has no

meta=-f{low.
Proof : In a given program schema with meta-~flow as defined
above, we consider a program‘schemaAthe nodes of which are

correspond to a pair (a, b) -where a eFVP, b &S~ according to
the fixed interpretation of meta-program segments. In this
case, the number of states afe finife and so a given program
can certainly be translated into such' a 'difect-product type
program s¢hema. Any graph schema can be expressed as an
equivalent regular program schema. Thefeforé if a giveﬁ
program schema with meta—flow can be transformed'into a direct
program schema with no meta-flow (which is practiéally a graph
schema), it is also possible to expnéss iﬁ as an'equivalent

regular program schema,

In this theorem, 1t 1s shown that a program schema with
meta-flow controlled by finite autdmata can be transformed
into an equivalent program schema with no meta-~flow. But in a
program schema with no meta-flow, the'numbér of‘nodes will
generally be much larger thanra program schema with meta-flow.
Also from this point of view, we Know that’ it is useful to
éxpress ény algorithm by means of .a program schema with

meta-flcw.

10

From Theorem 3.1, and that an equivalence problem is
decldable in a repular program schema, we can show the

following theorem.

Theorem 3.2. : If two program schemata a; and a, with:

‘meta-flow controlled by finite state automata are given, it 15;

derivable whether they are strongly equivalent or not.

Next, we consider the some properties of this model.
Definition 3.2. : A program schema with meta-flow, in which

the state transition function § of the machine M 1is not
defined, 1is called a variable program schema with meta-flow.
Then, we conslder the case in which if § in a varilable program
schema a; with meta-flow 1s determined appropriately, the
variable program schema o; with meta~flow becomes equivalent’
to a certain program schema a, with meta~floﬁ. In such 5

éase, we would say that o; includes a, .

This concept 1s one -example of the applications ofF
meta-flow and it is important when we make onel
program play the same role as several programs.

Then we arrive at the following theorem,

Theorem 3.2. : It 1s decidable whether a variable program;

schema a, with meta-flow controlled by finite state automataf

includes a program schema o, with meta-flow controlled by

=10~

11

finite state autqmata or not. Moreover, when a finite number of
program schemata a;, G, ces., oy with meta~flow controlled
by finite state automata are given, we can make a variable
program schema with meta-flow controlled by finite state

automata which includes all the program schemata aj,...., ay.

Proof : 1In the case when a variable program schema o; with
‘meta—flow controlled by finite automata is given, the number
of states and also the number of inputs is finite. A state
transition function 6 is thought as the mapping function from
(sixxj) to s, / (seS,/ xeX), Then, the number of states and
inputs is finite, so thé number of §'s, which are defined

according to each permutation (Si’xj’s is finite. In

BE
consequence, the number of possible program schemata, which
are determined by a variable program schema a; , 1is also
finite. From Theorem 3.1., we can know that these program
schemata are translatable into regular program. schemata,
Here, a given program schema a, is also
translatable into a regﬁlar program schema. An equivalence
problem between reghlar program schemata is decidable, so 1t
is decidable to determine whether or not a variable progfam
schema a; includes a program schema a, .
The proof of the latter part of Theorem 3.3 is
elementary. Namely, we can combinate several given program
schemata a;,ap;,...,0x with meta-flow controlled by finite

automata in such a way that we make k-branches, using k new

predicates in additional meta=-program segments. (Q.E.D.)

=11~

12

8 4 Program Schemata with Meta-flow Controlled

by a Push-down Stack

Ip this chapter, Wwe consider the case 1in which - the
meta—program segments are interpreted by a push-down stack.
A decision problem in this model is generally undecidable.
But certain restricted classes of this model are decidable.
Moreover, 1in thié model of program schemata, it is decidable
to determine whether or not there exists an equivalenﬁ regular
program schema.

From now on, we abbreviate program schemata with meta-flow
controlled by a push-down stack as program schemata .with a
push-down stack.

We will have several practical applications 1of this model
of program schemata with a push-down stack. For example, wé‘
can use this model when we want to make a flow chart of the
‘algorithm which computes a recursion equation, not directly
expressed in an itérative form, Furthermdre,,we can also use

it as the model of subroutine-call.

4.1, Definition of the Model
First, we define a model of program schemata with

a push-down stack in this section. Then, we show one example

-12-

13

of thils model.

Definition 4,1: In a program schema a=<F, P, E, M, W, B, I>
with a push-down stack, the méchine M=<X, S, §, So#>, B and W
are defined as foilows.

X = {xl,xz,...,xi} is a finite set of input symbols.
S shows the contents of the push-down stack.
6 is defined in the following manher.
éw(s,xi)=Sxi when the flow reaches W(xi). " Namely, ¢, is

W

the function which shows that we push down an entry x into

i
the most upper part of a push-down stack.

8,(8x,%,)=8 (i)

GB(ij,xi)=ij(i#j)...(ﬁ) when the flow reaches B(Xi)‘
Namely, ~6B is the function which shows that we pop up an
entry Xi from the upper part of the push-down stack if the
entry of the upper part of the push-down stack 1is Xi’ or we
do not change the state of the push~down stack if the entry
of the upper part of the push-down. stack is not Xi'

B(xi) is mapped to 'l' when the action of (i) occurs,

or is mapped to '0' when the action of (ii) occurs.

In this case, it is difficult to give a formal definition
of a set. g . Therefore we adopt an alternative approach to

seek directly M(a) .

-13-

14

When a program schema o with a push-down stack
are given, we define a grammar Ga = <V, FvQVY¥#, D, So#>‘
in the following manner. Where, D is a set of rewriting'
rules, So# is = an initial symbol of a push-down stack,
V= {xl,...,xi,sl,...,Sm,SO#} is a set of non-terminal symbols,
FVYQV# 1s a set of terminal symbols, and # is an end mark.

D is constructed as follows;

(1) An edge, which 1leads away from a node 'IN' in this
program schemata, is attached a label 'Sg#'-

(2) We consider an edge, labelled '0', which leads away from
a node corresponding to B(xi) and which does not lead to a node
corresponding to B(XJ) or a node ‘OUT'. We assume that
{i{ye00ey ih}is a set of such edges as gefined above. Then a
certain edge'ij in a set ({i,,..., 1} is attached a 1label
ERSICETEDN

(3) From all edges in a given program schema,. we exclude an
edge, which leads to a node corresponding to B(xy) , W(xj);
or a node OUT; or leads away from a node corresponding to
B(xi) and is labelled 'l'. We assume that {j;, Jz,---,ih} is
such a set of edges. Then a certain edge ji in the set 1is
attached a label 'St N

(4) To each segments in a given program schema, shown in
Fig. 4.1, we apply each rewriting rules shown directly below
Fig. 4.1,

(5) When we erase an edge, labelled 'Si#; according to the
rule of (2), from a given program schema, we have several

separate section-graphs. We define each section-graph

R T

as a 'block?’. vWe assume that an edge, which leads to a
certaln block, 1s being attached a label ;Si#' and an edge,
which leads away from the block, is being attached labels !Sk'
and ‘Sj#', Then,wh?n the flow of computatlon reaches the
exit edge of the block, we apply the following rewriting rule?

s, »sksj"’. | | |
Refering to Fig.4.2. We note that in Fig.4.2, Fig.5.3 and
Fig.l4.5, the section enclosed ' in the dotted 1line shows a
certain block. |

(6) We assume that an edge, which leads to a certain block,
is being attached a label 'Si#' and that an edge, which leads
away from the block, 1s being attached a label,'Sj#' and
the exit edge of the block leading to a node W(xh) is labelled
'S, " When the flow of computation reaches the exit edge of
a node W(xh), we apply the following rewriting rule.

Si# +Skxh8j# (Refer to Fig.4.3.)

(1) We conslder an edge which 1leads away from a node
corresponding to B(xi) mapped to '1'. (Refer to Fig.4.4.)

(i) When the edge leads directly to & node corresponding
tq‘B(xJ) or W(XJ)’ we apply two null operatbrs A between a
node corresponding to B(xi) and a node corresponding to B(xj)

or W(x,). (In this case 1 = is included.)

J
(ii) When the edge leads to a node corresponding to B(xj)
or‘w(xj), 'oniy one operator f or predicate p intervening

)

between them, we assume that there is one null operator A
between B(x,) and B(xj), or B(x;) and W(x,).
J

@i) Whenfa node corresponding to W(xi) leads directly to a

~15~

16

node corresponding to w(xj), we assume that 2 null operator
exists between them.,

(8) When an operator f leads to a node 'OUT' and a label of
the edge which leads to the operator f is ‘Si', we use the
following rewriting rule. |

S, -»f.

When a predicate p leads to a node '0OUT', we wuse the
following rewriting rule according to the semantics of p.

S;+p, or 8145.

(9) When a block 1leads to a node 'OUT' and a label of the
edge which leads to the block is Si#’ we use the following.
rewriting rule at the tlime when the flow of computation

reaches a node '0OUT'. (Refer to Fig.4.5.)

S #

i ‘*#.

According to the flow of computation, we construct a
grammar Ga in such a way as defined above. Then we apply the
grammar Ga according to the flow of computation.

Consequently, a set of one-dimensional strings of FVYQ is

produced. Here, we define the set to be L(Ga). From the
definition of M(a) in section 2.2. and the definition of
L(G,), we . obtain the following theorem.

Theorem 4,1 : The following relation exists between a

program schema a with a push-down stack and its grammar Ga,

L(Gq) = M(a)#.

-16-

17

From the above ' theorem a strong equivalencé problem
between a program schema a«; and a, with meta-flow controlled
by a push-down stack can be reduced t0 an equivalence problem
petween L(Gy;) and L(Gajy).

In Fig. 4.6 , we show an example of this model of a program
schema with a push-down stack. In this model, a grammar Ga
is as follows.

G =(V, FVav#, D, S,7)

where V={S5,,5,,53,54,55,56557,S0%,5;%,x}
F={f,f2,f3,f4, 5}
Q={p}
The set of rewriting rule D is
S1+pSz, S1+PS,, S2+f1s3x, S3+pSy, S3+PS,, Su>fy,
x5, Sof+sgs,?, s6+£,S,, S;+fs, and S;F+#.

We show one example of a string L(Gy), produced by means
of Gy which is above defined.

S180% +pS,So* »pf1S3xSe? +pf pSyxSy* +pfipfy S4xxSe”
+pf1pf PSyxxSe# » pfypf BLoxxSy" » pflpflﬁfzféxso#
pE Py BE, T3S +pf pE Br, 133565,

.*Dflpfxﬁfzfafsfus731# *pflpflﬁfzfsfsfufssf
'*pflpflﬁfzf:gfafifff,#-

Next, we show thét in a réstricted class of this model of
program schemata with a push-down stack, it becomes decildable
whether or not two program schemata are equiValent and whether
or not there exists a regular program schema equivalent, to a

"glven program schema with a push-down stack.

18

4.2 s-program Schemata and Decision Problems
A set of strings L(Ga), as explained in the previous
sections, 1s generally a set of context-free Ianguages.

In this section, we define JS-program schemata which are

general program schemata with a push-down stack defined in the

section 4.1 but with some limitations.

Definition 4.2 : An S-program schema 1s defined to be a
program schema with a push~down stack Wwhich also satisfies
the foliowing restrictions.

(1) If there exist one more nodes corresponding to B(xi) in
a given program schema, each element which is led to by each
edge leading away from each node corresponding tq B(xi) and
being in the label of 'l', should be different. '

(2) The element should be an element of FV Q.

Definitionyﬂ.%. A 1énguage is called an S-language if the
following condltion is satisfled. Here, the S-~languages are
generated by an S-grammar.

"Kach rewriting rule in an S-grammar has the form
V »xV;...Vn, n>0, and the pairs(V,x) are distinct among the
rules."(V{,V,y,...,Vn, and*viare all terminal symbols.

x 1s a non-terminal symbol and x # X.)

From these two definitions and. the rewriting rules

explained before, we can derive the following theorem,

-18-

19

theorem 4.2. : If a given program schema « is an S-program

schema, & set of strings L(G) is an S-language.

proof : In Definition 4.2, we place 1limitations on a
general program schema with a push-down stack so that L(Gy)
generated by means of the rewriting rules becomes an
S;language in Definition 4.3. So, it is clear that Theorem 4.2.

holds, (Q.E.D.)

From Reference(1ll), we know that 1t 1is decidable to
determine whether or not a given S-language \is regular and
that an algorithm exists ¢to determine whether two given
S-grammars generate the same language. So, taking the above

theorem into consideration, we can derive the following two

theorems,

Theorem 4.3. : When an S-program schema o is given, it is
decidable to determine whether or not there exists a regular

program schema equivalent to it.

Proof : A context-free grammar is sald to be self—embeddingv
if there is some 7 eVn, and some o,B8 #e such that Z-+ aZ8. ir
any grammar for an S-language is not self-embedding(which 1is
clearly decidable), then an S-language 1is regular. The
converse 1s also true for S-grémmars. In conséquence,*we can
determine the above problem if we know whether the S-grammar

is self-embedding. - (Q.E.D.)

-19-

Theorem 4.4, : When two program schemata a; and a, are
given, 1t 1s decidable to determine whether they are strongly

equlvalent or not.

Qutline of proof : The detailed proof is much similar té

the proof in Ref.(11). Here, we show the outline of proof,

If, 1in some context-free grammar G, and for some Z,Y eVn,
Z ox if and only 1f Y+ x, x eVt¥, then write Z=Y,. That is, Y
is equivalent to Z if and only 1if the& generate the same
terminal .stfings according to a given grammar, - (if
a1+ as> ...> an, n2l, we write a; ¥ %n)

Let the grammars G; and G,, corresponding to a; and a, ,
with starting symbols S; and S,, respectively. By proceeding
as described in Ref.(11), this equivalence pair(i.e. S; and S,)
can be replaced by new pairs, upon which the equivalence of G;
and Gy depehds. We will show that the set of equivalences
generated by lterating this procedure-is finite, and that 1if
G; is not equivalent to G,, the shortest terminal string in
which they differ will be indicated during this process. It
no conflicts are found, then we may conclude that L(G;)=L(G,).

(Q.E.D.)

=20-

21

References
(1) J.W.de Bakker, Semantics of Programming Languages, in
"Advance in Computers" (F.L.Alt and M.Rubinoff, eds.), Vol.8,
pp.173-227,Academic Press, New York and London (1967)
(2) C.B6hm and G.Jacopini, Flow Diagrams, Turing Machines, and

Languages with Only Two Formation Rules, Comm, Assoc. Computing

Machinery 9, pp.366-372 (1966)

(3) D.C.Cooper, On the Equivalence of Certain Computations,
Comp. J. 9, pp.45-52 (1966)

(4) D.C.Cooper, Some Transformations and -Standard Forms of
Graphs, with Applications to Computer Programs, ‘in"Machine
Intelligence"(E.Dale and D.Michie, eds.)Voi;z, pp.21-32, Oliver
and Boyd,Edinburg (1967)

(5) R.W.,Floyd, Assigning Meaning to Programs, in"Mathematical
Aspects of Computer Science," Proc. of Symposia in Applied
Mathematics, Vol.l9 (J.T.Schwartz, ed.) pp.19-32, American
Mathematical Society, Providence, Rhode Island (1967)

(6) S. Igarashi, On the Logical Schemes of Algorithms

(in Japanese),Information Processing in Japan 3,pp.12-18(1963)

(7) T. Ito, Some Formal Properties .of a Class of Program
Schemata, Proc. IEEE Sympoéium on Switching and Automata Theory
(1968)

(8) L.A.Kaluzhnin, Algorithmization of Mathematical Problems,
in"Problems of Cybernetiecs," Vol.2, pp.371-391, Pergamon Press,
New York (1961) | '

(9) D.M.Kaplan, Regular Expression and the Equivalence of

Programs, J, Computer and System Science, Vol.3 (1969)

-21-

22

(10) R.M.Karp, A Note on the Application of Graph Theory to

Digital Computer Programming, Information and Control 3, ppﬁ179-“

189 (1960)
(11) A.J.Korenjak and J.E.Hopecroft, Simple Deterministic
Languages, IEEE Conf. on Switching and Automata Theory, (1966)
(12) D.C.Luckham, D.M.R.Park and M.S.Paterson, On Formalized

Computer Programs, J. Computer and System Science, Vol.d4,(1970)

(13) Z.Manna and A.Pnueli, Formalization of Properties of
Functional Programs, J. ACM 17, 555-569 (1970)

(14) J.McCarthy, A Basis for a Mathematical Theory of
Computation, 4in " Computer Programming and Formal Systems"
(P.Braffort and D.Hirschberg, eds,), pp.33-69, North Holland
Publishing Co., Amsterdam (1963)

(15) J.McCérthy, Towards a Mathematical Science of Computation,
in "Information Processing 1962," Proc. IFIP CongreSs 1962(C .M.
Popplewell, ed.) , pp.21-28, North Hol;and Publishing Co.,
Amsterdam(1963)

(16) J.McCarthy and J.Painter, Correctness of a Compiler for
Computer Science," Proc; of Symposia. in Appiied Mathematics,
Vol.19 (J.T.Schwartz, ed.), DPp.33-41, American Mathematical
Society, Providence, Rhode Island (1967)

(17) I.Okinaka, Y.Kambaysshi, A.Sha and T.Kiyono, = On the
Program Schemata with Push-down Stack (in Japanese), Rec. of the
11th Convention of Information Processing Society of Japan,;‘
No.88, (1970) |

(18) M.S.Paterson, Equivalence Problems in a6 Model of

Computation, Doctoral Dissertation, Cambridge University (1967)

-P P

23

j(19) M.3.Paterson, Program Schemata, Artificial Intelligence,

vol.3, (1968)

(20) J.D.Rutledge, On anov's Program Schemata, J. Assoc.
computing Machinery 11, pp.1-9 (1964)

(21) A.Salomaa, Two Complete Axiom Systems for the Algebla of

Regular Events, J. Assoc. Computing Machinery 13, pPp.158~169

(1966)
(22) A.Shurmann, The Application of Graphs to the Analysis of

pistribution of Loops in a Program, - Information and Control T,

pp.275-282 (1964)

(23) A.Sha, Y.Kambayashi, I.Okinaka and T.Kiyono, On the
program Schemata with Meta-flow (in Japanese), Rec. of the 1llth
convention of Information Processing Society of Japan,No.87(1970)

(24) H.R.Strong,Jdr. Translating Recursion Equations into
Flow Charts, ACM Symp. on Theory of Computing (1970)

(25) Y.I.Yanov, On the Equivalence and Transformations of

Program Schemes, Comm. Assoc. Computing Machinery 1 (10), pp.8-

12(1958)

(26) Y.IL.Yanov, On Matrix Program Schemes, Comm. Assoc.

computing Machinery 1 (12), pp.3-6 (1958)

(27) Y.I.Yanov, The Logical Schemes of Algorithms, in"Problems
of Cybernetics," Vol.l, pp.82-140, Pergammon Press, New York

(1960)

-23-

24 | | |

f, fy f3
‘12 f2 f4
f5
ey, (FefUfsfi)-f5, (P, ﬁﬁi prtU pif,
Fig. 2.1 One- dimensional expression of

a program schema

f1
P
P W (1)
A f f
2 3) £
@
B(Sn)
0 1

Fig.3-1 An example of a program schema

with meta-flow (finite automata)

=24

(5)

Se—~f
Xi—> fS,

Rewriting rules of a program schema
with a push—down stack (No.1)

26

Fig.n.2 Figu.s
Rewriting rule (No.2) Rewriting rule (No. 3)
Cii) |5
£y

Se—f§
)<i-¢-XSf
Siwrsyx) i S

Fig.4.4 Rewriting rules (No.4)

<26~

Fig.u.s
Rewriting rule (No.5)

o

5'.]50'”

po B

Fig. 4.6 An example of a program
schema with a push—down stack

_27;

27

