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Soliton on a vortex filament
By HIDENORI HASIMOTO

Ingtitute of Space & Aeronatical Science, University of Tokyo

Intrinsic equation governing the curvature x and tpe torsion ¢
of a very thin vortex filament in an incompressible inviscid fluid is reduced
to a non-linear Schrddinger equation
N
L By L (WA ¥
where £ 1is the time, 4 the length measured along the filament and yp

the complex variable

Y o= 5 exp (;fffcdj)

and A is a function of 't .
It is found that this equation yields a solution describing the
. 1 .

propagation of a loop or a hump of helical motion along a line vortex,

. with a constant velocity 27T

The relation to the system of intrinsic equations derived by

Betchov (1965) is discussed.
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1. Introduction

Vortet filaments in a perfect fluid are known to preserve their
identity and extensive investigations have been made on the two-
dimensional motion of a system of wortices. In the three-dimensional
case, however, few examples are knowp even for a single filaﬁent owing
to its complicated behaviour.

Recently the so—called 1ocalized'induction equation'which describes
asymptotically the motion of a very thin vortex filament has been derived
by Arms (1963 ; from privated commtnication to Hama) and has been used
by Hama (1962, 1963) in order to describe the motion of curved filaments
ef several shapes; As = regards its derivation, Batchelor's book (1967)
may be consulted. |

The essential point of this approximation is to abproximate the local
motion of the filament by that of a thin circular vortex with the same
curvature and to neglect slow variation ef its coefficient. As long as
the interaction between far‘distant portions along the filament is neglected,
this approximation seems to be valid at least qualitatively as shown numeri-.;
callf by Hama (1962) for a parabola and experimentally by Kambe and Takao
(1971) for a distorted vortex ring. On the basis of thlS approximation,
Ha31moto (1971) has shown that the shape of a simply rotatlng plane filament
is that of a plane elastic filament, 4.€. the elastica.

In order to cogsider~the compéicated behaviour of the filament,however,
intrinsic equations for the curvature and the torsion of the filament_seem
to be useful. Betchov (1965) has derived sﬁch system of equations, which
may be reduced to those for.a fictitious gas with negative pressure,

accompanied with complicated non-linear dispersive stresses.

$
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In this paper, a simple intrinsic equation for a complex variable with
the curvature as its amplitude and the torsion angle as its phase is dé;ived
by a simple procedure starting from the fundamental equations of differential
geometay.

This equation is found to be a k;nd of non-linear Shorodinger equation
which appears in the theories of non-linear optics and plasma physics (
Karpman and Krushkal (1969), Taniuti and Yajima (1969), Asano, Taniuti and
Yajima (1969)).
| It is shown that this equation admits a solution describing a solitary
wave propagating along a line vortex filament, which induces various types
of motion of the filament according to the value of the torsiom.

In Appendix, deduction of Betchov's 4ntrinsic equation from our equation

is made.

2. Fundamental Equations
The motion of a very thin vortex filament X =X(4,1) of radius £

in an‘incompressible unpounded fluid is described asymptotically by

% =arb @D

wherd)is the length measured along the filament, ¢ the time, X
the curvature, b the unit vector in the direction of the binormal and

6} is the coefficient of local indyction

G = [99() + 0] 2.2



which is proportional to the circulation [ of the filament and may be
regarded as constant if we neglect the slow variation of the logarithm
compared with that of its argument. It should be noted that the interaction
petween far distant portioné of the filament is neglected in this approxi-
mation and the local motion is approximated by that of a thin circular ring
with the same curvéture.

Then a suitable choice of the units of time ahd length reduces (2.1)

to the non-dimensional form

X =xb, (2.3)

where and hereafter a dot (.) and a prime (') denote respectively 3/3¢
and 2/2.4 .
The equation (2.3) should be supplemented by the equations of differential

gemetory(Frenet Seret Formulae )

¥ 4
t =N, (2.5)
’ .
n-“-'Cb-'}ct, (2.6)
’ . X . .
b=-tn , 2.7
where 77 1is the torsion and if, 22 and b are a'right—handed system

of mutually perpendicular unit vectors parallel to the tangent, the

principal normal and the binormal repectively.

7



14

Combining (2.6) and (2.7) we have -
. T(m+ib) ~xT, (2.8)

(n+ b)) =

which suggests the introduction of new variables

. (A y
N =(7e+. b) exF{»/; Tdd) (2.9)
and
(2.10
Y = x exF({,fo"'tdA) "
Then, we have from (2.8) and (2.5)
/
N=—UT (2.11)
(2.12)

and
/ - / - Y3

t = ke [¥yN] =3 (PNt PN)
where the bar (-) denotes the complex conjugate and Re the real part.

On the other hand, from (2.4), (2.3) and (2.7), we have,

. X = (xb) =x'b-xTHR =N Re[('%lrif)(bﬂ'ﬂ)](z.lzi)

ﬁ =n./
b= RIVAI =2 (FN-FW

where we have made use of (2.9) and (2.10).

(2.14)
s

It should be noted that there are orthogonality relations among t‘ s

N and /i;
$-t=1, NN=2,6 NNN=0, N-T =0 <te. (215

The equation governing the evolution of /V’ is obtained as follows, Letting

g
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N =N +BN+TT . 218

and by noting the orthogonality (2.15) and its time derivative we determine

the coefficients y , /9 and [/ as follows:
X+d =L (NNt WN) =LWH) =2, se ot=0R

B = L N= WKW =0,

v . ¢/
r = - N t; R _ o (2.17)
where R is a real unknown function and we have made use of (2.14) and

(2.15). Thus we have
. 7 -
N = _«5 (RN~ V¥ E), (2.18)

The time derivative of (2.11) and the .4 bderivative of (2.18) yield

respectively ) o o :
.7 M > - " I

N = —VEt-¥Vt = —pt— 2P (¥N-FN) (3.19

and | A

A‘/’ = (RN —-r }Lt - ¥t ~ Ez‘ WC 2 w?)l(z.zc»

where we have male use of (2.14), (2.li)~ énd (2.12).

Equating the coefficients of ¥ and 2 M respectively (those of N are
identical) we have .
. ) v . '
—g == (¥ +R¥) : (2.21)

and

/

—_7 -
Z—L‘f‘/' = R - z—"f"f. - : (2.22)
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.y
The comparison of € from (2.12) and (2.14) leads only to (2.21).

Solving (2.22) we have
R=1L(¢? +A), (2.23)

which reduces (2.21) to

2t 24" (2.24)

L2 2Lyt A) Y

where /I ®s a real function of 7 which can be eliminated by the

introduction of the new variable

I

g =Y eapiflamde] 2.25)

This transformation ié nothing but the shift of the origin of integration
in (2.9) and (2.10)} therefore we may take 4 in (2.24) to be zero
without loss of generality.

Equation (2.24) is a non-linear Schrodinger equation which appears in
the theories of non-linear optics and plasma physics. Hance the results

in these cases can be easily transferrable to our problem.

3. Solitary Wave
As a special case,let us look for the solution of (2.24) which des-
cribes a solitary wave ( soliton) which propagates steadily with a constant

*
velocity (C along the filament which is straight at infinity <, €.

)C::O) as A > oo (3.1)

In the wave frame of referenmce in which ) and  are functions of
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Z = 4-cT (3.2)

ie.
Y = x08) expli [ wte)dd] (3.3

the real and imaginary parts of (2.24) yield respectively

—cx LT~ Tl-ct)] = »x" -xT* +4 (}c“r,zy);c (3.4)
and

' 3.5)
c »’ = 2x’T + xT”, 3.3

Equation (3.5) can be integrated to give

(c—-2z)x*=0, (3.6)

where we have made use of (3.1) to determine the integration constant.

According to (3.6) we have
t =T, = -ZL C = co‘n-ft' 3.7

if 2 is not identically -zero; ¢.€. the torsion is comstant along the
filament and the velocity of propagation along it is twice the torsionm.

Then by use of (3.1), (3.4) is integrated to give

| ]
W = 2 sech VE (3.8)
’

provided that A4 is diconstant determined by

A = 2 (T:-' V&) (309)

:1"?1e actual shape of the filament is detefmined by introducing (3.7)
and-(é.S) into (2.4) < (2.7). For this purpose, it is convenient to
solve the equation for b obta;ined by the substitutioh of 72 and ﬁ
from (2.7) and (2.6) into (2.5):

' 7
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T (t-xm) = [ % b+ 0] +x B =0

(3.10)
v.e. :
3 dl 2 2 d 2 _
24{;5 t Tk b+ (T'rseck’ TpbeT tankrb =0, (4 )
where

9 =pye and T = T/p (3.12)

The solution of this equation can be easily obtained by noting that

B =4b+tak b (3.13)

is the solution of the equation
j‘;“:ﬁ + (Tt 25eck’7)B =0 (3.14)

which is satisfied by
+.TY

(tanh 7 F,.T) € (3.15)

As particular solutions, we have

b = sech? , (1- 7%t 2.7 tank 2) €571 (3.16)

.

Let us introduce (3.16) into (2.7), (2.6) and (2.4), and determine

the coefficients so as to satisfy without loss of generality the conditions

that the flilament is parallel to the x-axis of the Cartesian coordinates

(x , 7— s X ) at infinity; .. e..

T —> 1 as 9 > o0 (3.17)
and

/2



Ryrifls =i (Byr i4:)=€"" 7 a5 g 5w (3.18)

the latter being suggested by the asymptotic behaviours of the solution
of (2.5) - (2.7) and the orthogonalities among ¢ , 72 and b . Here o
is a real constant and the suffices I,f?, Z denote the X ;-, A - and
# components respectively.

After straightforward calculations we have
. / ' . R
X: x= F(7-2xtak1)  Jriz= el

£ te= 1 —2useckl, Fy1ity =-po (k- T)e T (3.19)

4

7

7L Ne= 2M sech® D sinh® Ny + Ny = - [1-24(tanh?-: P)tank] €T

b: fgx‘—' ’2/“2’626'{7, "}1‘-['{,}:‘- ,,;/a (1—1";2‘-2726&*17)6"1'7)
where '
_ £ _ »:
./a.~ ZTT‘-—‘V“)"T& _—:—zf)go‘p'ecﬁ z’

o 2

7 » , (3.20)
7:y£=})_(ﬁ—£ﬁt},f7= Z’og.‘ .

4. Numerical results and discussions
Figures 1-3a show the projections of thev/fizlament to the xjf-,
x2Z - and 2 4 planes at an instant of time ( say, €=0).
It is seen that thé filament is confined on an envelope of radius 2
{  except near the cent.re X ~0 if' T< 1 ) which decreases from its maximum
z/a/)),’ at X=0 to 2//[1/(!0{[_ (.szz/a,‘)].‘oas Z >t . Our filament
is a spiral surrounding this envelope, being approximated by‘

FtiZ2 = zexp ({TT)>LH[TYfhs A >zte.

13



Figure 1. T=2.0 ; e————— Projection to xy plane, —— - —— - ___

Projection to xz plane, --——----- envelope.,
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Figure 2.
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Figure la. T=2.0 ; Projection zy plane.
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However its behaviour at x~o is different according to the value
of PP . Aslongas T =z4 sy J+i R is a single-valued function
of x , since Z 1is a monotonic function of 2 . 1f Tr=41,
41/47 is zero at x=7=0 ‘ and the cusp of the envelope appezars
at X =0 ’ z,:;;q&v though no singularity exists on the filament.

For T<1 , the filament is é;isted and yief%/a loop in its side
view, though no real crossing point exists. As the torsion is decreased
the projection to the ;3} plane is flattened and in the limit of P =0 |,
the filament is a plane curve with a crossing point which has been noted
by Betchov to be unacceptable.

The vélocity V= X' of the filament is obtained from (2.3), (3.8),
(3.13) and (3.19) as

Ux = 4HT seck'] = ’GCT‘«“W‘J@‘) (4.1)

W: ‘U’; te 7}.‘ = WV"' + W-rdi ) : (4.2)

where

(4.3)
Wt = WV (I-TD ($rc2) = e (P=T") (J1F)

and "
Woaa = 2V B (J4i2)boak ] =0T, (P18 Cank ] (4.4)

It is seen that the motion can be decomposed into three parts : i) long-
itudinal motion V. ii) rotation about the x-axis W, _r and iii)

radial contraction and expansion Weaa

/8



The rotation changes its sign according to that of T -1 <.€.
Ain (3.9). IfT < 1, the direction of rotation is that of the vorticity at
a=xteand if T > 1 it is opposite. It is intersting to notice that no |
actual rotation occures if T =1 . €. 4 =0 . This behaviour may be
attributed to the appearence of a loop in the side view for T < 1 in
contrast to the déminance of spiral for & > 1.

The magnitude of 73 de?ends on the curvatufe proportional to 2
and the orientation of the looping to the x-axis +.¢. 6. which is pro-
portional to T2 . The faster motion of the larger looping seems to be
coupled with the radial expansion by W,.d , leading to the propagation
of our solitaray wave along the filament. Notice that we have radial expan-
sion or contraction according as T% is positive or negative.

Some of these features are seen to be in accordance with Hama's
numerical experiments  (1963) on the filament which has éaussian éhape
initiglly.
| Though these behaviours of the vortex filament may bé temporary
jJudging from its approximate nature and possibie,instability;'the author
hopes that they might be observed in some vortex system such as highly
sheared stream or rotating flow. |

In this connection, it may be noted thé£7Yajima and Outi (1971) made
a numerical calculation on the stability of solitary waves fér a nonlinear
‘Schrédinger equation and have showﬁ that they are fairly stable.

N
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Appendix. Relation to Betchov's intrinsic equation
Betchov (1965) has derived a system of intrinsic equations governing

essentially two variables
P = x? U =27T (A.1)

In order to derive his equation, it is convenient to  introduce the

potential
— 4 r 4 :
g = [ uds = +[Tds (A.2)

into (2-24) and differentate l# = ]/? exp (2:2)

logarithmically ; comparing the real and imaginary parts of
/ > - ! A S I
— (%—_;.,_43) = Z’(‘;"' ro R +-4—(f1-1)+4(f1‘/4)(A.3)

20
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and differentiating the former with respect to .4 , we have

. , , _f_:z P27
wrtun'= P+ (- 75+ 4) (a.4)

. < ’
F ‘f'uf/:' -ruw | (A.5)

These gre reduced to the same equations as given by Betchev((1965), (2.16)
and (2.23)) if we put L= K and Y =.2T ‘there,
It may be noted that (A.5) and (A.4) supplemented by (A.5) yield the’

conservation forms :

2 P —
,55-+ 5 (Fu) =0 (A.6)

and

Zlru)t a5 LPw'e 2P =poplty)] =0 @

respectively. By assuming the same dependence on £ as that in (3.2)

and (3.3) we can obtain the same results as in section 3.

2/



Appendix 2. Motion of a Vortex Filament and its Relation to Elastica

The motion of a very thin vortex filament in an unbounded perfect
fluid has been discussed by several authors ( Hama (1962,1963), Betchov
(1965), Batchelor (1967) on the Basis of the so-called localized induction
equation which is initially suggested by Arms (private communication to
Hama(1962)) and is walid for very small values of the radius a of the
filament compared with its radius of curvature 1/X , where ) denotes
the curvature.

In this note, it is shown that an analytic solution of this equation
corresponding to the simple rotation of a plane filament exists and is
perfectly equivalent to the finite deformation of a plane elastic filament,
7 .e. the elastica.

The localizgd-induction equation states that the velocity of the

filament % is GX§ in the direction of its binormal B
y = Gxb @

where (} is the coeficient of local induction proportional to the
circulation of the filament and may be assumed to be constant for very
small values of | ax

Let # be the distance from the x-axis about which our filament
rotates with uniform angular velocity-f2 ,’jJ be the distance mezgyred
along the filament, and # be the angle between the tangent to the
filament and the x-axis. Thén, by noting g .—_—oﬂ;é and ¥ = A4S ,
eq. (1) reduces to G 48/44 =.-—,2; # » or by differentiation with

respect to. A

: d .
(%9;@:'122%:”“"”9- @

22
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This equation is nothing but the equation for Euler's elastica
(e.g. Love's Treatise »1927, p401) +.e. the plane elastic filament of
flexual rigidity B under the action of thrust F applied at its ends,

provided that
C{—/jz = B//:‘ (3)

The kinetic analogue to a simple pendulum in which 4 1is replaced by

the time t is also wvalid.
In this manner, the classical solution for elastica in terms of

Jacobian elliptic function is easily transferable to our problem :
= (i[5 2 [famitapr 45], $=fontze) @
12 ° . Y 7/,
where /4 is the maximum distance from the axis and
L . L
£ =(F)s, 4=F(E)A Q
For small values of 1é eqs. (4)--(5) yield

-:;—t- = (/- }f?) CosV + -}f:cw.w +o(£7), 7/:(%)%[/1-%;,‘)1, (6)

which is in accordance with the form calculatg@ by Kambe and Takao (1971)
in relation to their experiment on the stabiiify of a vortex ring and

corresponds to Kelvin's sinsoidal filament for 1@:: ag

The distance A4X between nodal points § = # K y v @.
= 2(2)(2E~-K)
ax=2z2(2)( ™

is shown in Fig. 1 as a function of # , where K and /& are

the complete elliptic integrals of the first and the second kinds

repectively.

23
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As ﬁ increases AX decreases and the " bay " formed by the curve
bulges, so that the filament cuts the axis perpendicularly at »ﬁ":;’ ,
and at £ = 0.8551 neighbouring bays start to cross ; thereafter our
solution is not acceptable since the interaction between two widely
separated values of  is neglected in our approximation.
The other solution represented by ;:Ad’}; is unacceptable,
since it yields a series of loops lying altogether on one side of the axis.
The general feature of our acceptable case is partly in accordance
with that found by numerical experiments by Hama (1963) and Takaki and

Yoshizawa (1971) on initially sinusoidal filaments, except for three-

dimensional deformation for large 1@




