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Abstract. In this paper, function space bounded phase coordinate
'cpntrol problems are considered by a functional analysis approach.
Concepts of regularity and normality are defined and-undey»thése
conditions, existence and uniqueness of solutiéns are discussed.
Complete characterization 6f,the solution is given in terms of a
hypefplane. Furthermore, the relation of the normality condition
to a finction space version of the Bang-Bang steering principlé '

is pointed out.

1. xntrodudtion.

In recent years, consideréble attention has been focused upon
the method of fundt;onal analysis in the study of optimal contrel
problems which are, in many cases, describable in terms of the
optimization of functionals on Banach spaces. This functional analysis
method, though applicable to a wide range of problems, seems to be
best suited for the investigation of optimization problems arising
from linear control systems, since linearity plays an essential role
in functional analysis}”

In the articles [9] and [10], W.A.Porter formulated Neustadt's
minimum effort control problem [8] in Banach space and presented the
complete analysis of the abstract problem by using techniques of fung=
tional analysis. Also, én [12], a related Banach space minimization
problem was considered. ‘

' In the present paper, we shall formulate and solve the abstract
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version of the corresponding bounded phase control problems.
Specifically, let X,Y and Z be real Banach spaces. Let S:X—»Y and
T:X—+2Z be bounded linear transformations. |

Problem I With T onto, {€Y and neZ, find an element, called an
optimal solution, (if one exists) ueX satiasfying the constraints n=Ty
and Jt-sul=se (e>0) which minimizes juj.

Froblem II With S and T into, find an element (1f one exists)

uepUy={u|julsp, ueX} satisfying JE-Sufse which minimizes fn-Tul.

2. Some preliminaries.
"Let us introduce notations and conventions adhered to throughout
the paper. Let B be a real Banach space. Let ¢ and D be two sets inlp.
By the vector sum C+D§18 meant C+D={c+d|ceC,deD}, by int(C) the interior
of ¢, by 3C the boundary of ¢ and by CcxD the rectangular set, i.e.,
ch={(a,d}|cecgdeD}. Let B' be the conjugate of B. For each ¢¢B’',
suppose thdt there exists a vector zelp, a closed unit ball in &, ‘
such that <z,¢>=§¢}§. Here, <z,¢> denotes the value of a linear functional

¢e8’ at a point seX. The set of all such vectors x in UB is called an

extremal of ¢ and 1s denoted by § (see [9]). For convenience, we
sometimes identify a suitable element ze$ with the set $. It will be
obvious from the context whether § indicates the member or the set.
If, for example, ¢=0, then ¢ denotes a suitaﬁle element in Ug, or the
set Up itself. Note that if ¢%0, then $ cavg.

A convex body is a convex set having a non-empty interior. A convex
body X in a Banach space 5 is called smooth if at each of its boundary
points, therelis a unique hyperplane of support of XK. Also, a convex
body K in B is called rotund if X contains no straight-line segments
in its boundary (see [14]). A Banach space B is célled smooth or rotund
according as its unit ball is smooth or fotund. Note thét there exists

at most one extremal $ of ¢(%0)eB’® if B is rotund,
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3. Minimum effort control problem with bounded phase coordinate.

In this section, we shall consider Problem I in which T is assumed
to be an onto mapping. The methods used in this and the next section
are closely related_mainly to [11] and others [4],[7].

Let § be a linear mapping‘of X into ¥YxZ defined by §:u—»(5u,ru),
where ¥xZ denotes a product Banach space equipped with the usual product
topology. Let §(Ux) denote the image of the unit ball Uy under 5.
Motivated by the geometrical interpretation of Problem I, we shall
examine the properties ?f the set {ad(Uy)+(eyx{0})}=C (a,0) for a>0
(C.f. Porter [9]). Let us begin by introducing the following definition.

.Derinition: We shall say that a pair (§,n) is regular if there
. existes at least one element ueX satisfying the constraint n=Ty and the
strict inequality [§-Suj<e. ‘ )

Note that if § haa_genaé:range; anvarbitrary pair (E;n) in ¥YxZ is

regular.

Lemma 3.1. The set Cg¢(a,0) i8 a convex body.

Proof. The lemma is an éasy consequence of the assumption that T
is an onto mapping and the interior mapping principle (see (31, pp.55).
Lemma 3.2. Suppoee that (E,n)eace(u,OJ is a regular pair. Then

any hypérplane (¢),42) (¥0)&(¥x2)’ of support of Cglw,0) at (§,n)

satisfice
(1) <(E,), (41,02)>2x0lS 9147 ¢ +eh 1) 5 (3:1)
S (2) IS '91+T 2]l %0, (3.2)

where S' denotes the conjugate of S. :

Proof. By Lemma 3.1 and the Hahn-Banach theorem ([3], pp.58), such
a hyperplane stated in the lemma exists: _ -
<(E,n),(¢x,¢a)?§:<a(3u,Tu)+€(y,0),(¢1,¢z)>, for all uely, yely.
Hence takiﬁg the supremum of the ﬁight side yields (3.1). To see (3.2),
suppose contrary that-s'¢1+T'Qg=0. Then we necessarily-have $1%0 and,
for all ueT?(n)e{u|n=Tu, uex),
gg-ﬂu!H¢aﬁ§z<€ﬂ5y;¢x>=<£,¢s>+<u@T'¢a>B<(€pn),(¢n,¢zi%§%€§¢n& (3.3)
Hence v ‘
jE-Sull=¢, for all ueT™(n), (3.4)
Which contradiots the regularity of the pair fE,ﬁ).
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The following lemma lists one property of the set Cgla,0).

Lemma 3.3. Let (E,T)eace(a,O) be a vegular pair. Then for all ueX
satiefying n=Tu and JE-Sulsc, we have
ju li=o. (3.5)
Proof. Let ($1,¢2) be the hyperplane in Lemma 3.2. Then for all
gefdln), we have .A |
%“Iﬂs'¢x+T'¢aﬂ*l€#SuiH¢xﬂ£§<u;S’¢1+Tf§a>+<E-3u&¢x>
=< (Ean), (81,020 >z OIS 14T 42l +el 01l - (3.6)
Hence , ' '
(hul-0)§S'é1+T 'd2l = (e-[E«Sull)fieull , for 811vue?4(h)i (3.7)
since we have |8'¢1+7"'éd26 %0, this proVeé the lemma.
Lemma 3.4. Suppose that (E,n) ie regular and that (§,n)edC.(e,0).
Then for all 8>a, we have
(E,n)€int(C.(8,0)) CCe(8,0).
Proof. We first note that the assumption (§,n)edC¢(a,0) and continuity
of the linear form < , > imply } _
<(E,n),(W|,¢21>=saus'$|+T;¢a€+cﬂﬁnl, for all (@1;$z)€?¥*2)'-. (3.8)
Suppose now that the conclusion of the lemma 1s false and that there
exists an &>a such that (§,n)&int{Ce(8&,0)). Then a separating hyperp;ane
(b1,92) (¥0)€(¥xZ)" exists: ' N
<(E,N) (91,0205 8US 0147 ‘ol +el 60, (3:9)
.~ which, combined with the result of Lemma 3.2, contradicts (3.8).
Combining Lemma 3.3 and 33ﬁ; we have the following theorem.
Theorem 3.1. Problem I haé a scolution for each regular pair'
(E,n)edC(u,0) if and only if (E,n)eCe(a,0),
Theorem 3.1 indicates that existence of solutions to Problem I
depends upon whether or not the set. ae(a;o) is closed in yxz. We now

state sufficient conditions to guarantee this situation.

Corollary. (C.f. [11]) Suppose that either of the fotlowtng’hald;:

(Ar) X ie a reflezive Banach epace.

{42} Each Baunach space i@ the.conjugata of ancother normed space, i.e.,
normed spaces X1, Yi1'and Z1 exist such that X=Xy', ¥=I,' and %=2,°, reepec-
tively. | | |

Then Problem I has a solution for every regular pair.

4.
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Proof. For each regular pair (E,n), let oo denote the infimum over

the set of all real numbers a20 such that;{(ﬁanfica(a,ﬂl}. It then follows

easily that (E,n)edCc(as,0). Hence, it is sufficlent to show that ¢(a,0)

‘(u;o) is closed in YxZ. We shall do this by assuming (A:). The case (A;)
may be treated similarly. Note first that §(Ux) is weakly compact as the
continuous lmage of the weakly compact set Uy when Banach spaces X and
yxZ are equipped with their weak topologies (see [9]). Now, it is known
({31, pp-414) that if 4 and X are closed subsets of an additive topological
group G, with X compact, then A+X is closed. Since Uyx{0} is convex,
closed, hence weakly closed in ¥xZ ([3], pp. 422), it follows that Cela,0)
is weakly closed, whence closed in ¥xgZ,
The fo}lowing lemma characterizes the regular pair (E;n) in the dual
space.
Lemma 3.5. 4 pair (E,n) ie regular if and only if
<(E,n)s (41,82)>=eldall (3.10)
holds for all ($r,62)(%0)e(¥%2)" satisfying 5'¢1+T'$2=0.
Proof. "Only if part". If (E,n) is a regular pair, then there
exists an element yeX such that j{-Syl<e and n=Ty. Hence 1t fé;lows
from Lemma 3.4 that for e=juf, (E,njeint{c le,0)}. Therefore, for all
(¥1,%2) (%0)€(Ix2) ', 'we have
<(E,n), (Y1, V2 )>=<alS Y147 Y2) +elinl, (3.11)
from which (3.10) follows. "If part". Suppose that (£,n) is not a regular
pair, 1.e;,Afor all u satisfying néru, we bave NE-Sul=e. It then folldws
easily that (Eyn) cannot be an interior point of {8(x)+(eUyx{0})}. Hence
there exists a separatibg‘hyperplane {$1,92)e(¥%Z)' such that
<(E,n),Y¢n,ﬁz)agéfu,sl¢1+r'¢2>+eu¢,u, for all ueX, (3.12)
which, in turn, implies S'$,+T'$2=0 and <(E,n), ($1,42)>=€f¢1l| . But this
contradicts (3.10). A
We now state the main result in this section.
Theorem 3.2. Suppose that (§,n) is a regular pair, and that either
(Ay) or (A3) in the corollary to Theorem 3.1 holds. Then an optimal

eolution ue of Problem I extate and ie mecessarily of the form:



uom—=L {S( 1#T ):;e W (57417742, (3.13)

where ($1,02)€(Y%2)" of norm 1 solvee either of the following:

o <( ), ( 2)>-€ T, T f e
E'W S(S'dy+T¢2)4+€d (3-1&33

(1)
n f(” n§s€¢;+r i:QE - T(5T414T 7427, 3 ° -0}
<( ) ( 2})-3 } v
@) ,¢s{$§i,{ NSTo14T 74, (3.15)

Canversely,‘if (b1,92) of norm 1 sclves either of the above conditions,
then the suitable element uoe{(<(5,n),(¢g,¢z)>~el¢|l)/I$;¢1+T'¢zﬁ}(373?I
T'92) is optimal. Furthermore, if X ie rq&un&, the solution ie unigue.
Proaf. Suppose that uoe(40) is an optimal solution, and we show 7
(3.13)-(3.15). ue thus satisfies }E-Suolme and n=Tu,. It further follows
that (e,n)eace(uofo), where we put fuoll =ao. Let (¢x,¢z).be-a hyperpléne
of supporé of C.(ao,0) at (§,n). We then have, by Lem@a 3-2,ié'$x+f'¢z¥q
" and ‘ ) | '
OB, (41,020 aoll8 614 "4l sel 63, (3.16)
On the other hand, we have
<(§;n)a(¢1;¢z)>=<5-5uo,¢1>+<uo;3f¢x+T'¢a>==“!“§'¢I+T'¢zﬂ*€“¢3H--'(3-17)
Hence we conclude that o

uo=0g (S 147 $2J, ' (3.18)

E-Sug=€§1, , (3.19)
1 ), ($1 )>=-¢
So== iS5 1 +T"$2 * (3.20)

‘These relations yleld (3.13) and (3.14). To see (3.15), note that by (3.8),
<(E,n) s (hrsVY2l>=aollS"P1+T " Woll +ellYf , for all (¢,,¥2/€(¥xz)?,

Hence for all 8'y,+T'P,%0, we have

RICRVNCIR VLRI L3 B :
anm = (3.21)

which, in view of (3.20), yields (3.15).



Convefsely, suppose that (¢),¢2) of norm I solves either of conditions
(1) and (2). Let us first consider the case (1). Set wo=<(E,n),(d1,$2)>/
§5'91#7 92l . It then follows from (3.14) and the equality
<(g,n)s (d1,02)>=acll 510147 dali+ell gall maup {<ao(Su,Tul+(ey,0), (1,42)>}
JuLtea, vyis g (3.22)
that (E,nJ€C (00,0)N3Cc(a0,0). Hence by Lemma 3.3, uo=ao (S 9147 §2J i8 |
"an optimal solution. Next, consider the latter case (2). In this case,
we have,'with oo defined as before,
) <!E,n) (¢1,¢z)>=saoﬂS'¢;+T'¢zl+€!¢1|,- (3.23)
for all (wx,wz)e(YxZ)' satisfying S'Y1+T'P25%0. But if S'41+T "¥2=0,
we have, by Lemma 3.5, <(g,n), (Y1,¥2)><ely1ll. Hence (3.23) holds for
' all (w{;Wz}efrxz)'. This, in turn, implies (E,n)ece(uo,o)nac (a.,a), =
with (¢1,¢z) defining a hyperplane of support of € e(G0,0) at (g,n). Let
'uoeuovx and y.eeu, be any preimage of (E,n) so that (E,n)=Sue+(ye,0). .
It then follows from Lemma 3.3 and (3.18) that ue is an optimal solution.
and useae (571777827,
Finally, it remains to be shown that ug is unique if X is rotund.
To this end, let ug¢ and u; be two solutions. Then jusl=jlu;j=ces and .from
(3.16) and (3 17), we have
<uo;5'¢1+T'¢z>=<ux,S'¢:+T'¢z>=&oﬂ5'¢1+T'¢z| (3.24)
In other words, the hyperplane S’¢;+E'¢g#0,supports uon at ug and u;.
This implies uo=u; by rLtundity of X. ’ i
Corollary 1. Suppose that (E,n) ie a regular pair. Then the folioviﬁq
duality relation holds: | '

sup I.<( 65r¢‘f? ;:Ee } = inf {Hunl jE-Sullse, n=Tu, uek}.

isnerhie
Corollary 2. (¢i,92) defines a hyperplane of support of Cela,0) at

f§oq) tf and only if the veotor ($1,92) solves either of the following:



(1) { =GS(S'¢;+T'¢2)+E$1

n=al (W )

S(E,n), (d1,02)>-€fdy
(2) max { } =0,
US4 +Tha00 1579147 742

Corollary 3. Suppose that (£,n)€dC.(a,0) is a regular pair, and
that Banach spaces X and Y are both smooth. Then there are at moet two

hyperplanes (0,%2) and ($1(%0),42) of eupport of Ce(a,0) at (E,n).
Proof. 1In proving the theorem, we have shown that ¢; and S'¢,+T'd2(50)

define support hyperplanes of elUy and agly at £E-Suy and ug, respectively.
_Hence, by noting that T' is one to one, the stated result follows.
Corollary 4. Suppose that (E,n) ie a regular pair. Then the unique

solution to the Hilbert space version of Problem I is given by

u,.{r*(rr*i‘n, o W lsTerzertnglge,

(AI+5%5) g*g | . |
- (AI+S*S ) TR (T (AT+8#S A TR Y (P (AT+5%5) 5%E-n), \\ﬂsr*(rr*)’.‘,rn-;l>e,

where T% denotéa the adjoint ‘of T, and A>0 {8 a constant uniquely
determined by BSuu-€H=€. |

Proof. Note thét Hilbert spaces are rotund and smooth, so that there
exiéts a unique extremal ¢ given by $=¢/1¢{l. This corollary follows from
(3513)9 (3.14), Corollary 3 and the next lemma.(c.f. [61).

Lemma 3.6. Let (E,n) be a regular pair and suppose that the inequality

inf uulsudzwinf fuli=as (3.25)
!l;;f;l‘lll peTy .

haidq. Then the hyperplane (¢1,42)(¥0)e(¥Y%2)' of eupport oflce(a.,O}
at (E,n) eatisfies ¢1%0.
Proof. . Suppose contrary that ¢1=0. Then from (3.1), we have
XN, ¢2>azaolT 9a). , (3.26)
That is, n&int{ue?(UyJ)}i But this, in turn, contradicts (3.25)(C.T.[9]).
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4. Minimization problem with bounded phase coordlnate.
In the preceding section, the function space version of the minimum
effort control problem with bounded phase coordinate was studiede Use
of the set.cs(u,o) directly led to the main results: existence theorem,
necessary and sufficient conditions, uniquehess theorem for optimality.
Attention now turns to the investigation for Problem II. We shall consider,
in the present setting, the set Ce(p,a)={p§7Ux)+(eUrxuvZ}}.(e>0, a>0).
Most of the arguments we develop can pafnllel those of ﬁhe'preceding section.
Definition 4,1. We shall say that Eef is (esp)wregular (with respect
to §) if there exists at 1east one element uepvx which satisfies iE=Sul<e.
Lemma 4.1. ZLet £ be an (e,p)-regular élement and auppase that (Esn)
€3Ce(p,a). Then any hyperplane (¢1,92)(%0) of eupport of Ce(p,az at (E,n)

satiafiee ‘
(1) C<lEsn)  (b1,02)>==olS b1 +T 9] +ef $al +alidal, (4.1)
(2) ib20%0, e (4.2)

Proof. It is easy to see (4.1). Hence we shall. show. (4.2) by céﬁéra-
diction, Suppose that $2=0, Then we have ¢;~0 and, for all uex,
lulls'¢xi+l£ Suli¢1ﬂ2=<€,¢1>;=pls'¢t3+€ﬁ¢1l.
Hence : 4
(1E-sub-c)ho1l=(o-Nullhs'$:dZ 0,  for all ueplp.
This is contradictory to the assumption.' ‘
Corollary (C.f£.[2]). £ fe an (c,p)-regular element if and only if
V | S0><plS'dl+cli¢),  for all d(¥0J)ex’.
Thrbughput the section, wé shaell assume that é is an (e, p)-regular
element with respect to 5. 7
Lemma 4.2. Suppéee that (E,n)éace(p,u)- Then for all ueply aat{sfyinq
jE-Sullse, we have: _ _ |
' in-Tuj=a, \ (“f3)
Proof. With (¢,,¢2) defined in the previous lemma, we have, for
all uexr, | | |
Bub IS ¢1+T "ol +1E-Sul o1l +in-Tul Hé2f=(E,n)=z ol S '91#T "$2ll +el 1] +al d2l.
Hence -- o |
(ﬂn-Tuﬁ-q)ﬂ¢z“E=(o-iul)I3'¢1+T'¢zﬁ+(€f‘5-3uu)ﬂ¢xla (4.4)

which, combined with Lemma 4.1, proves the lemma.

o
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The following results are analogous to those in Lemma 3.4 and Theorem
3.1.
Lemma 4.3, Supgoée that (E,njs3C.(p,a). Ther for all G>a, we have
 (g,mIeint{Celp,8)) CCle, Rl
Theorem 4.1. Problem II has ¢ solution for zach (E,n)€3Cglp,a) if
and only if (E.n)ecé?p,u). v
In order to'égmpletely characterize the optimal solution in terms of
. the hyperplane, ve neeq the following definitions.
Definition 4.2, Wé shall say that nez iz normal (with respect to
(8,€,€,0)) if either ' |
| inf (In=Tul 3>inf {in-Tui} (4.5)

fussp ueX

or
inf {In-Tul}>>inf (§n-Tul} (4.6).
RE-SulsE weX

holds.
/ Definition 4.3. We shall say that neZ is (g,p)-normal (with respect
to (§,£)) ir '

inf {In-Tul}=1inf {(§n=Tul} (4.7)
funsp

(E-Sulst E-Sulse
holds. *

Lemma 4.8, Suppose that (é1,b2) supports Celp,0) at (E,n). Then we
have {C.f. LaSalle [5], Schmaasdeke and Russell [1:1) ,
(1) vHS'¢1+T’¢z"+ﬂ¢nﬁ#0, for each normal element neiz,
o (2) Is'd1+T¢2ll%0, ~ for each (e,p)-normal element nez.
Proof. Proof is similar t0<that'of Lemma 4.1,
We now summarize: .
Theorem 4.2. _Assume that eiiher (A1) or (A;) astated in the corollary
to Theorem 3.1 hojﬁs. Then there exists a esoluticn to Problem II for
each (e,p)-regular element E. Suppose, further, that n is a normal element.
Then ;o ia an optimal solution if and only if ue takes the form
Uo=0(S G147 §2), | (4.8)
where (d1,92) of norm 1 is determined by either o) the following

. [£=pS(S'¢;+T'¢z)+e$a, (4.9-a)
N=pT(STo14T 92 )+ {(<E,b1>+<n, d2>-0 08" ¢1+T P2l -chdrh)/0é20}$2, (4.9-b)
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2) ,mg <(5,ﬂ),(¢1;¢z)>-?J|S'¢1+T'¢_z||-Ellhll}' (4.10)

u(ﬂ,’ﬁ“a) -] ' “¢2‘ v
 In this case, either uoed{ply} or (E-Su,)ed{ely} holds. Moreover, if n ie

an (€,p)-normal element and if X ie rotund, then uoed{plUz} is uniquae,

Application to a minimum effort problem.
vAs an application of the theory developed in this ‘section, we
ghall consider a minimum effort control problem with amplitude constraints.

Let us suppose that a dynamical system is described by the lineér
differential equation: ' '

du(t)/dt=Ax(t)+Bult),

whefe x(t) 1s an nxl1 state vector, u(t) 1s an rxl1 control vector, and
A,B are constant matries of apprﬁpriate dimensions. A cont?ol vector u(t)
which satisfies [uj(tﬂéip (§=1,+++,r) wil]l be called admissible, The
problem we shall consider is to find an admissible control vector ul(t)

which drives the system from a given initial state x(t¢)=2z¢ to an e-

nel hbdrhood of the target state z%, i.e., max | (t:)-z‘laln{tgﬁoz‘lsé,
L8 i ® 4

®jén
while minimizing the fuel functional
A t1
I(u)=| 3 jug(t)] dt,
. J=l

where to, and ¢; are flxed intial and final times, respectively.
At the outset, we shall make the following (e,p)-regularity‘assumption.

(A) There exists at least one admissible-cbhtroi u(t) which enforces
the sjspem so that jxz(t,)-xt|<e. ‘ ‘ |

 To formula@e the problemvin functlion spaces, let us introduce some
standard notations: |
Lr(r,[to,ﬁx]): The spa?e of (équiyalence classes of) r-dimensional vector

valued functions, deinfed and integrable (in the sense of

Lebesgue) on the interval [to,%1] equipped with the norm

t2 5
!Ifll-{[%lfj(t{!'dt}é, F=(fy s sfr)s (1SPS*00).
where, for p:iw, the norm represents the essential ‘supremum
of f. |
la(h): The n-dimensional vector space equipped with the norm

Hall= max |2, 1.
zijen 9.
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C(r,[to,t1]): The space of r-dimensional vector yaluéd continuous functiona

defined on [tys,t1] equipped with the norm

= max ma .
Ilfllt'“:t‘mg A2

HBV{(r,[test1])¢ The space of r~dimensional vector valued (normalized)
- funetions of bounded variation on [te,t1] eqqipped with
the norm
=0 (£ 0t ta]),  flta)=0,
v(f:,[te,t1]) denoting the total variation of fj on
[to,t1] (see [3], pp. 24l1).
We then specify the basic function spaces and linear operators as follows.

“X=La(r,[te,t1]), Y=Ly (r,[test1]), Zmly(n),

T(X—>Y): Tu=-u (the natural embedding of X into I),

1 ) :
S(X~>2): Su-f e 95, 00140,
to

. Act,»
By taking E-z‘-e. ! tq:. and n=0, the problem at hand is seen to be

described in terms of Problem II. Note first that; since Li(r,[to,t:1])
can continuously and isometrically be gmbeddé¢,1ntgﬁuBY(r,[t.,t.]),;and
since Lw(r,[to,t1]) and NBV(r,[te,t1]) can be :idé;ui;ified, respectively,
_with the duals of Li(r,[te,£1]) and C(r,[te,t11), the assumption (Az)

in the corollary to Theorem 3.1 is, in _this case, satisfied.*Thus, by
applying Theorem 4.1, we have

wo=p(5741-92)={(<E,91>-pUS "br-d2k-cld10)/1$:1 1%, (4.11)
Here‘(S'¢1)(t)¢§*€fﬂ%"1)¢x is an ahaiyficffunctlon} and ﬁhé;éiéfemals
(573773?7§L.{r,[tn,t1])1and $:€lu{r,(te,t1]) are given, réspectively, by
(6.£.[111) -

5701820, () =1, ted; (the complement of 4;),
(¥a7;0t)20, seBy=ltelte,t11](42) ;(t)=142ll},
(¢z)4(-t.)- (TJJ(HSO, t@;-{te[to.,h]lMa):ﬂt)-—“,"},
a, ’

te(a:}ua‘;)‘ N



[

13

where g=1,°*',r and 4

i§|($') (t)ldt =21,

Jd
Hence, by (8.11), the optimal solution can be characterized in @ more

- explieit form:

psign(?§'¢1=¢zij€$f]f teAJc(BEUBB},
0=(ugljltl=o, tednB;

(ugJj(t)m A f f’ (4.12)
-p=(usl) j(ti=0, tedjnBj,
0, te(BjuBz)° .

We shall show that, if the métrix 4 is non-singular, then mes[éénfa}uag)]
the measure of the set Agn(ﬂguﬁg)‘is zero, and hence the controls (uo)é(t)
(§=1,*°,r) are uniquely determined by (4.12) (c.f£.[1], [5]).

To see this, suppose contrary that meel4% n(EtUBJ)] is poeihive for
some J (Isjer) Then, by appealing to eﬁelvticity of the function (3'¢g)j(f),
we have _

I(5'61)5(8)l =hoall,  for all telto, 1]
On the other hand, it can easily be deduced that, 4 being non-singular,
the funetion (S’¢g)5(t) is equal to a constant if end only if (S'ég)j(t)ao
for all te[te,tlj. But this contradicts é20%0 by Lemma h.l. ’

Remark., In order that S'¢;-¢z¥o for every hyperplane (¢;,92/ (%0} of
suppeft of Cgfp,a) at (£,0), 1t is necessary and sufficient that

mznl!uﬁ:»znf ful.

BE-Sulse
~hm§e
Hence, it follows that*if A is nonmsingular, the fuel functional Ifu)

can be made smaller by enlarging the admissible class of control functions
80 as to include impulses, and in this case the optimal control ug may.

consist of impulse functions.
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On Certain Necessary and Sufficient Conditions

for Singular or Bang-Bang Controls
N. Minamide and K. Nakamura

ABSTRACT

In this short monograph, necessargénd sufficient conditilons for
the existence of Bang;Bang controls to the Final Value Problem .and
the Time Optimal Problem are studied. It is shown that the j-th _A
component uj(t) of the optimal  control u(t) (Jug(t)L1, 1=1,:+,r)
is of Bang-Bang type if and only if the release of the amplitude
constraint imposed on the J-th component brings in the better index .
of performance than otherwise.

1. Introduction.

In solving optimal control problems, we sometimes encounter
situations in which Pontryagin's "Maximum Principle" may provide no
informatlion for determining optimal contrpls. These situations are
ozr

M a

to as "singular ones" and the corresponding solutions as
"s;;gular controls". The sigular solutions have recently received
significant attention [3-11]. Most of the papers are concerned with
optimization problems in which the system equations and the index of
performance are linear with respect @ﬂ the control'inputs. For this
class of problems, the optimal control turns out to be either 6f
Bang-Bang type or of singular type, as Pontryagin's M.f; indicates.
D.H.Jacobson[10,11Jobtained new necessary conditions for singular
soiutions to be optimal by using Differential Dynamic Programming methecds.
J.P.McDanell and W.F.Powers [§] proposed new Jacobi-type necessary
and sufficient conditions for the second variation.

In the study ofiﬁime optimal control problem, J.P.Lasalle defined
in [1] the concept of "Normal Systems" and guaranteed the Bang-Bang
optimal control for the?e systems. Athans and Falb [2] also paid
particular attention to the discussion on the existence of singular

controls for the similar kinds of control problems. The purpose of the

present monograph is to give further investigation for existence or

(/57
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non-existence of singular controls to a particular kind of control i

problems, l1.e., the final. value problem and the time optimal problem.

2. Problem statement.

Let the dynamical system be described by the following differential

equation:
dx(t)/dt=Az(t)+Bu(t), xlt,)=x,, (2.1)
where X(¢) 1s an mx1 state vector, U(Z£) 1is an rxl1 control vector and
A,B are constant matrices of appropriate dimensions; respectively.
& (measurable) control vector function u(t) is called admissible 1if
each component uJ(t)'satisries '
luj(t)i§1, (J"sl,m,r). (2.2)
We shall consider the following two problems;
FYP(Final Value Problem): Given the fixed final time t, and the
final desired state xd, find aq admissible control u(t) which minimizes
1= { % axd(ef>~xgt”}/*’=§x(tf)fxd§|. (15 psteo) ‘
TOP(Time Optimal Problem): Find an‘admissible control u{?) which
enforces the system (2.1) from x(tg)=xg to the origin in the miniﬁum

time t¥=t,.

3. Investigation to FVP.
We shall first study FVP and show how to deal with the problem.

We' shall prepare some lemmas and definitions.

Definition 3.1. We shall dencte by R(t) the reachable set (from the

origin) at time t:
: .
Ritr={2®)] x0t)=f FE-DBWAT, 14@Is2 Goio-0),
whereAE(t)=€5tiﬁ the transition function of the system (2.1).

Definition 3.2. We shall denote by Ry(t) the reachable set at time t

with i-th component released from the amplitude constraint:

t ‘ .
R;(:t)={z(:t)] xuo;/o é(t-r)Batt)dt,»;a}owI;_z (j#i), |Ui(D)<roo}

(r¢)



17
Lemma 3.1. Both R(t) and R (t) are closed convex sets in l(n;p),

where L(n;p) denotesthe n-dimensional vector space equipped with the .norm.

xi=(Z Ixq)° Y.

roof' The closure of R(t) and the convexity of R(t) and Ri(t) can .
pe shown as in [1]. To see the closure of Ry(t), note that any sub~
space in a finite dimensional space is closed, and the vector sum of

A ané B, with A closed and B compact, 1s also closed.

We further consider the following two sets;

R (T, 0= R(x)+ o U(Lin:ipd) ={y| y=dt1. 7 6RD), FATRA

Rilt,d)= Ri)+aT(L(25p), (.

Lemma 3.2. Both R(t,0) and Ry(t,0) are closed convex setsfig‘

Proof., Proof is similar to that of Lemma 3.1.

Lemma 3.3. Suppose that(x%- 3(tp,5)xg)€R(t,d) . Then for all
admissible contrel u(t), we have -

I 2t~ Xt =,

Proof, Since R{t,®) 1is closed convex body, and xduf(tf,to)xo lies

on the boundary of R(t,d), there exists a hyperplane such that
< By, 0)2 , P> 2 <R Y,00, ¢ 5 €3.1)

where <x q?a‘éixiéi denotes the bi-linear form and

<Rl ) ¢>= fo?; <89 = <RIL)+A T L2 p), P> =/ VB* &4, )i ds+ ol
o) ’ ts i .-
On the other hand, we have

/f”‘ !uj(i)llb P, )Pl dt +Z 1 %; (4 ﬂ'l!ﬂ

j =, Wb} é(ff.ﬂ?"dt»f <z¢ Pty 1), ¢ - / Bty tIBuct), P> At
=< i‘i 2l i, )2/ IB*E T, t)phdt + i, ‘ (3.2

Hence,

r - v ; »
(Uil(ff)—ldﬁ"d)”‘f"”gé% ’?j"g?‘[-ff,s)f’,ds :/t’)f’;, ,'uj(‘f)}[@?é”(fj,‘f)fidtgoj} (33)

which proves the lemma.
Lemma 3.4, uo(t) defines an optimalcsolution to FVP if and only if
ug(t) takes the form:
(w)jtt)= acqnl [,; &y, )¢ 3 %)

where_? satisfies either of the following-
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. tf
2 x;f-@(tf.wz.)j -—‘4 [ty $)8 aipn LB*F ety 2 aff)
+ (€Tl t)2,, > "'[ﬁ’”ﬁfw pastign’ 1] agnlfd,
(F= =n) - - -3s)

2
- {414« Eity,toz,, P> -/, 18", 9P| ds
1?10 Y

Jea). 34

Proof. Let &, denote the infimum of o such that {¥% 2cf, 1oz} ety o).
It then easily follows from Lemma 3.1 thatfx3-F(t.,t)xg}eR(ty, oL).
Let an admissible control ugy(t) and a vector in a unlt ball in O(n;p) Yo

be such that ff _
4. Z(¢,,t2, =-_[: &l 128 t_q,(s)ds'f Ao fo. (3.7)

Lemma 3.3 then shows that ug(t) is an optimal solution to FVP. The
conclusions of Lemma 3.4 now follow from Eqs. (3.1), (3.7) and the
easily established fact: (xd-- (tr.to)'xo)eﬁ(t,,ds) implies an.d is
implied by : '

< d-Fgtat,, v S < Rl4a0, $>, for ald pely, (3.8)
where equality holds for some R(x0)eU(ftnp) i.f and only if {x_d- (tf,tﬂ)xo}.

&IR(t;,00 .
. : g excepl
it is, at this point, to be observed that, if Iyé 4, 0¢%0,0n the set

of measure-zero, (uo)J(t) can be uniquely determined by the condition

(ug)y(s)=sign(bf EE;, ]

Definition 3.3. We shall say that the ,j-'t.h component of the optimal
solution ug(t) is of Bang~Bang control with respect ‘to a hyperplane @
if {:f §’fff.ﬂ;‘9v0 holds except on the set of measure-zero.

Now, we are persenting one of our main results.

Theoren 3.1.(0.1‘.[13]) - In order for the j-th component of the optimal

solution uo(t) to be of Bang~Bang control with respect to any hyperplane
of support of R(t,d), it is necessary and sufficient that

inf 12%-z2tep) < inf nd-ctp=a, ¢3.7)
uilga 1%jct)s2
(2=l ==y J4, jbl)-,7) U=y

(&)
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In this case, the j-th component (uO)J(tl is unique.

proof, Necessity: Proof proceeds by showing contradiction. Suppose,

contrary, that the reverse inequality in (3.9) holds. It then follows

easily that
(- Ty, t)%s) €2K; L0,
Since Rj(tf,da is a convex body, there exists a hyperplane of support
of Ry(t,0l) at (x3-F(t,t,)xy) such that
2Bty tot, > 2 <K, £,
By app:ealing to the definition of the set Rj(tf,a), we can easily
arrive at the conclution:
@j‘%»(ff, 1) f=0, for all teltg,tpl,
contradicting the assumption of the theorem.
Sufficiency: Agaln, we shall show by contradiction. Suppose that
there exists a supporting hyperplane ¢eU(£C"-;P)) such that [J?]?‘i*(tf,ﬁ)cfko
on the set of:po31t1ve;m§a5ube' Since [?;éﬁifirf] is an analytic
function of t, this-:assumption implies
- bj’:ﬂtfﬁ?;a for all T €Tto, b)),

Then, for all uJ(b) saz}sfying esszgup lu'j(t,)léf'c’o (j=4--~ 1), we have

Hzc(;;rx‘*ﬂ el + f z?, Iu; <t)llb*§*c-e,,t)¢idi

2 <243, 2., 9> 2[ z: | b B Fl AL+ AU,

i.e., for all P U (RIS Cinj),

(-2 A1-0) 1) gj t’z;_ 1b; e 0ldt - f;i: u: O b F I AL 20,
v ) 2 U
ggigg Egg?radicts the assumpbion The proof of the uniqueness may be done
b, Investigation to TOP. ‘
In the previous section, we showed the necessary and sufficient
condition for Bang-Bang controls, or in other words, for non-exlstence

of singular controls. This result is now extended to TOP in this section.

We first remark that finding a control u(+) which transfers the
system (2.1) from x(t )=x0 to the origin at time t

O=2(t)= Mt’t‘z,ﬁ-j Act- )Ba(t)dz
to

(/7)



18 equivalent to finding u(-) such thac

-At T_
- °1,=ft Byt dT .

Hence we consider the following two sets that correspond%\to R(t)

and Ry(t) in the previous section) /UL;T,L{)wkﬂv
Definition 4.1. A4(Z)= {7/ yf é 34{(3),;{@ ;j 151 g=!;~=»,r)},
Definition 4.2,

y I-
A}(f}z{y!yf/; e'qs@a/s)ds, A ES (z'gg), /l{j/<‘fwj‘.
Deiinition 4.3.

5:3"”{?/ 7= /. g3 UsHds, zaé'wf u (] <o Gl )}_

Lemma 4.1. Define, as usual, the distance of two sets 4,B in Lnip) by

a{A,B)= man] <wp inf {ta-by [ A {pa~-ge (4.1)
’ { zze; beg } & & g:,ég ¢ })Z
A{t) and Ai(t} then are continuous set functions of ¢ with respect to

the topology induced by (b.1).
Proof., Prool may be done as in [i], and hence omitted.
Lemma 4.2. For t>t, ahd 8>0, we have
B,=8,,,=RAIB),
where R(A{B) denotes the range of (A!B)Efrﬁfﬁﬁf"'iAﬂﬂﬁi

Proof., See, for example, the reference [12, Chapter 21.
¢

Leoma 4.3. Let € denote the matrix whose columns‘are consiructed
from 21l the independent cclumn vectors of (A)ﬁ)a We then have !
(a) R(C)=R(A[B), |
(b} rank(C)=dim(R(C#})=dim(R(A[B)),
(¢) N(e)={x| Cx=0 }=fo0}.
Proof. Easy proof is omitted.
Lemma 4.4, Supposg that éfAtELeaR(AIB). Then u(s) solves the
equation ‘

5 A 1-ﬂs
-C" e z,,—.—C”/e B Uts)ds (%2)
4

if and only if it solves

~Ate
-€ za/ e Bucsids. (£3)
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proof. The proof of "if part" being obvious, we shal_l show "only if

part". DE(u(s) (solves Eq. (4.2). We then have, from Lemma 4.2 and the
V"‘W-\i Tk~

hypothesiss '
At" f e M(sus}e)acc),\m*)a{a}
te

which proves the lemma.

Lemma 4.5. Let c# denote the minimum time of TOP, 1.e.,

- Jto=] 6 BuTs)dS fov dome /ZLJ-C-‘JISJ ¢ -*,r)
Then,
- "%, e 21 CH AL,

Proof. It can be shown, by using Lemma (4.1), that t¥* is the

minimum time if and only if (C.f.[1])
_f eat A, gy
Since C®* is onto, and consequently maps open sets into open sets,
wve easilyi' see, by vitue of Lemma 4.1, Lemma 4.4 and Eq.(4.4), that
- &M i me).

We are now ready to state the main result.

Theorem 4.1. Suppose that -éALER(AlB). In order for the j-th
component of the time optimal solution uo(t) to be of Bang~Bang control
~with respect to each non-trivial support hyperplane belonging to
R(AIB)=R(C), it is necessary and sufficient that .

s {t |- 0 e AI=tt > nf 1] - Ehe ]S T, wa)
Moreover, in this case, the j-th component (“O)J (t) is unique,

Proof. The necessity of the condition (U4.5) can be 'shown similarly
a.s in Theorem 2.1. We shall hence show the sufficiency. Let $=C$ER(C)
be X3 support’lng hyperplane of the set A(t*) at - €_ Io :

<- eﬁx. , C$> >f //B*e"’ “cplds, (% &)
We shall then show that b} e_”‘cf %0 for all se[ty,t*] except on
the set of measure-zero. To see thls, suppose cohtrary that b; éﬂ Sc¢sd
on‘the set of positive-measure. Eq.(U4.6) then shows thatf defines

AL,
a support hyperplane of C*(Aj(t*)) as well asVC*(A(t*)) at =& Z,..
°



22

Let ¢>0 be any positive number such that t®#>t+e>t. We then have, by
the assumption of the theorem, -éAtoZ,eAJ (t+£)C.AJ(t*). Since ¢
supports C*(Aj(t*)) at -c*éﬁtio, it must be that ¢ also supports
C*(Aj(t«t-i)) at -C*éM‘xo: Ite ,%,-A*s

<-e* é"‘;_f,) $> =2 <c*(Aj(£fc>),¢>= /f‘ NB"e" “C pllds, (47)

The reverse inequalities in (4.6) and (4.7) are obvious, 50 that we

*
have 1 P
' / n8* e ephas =o Cad
tte
Eq.(4.8) implies . |
8" e Sc'?ﬁ =0, for all se (-0, +%) (#.7)
Succesively differ:entiatiﬁg Eq.(4.9) (n-1)-times and setting s=0
yield . CCF=0

(AB)"C:V: o 16D

(A”" 8)*Cf= ]
From Eq.(4.10); we conclude thatC$=0, whence ¢ =0, contradicting C¢

=40, by hypothesis. This contradiction establishesvthe desired result

Lﬁé"k’c f:sa) . for all tetto,tf] except on the set of measure-zero.

J

5. Conclusion.

Wehave investigated the necessary and suf‘f"icievnt conditons for
the Bang-Bang optimal controls. As conclusion, it can generally be
suggested that singularity for these problems essentially arises from
the lack of the Lmiqueness of solutions. Hence in order to meet such
singular cases, it 1s advisable to set the second criterion functional
and make the solution unique.To take an example from the final value
problem, suppose that b; é.,q";?‘:a, )=/,-";'7('T; £r) , where 75 is a
su[;)port hyperplane. In this case, admissible solutions uJ(t) (J=1,"',rl)

which satisfy

P T
@58 us) ds= 2o Bty tox ) - ot 1Pl 1951 ipnl 1 o0 0T,
To ‘

turn out to be optimal, as will be seen from Eq.(3.6) in §3. Hence the

second criterion functicnal

Y
S
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T =§ = lu)wlo(t
2 w J

ys, for example, suggested. '
. Finally, we note that our results contain those obtained by Lasalle

"[1] and Athans and Falb. [2] as special cases and that the extension of the
results to the time varying systems is not difficult.

Acknowledgement. Authors would like to express their sincere
thanks to their laboratory members, especially to Mr. Q. Matsuo and
Mr-’&a Funahashi, for helpful suggestions and discussiohs on the present
paper.
REFERENCES

[1] J.P.Lasalle, "The time optimal control problem", Contributions to
the Theory of Non-Linear Osillations, vol.5, Princeton University
Press, 19609 pp.1-24,

.[2] M.Athans and P.L.Falb, "Optimal Control", McGraw-Hill Book Company,
vNew York, 1969.
(3] Y.I.Péraev, . "On Singular Control in Optimal Process that are
Linear with respect to the Control Inputs", Automation and Remote Control,
Vol.23, No.l, pp. 1127-1134, 1962.
(4] W.M.Wonham and C.D.Johnson, "Optimal Bang-Bang Control with
Quadratic Performance Index! Transactions of thé ASME, J. of Basic
Engg., pp. 107-115, March 1964, »
[5]R.W.Bass and R.F.Weber, "On Syn%hesis'of Optimal Bang-Bang Feedback
Control Systems with Quadratic Performance Criterion", Joint Automatic
Control Conference 1965, pp. 213-219, August 1965.
(6]B.S.Goh, "Necessary Conditions for Singular Extremals involving
Multiple Control Variables!] SIAM Journal on Contfol, Vol. 4, No.h,
pp. 716-731, 1966.

Nis
SIAM Journal on Control, Vol.l, No.2, pp. 309-325, 1966.

s, "The Second Variation for the Singular Bolza Problem",

(8] J.P.McDanell and W.F.Powers, "New Jacobli-Type Necessary and
Sufficient Conditions for Singular Optimization Problems", Joint Auto-



24

matic Control Conference 1970, pp. H62-568, Atlanta, Georgila, June 1970.
{9] R.A.Rohrer and J.M.Sobral, "Optimal Singular Solutions for Linear
Multi-input Systems", Transactions.of the ASME, J. of Basic Engg., PP.
323-328, June 1966.

[10] D.H.Jacobson, "Differential Dynamic rrogramming mecvhods for
Solving Bang-Bang Control Problems", IEEE Transactions on Automatic
Control, Vol. AC-14, pp. 661-675, December 1968.

{11] ——, "A new Necessary Condition of Optimality for i.Singular
Control Problems", SiAM Journal on Control, Vol.7, No.4, pp. 578-595
1969, '

[12] E.B.Lee and L.Markus, "Foundations of Optimal Control Theory",
John Wiley & Sons, Inc., New York, 1967.

(13] N. Minamide and K. Nakamura, "A miniﬁum cost gontrol problem in

Banach space", J, Math. Anal., Appl., to appear.

(24



