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Summary

An adaptive acceleration of general linear iterative pro-
cesses is devised for solving singularAand nonsingular systems
of linear equations. At each step of the procedure, an acce-
leration parameter is controlled from information available in
the current two iterations of the original process to effect
nonlinear feedback to the process which causes 'attraction' of
virtual sequences, similar to the phenomenon suggested by
Wiener, and produces extremely rapid convergence of the accele-
rated process. The method can be efficiently applied to almost
all of linear iterative processes. The relations to generaliz-

ed inverses are discussed.
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1. Introduction
The purpose of this paper is to give an adaptive acceler-
ation technique of general iterative processes for solving a

system of m linear equations in n unknowns, written
(D Ax = b,

where A is a mxn complex matrix, x and b are n and m dimension-
al complex column vectors respectively.
In many linear iterative processes, matrix equation (1)

is reduced to the analogous equation

(2) x = Qx + Rb,

where the nxn convergent matrix Q and nxm matrix R depend only
on A and satisfy the relation

Q+RA=1

(3)
ImA n KertR = 40},

then an stationary linear iterative formula
(4) = 9(xt, b) = Qxt + Rb,  i=0,1,---

is obtained. We have many iterative processes of form (4);
named Gauss-Seidel, Jacobi, Extrapolated Seidel, Extrapolated
Jacobi, SOR, ADI, Block SOR,etc.for nonsingular matrix A [2][6],

and Weak Steepest Descent [5], Kaczmarz [4], etc,for possibly

singular A. Different processes are distingq@hed by the choice
a
of Q and R. Nonstatioary (cyclic) processes such as Richrdson

method can be considered as a kind of stationary process (4)
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if their one cycle of acceleration process is considered as
a single step.

The iterative process (4) generates a convergent sequence
{xé}, whose limit point is a solution of (1) in some sense,

more precisely, we have

©

. L -
%&2 X" = PKerA X A b
(5) _ o
A = (I - Q) R,

where x°is an initial vector, PKerA is the orthogonal projection
onto KerA and § is the restriction of Q onto ImA% Note that
the matrix A™ is a generalized inverse of minimum norm reflex-

ive type [3], i.e. AN A=A, AAA = A and (AA= KA.

2 Acceleration procedure

In this section we develop an acceleration procedure to
improve the convergence of the process (4) with nonnegative
definite Hermitian matrix Q.

If we know all the eigenvalues of Q, acceleration can be
executed perfectly. But they are ordinarily unknown. Then
in ordinary acceleration process such as Richardson method,
enclosure bound of the eigenvalues of Q is estimated and ac-
celeration parameters are chosen by the knowledge of Chebyshev
polynomial on this interval [2][6]. These acceleration methods
adopt minimax cfiterion in the choice of acceleration parameters,

that is, this choice is made, regardless of current value x ,
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so as to minimize the spectral radius of the basic iteration
matrix of the accelerated process.

Contrarily, the method proposed below uses current inform-
ation of x's, that is , at each step of the procedure, an ac-
celeration parameter is controlled from information available
in the current two iterations of the original process to effect
nonlinear feedback which causes 'attraction' of virtual sequences,
similar to the phenomenon suggested by Wiener[7], and produces
extremely rapid convergence of the accelerated process.

Given a linear iterative process (4) with nonnegative
definite Hermitian matrix Q, we consider the following mapping

oy from C" to C" for any real o defined as

(6) q)OL(X’ b) X + a ((b(x’ b) - X)

[}

an + Rab’
where Qu= (l-a)I + oQ and Ru = aR.

is again of the form (4) since Qu + RaA = I. In the

%
following, ¢(x, b), ¢(x, 0), ¢a(x, b), ¢a(x, 0) will be

abbreviated as ¢(x), ¢'(x), ¢, (x), ¢a(x) respectively.

DEFINITION:  Given a sequence of real numbers f{o:J, and
an initial vector X,,, we consider the following virtual

sequence {XU} of which only diagonal and lower subdiagonal

ijeN ?

elements are really computed in the acceleration, defined as

Xpw,j = ¢(xg;) = Qxg; + Rb

X jel = ¢OU'(XL'J') = Q%.ch e Rdﬁ
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where i,j € N = {0,1,2,---' &a.
The sequence is well defined since ¢dand ¢ are commutative.
Note that the first column sequence {XLO}&N is generated by

the original iteration (4) and that

%_’::L)n}'o ka = %-i)’glo XL'.D k S N.

DEFINITION: Let sequences &hszjeN’ {eU}LjeN of column vectors

defined as

di..j = Xijw - kxd,j
(8)

ey = Xmj — Xij o i,j € N.

Then we have

1

o) ey = o)) = Qe

o L. = L.
Shg bafcii) Weed , 1,5 e N

The following lemma is easily deduced from (7) and (9).

LEMMA 1: e, ; € (ES(0) + ES(1))  for i e N*, j € N,

J
where NV = N‘-{O},,ES(A) = {_x c Qx = Xx} and (%) denotes

’

the orthogonal complement of X.

Now we introduce an acceleration algorithm.

ACCELERATION ALGORITHM: Given an initial vector x,, , determine

the sequence {xéls of vectors from the reccurrence formula

teN
N A 9 (%)
€l = xL'-(;I,l', - X
{10) €. = oleci) for i € N,
a; - hecd W2 = < €if, i
Feivni — € ¢l
Xiginn = Xiet * Q¢ €i41g

5
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where only diagonal and lower subdiagonal elements of the
sequences ixﬁ}&jé N and {eg}é/éN appear and if e/ ;. =.0
for some i, € N ,then the algorithm is terminated yielding
a solution but generally the algorithm does not stop in finite
steps.

The cpice of the acceleration parameter a; on the i-th

[

stage of the algorithm (10) is made so as to minimize the

function
(11) £ = Hegznl® = UQen |

that is, a; is so controlled that the two neéighbouring row
sequences come as close as possible on the (i, i+1) stage.
Let p, and o; be defined as

P = €€l , Ciwig >

v - e y?
(12) [ X4
s = Lem.il?
¢ ftece |
where e;; % 0 is assumed, then we have
(13) £(0) = eV (1 -2(1-pla+ (1-20; + o )a?).

Thus the minimum

(14) £,000) = leg W 0= 00

is attained at

|
et
{
O
ind

(15) o

Let A;'s are the eigenvalues of Q in the open interval

(0, 1) ordered as
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0 < X

where A, and A\, will also be denoted by A and A

o o0

respctively.

Corresponding to the direct sum decomposition of (ES(0)+ES(1)f’

(ES(0) ® ES(1))" =

we have the

ES(A\,) @ ++- - ® ES(Ay),

unique decomposition of e;;

16) e,. = g". @e D ee-- @ €
el € ES(A), ie N
Then p, and o; are convex combination of A; and A? respective-
ly, i.e.
N ter I AVR AN
(17) o, = ) S, = T Eyeip?

= R
e
Jul

Let the points (ﬂd,ﬂj )} in

{

and let the convex hull of

‘ < fesn’?

g

the (p,o)- plane be denoted by F;,

the points P, ,P,, -+ ,Pp be denoted

by CH(P, ,:--,Pr) {or abbr. CH). The equation (17) means
(?is(fi) € CH(P|’°."P\")°
Define functions g and h as
= 1 -0
g(p,0) =70 + o
(18) X
= o - 0
heyo) = 750+ 0
Elaborate calculation shows
) _ 2N _ 1
(M)lré glp,0) = g(A,2*) = ——5— ,
)€
(19) po)ecy
1
= 2y =
Max g(p,0) = g(A,A%) T

tpo)eCh
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Min h(p,0) = h(A;A2) = 0, ¢ €{r2z.rj

(g o) €CH
0y h(p,0) = h( (A —2)° h
ax ,0) = h(u,v) = where
(po)recH P ) (2-A-x)2 7 :
g o= A A= 24 v o= AT - A) + AP~ M)
2 - A -2 ’ 2 — A - A
Thus we have the following lemma.
LEMMA " 2: 1 1
Ler=x—s as T—=7,
(z1)
A -
05 8 8 == < A,
A = A .
where 8, = 4 h(p; ,0;),and decreases monotonically
2 - A=A
from to 0 as A varies from 0 to A.

2 — A

Now we prove the convergence of the algorithm (10).
THEOREM 1: The acceleration algorithm generates-a convergent
sequence {XL-L-} LeN whose limit point coinsides with
that of the original process (4), i.e.
(1 - Qkeb.

lim x,;; = lim x, = P X
[ > Ll (> (¥ KeTrA™ 90

Proof) Since ImA*-= ES(I)"L, we have

Cutinn = Q@iivt = Qesim = QQafiL
.4 . ‘:
then Hewmmls  BQUIQ el = A& Neil < A”'(JT:TOSJ)(\e“\I
Since dy,,; = oi€in.i = at’éei‘: , we have

M i e o Alle;d

; \ din L W o+ N€in it |
Ao+ & )teiit

Thus “ X L-Q-l'l:'-l - X L-l:v “

A
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i+ ‘ﬁ’ S + S; 1
s A (:!:0' J ) (OLL, ¢ 1 “e oo “
(42
< A K le,l,
. . _ 1 : .
since 6, < A and K= g7 + A > a;+ S -

Since the right hand side of the above inequality is summable,

the sequence {x;} is convergent. Since
E e s Mm GG - - o
then $(X, b) =X, where X = lim x,; . Noting that the
-]

component Py ...X,, is invariant under the transformations ¢

and ¢a's we have the desiered result.

'THEOREM 2: ~ ' P =
ix; -— xf s T=7¢ JTl(SJ el s

a _ - | :
where x = PKerAX” + (I Q) Rb.

Proof) It is easily seen from (3) that

KerA = ES(1) and ImA" C ImA* ,
then we have RAA™ = RA(I -~ GJ'R = (I - QJ(I - QJ' R = R.
We have
% ~ — -
ImA° 2 x; — X = X — Ab

= (I-3U - Qlx; - Ab)
= (I- QPRAK,; — A b)

O (RAx;; ~ RD)

]
-~
i
l

= (I -@Q'(T - Qxy —~ Rb)

= - (I—' Q’)_‘el,'[ ’
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where X;; = x; - PreraXii +  Thenwe have
= ~r 1 ) A:' il
ffx;; — X f < T=F “e‘lL“ < T—% A(EﬁJ}\le,O\\ .

This completes the proof.

Although the behaviour of (pé,oéj is very complicated in

~general, we have the following theorem.

THEOREM 3: If A1 + A2 > Ap , then
Ll-}‘r’no (B 9G) = (Pogy 5%ad ) = Poud
( 22 ) };g CQZL ’ Ggij = (pe/en ’ Gevgpp) = Pevm
P, Podd P, Peven = £

Podé Pr Peven Pr

| where

| 2= AF
A2(1 — AP

» & or 1/g = 1.

Either P,y € LSY, Poyen € LSTOT Peven € LS, Pyg € LS~ occurs,
where

Lst

{(p »0) € B-Pe 5 Alp ,0) > 0 }
f(p ,0) € B P ; A(p ,0) < 0},

LS

n

A(p,0) = H(p,0,r) + H(p,0,A)

Hp,0,%) = 1 ((o - X'+ (1-p)%%}.
1 -2p + 0

and ST denotes the length of the line segment ST between two

points S and T.

Proof i v = .
) Since /v, (4t QQaLeLL , we have

10
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- J'

<.
]

d .
€t gL
ﬂ"é = )\J (1 - oy - )\J))

= H(QL 50'[’7‘\;')-
Since H(p ,0 ,X ) is a quadratic function in X, it attains its

minimum at

x = P =9 = 0(p,0).
2(1 - p)
Since
'v »
Y, — R ~Z 2 .
0(p; s0;) = TZRVRE )")“8‘,“2 » (e NT
2 £ (1= ) el

we have A2 g @(pé,cé) < A/2. Since

: L4 , 6. Jon2 .
H(?L"O/L";{f,) = §l >\£ ()‘l— xd)(l ')\./ ) “8\2 “ , (€ I\’+
G R

we have for i € NT

(23) n ¢ 0 < n% .

Z -0 - A et

We have Ao+ 2(0(p; ,0;) = A) = -
| = (1 - A)lerl?

J=/
< A = A, (enNt
then if A — A < A2,
(24) H(p‘: :OL‘ 9>\4) < H(p‘: :OL,>\2) < tet < H(p‘_ :O’L'_sASr’)’
for i € N| (See Fig. 5-(a) )i.e.
(25) nlo< omZo< ... < nf, fori e NT.

We have also (25) if 2X 2 A ( See Fig. 5-(b).) which is

implied in the assumption of (24).

11
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Noting (23) and (25)% we have, as 1 — oo

1 v
e v et g

hepn® + lef W

(26) . P "

AT e ¥ N2 el )2

felw* + pelfy?

Then we have

o

UL Y SN ¢ R S Y VA L )

[4

nfoov A - ) (1 = Ml P /L

~where L ~= (1 - A)?fel i+ (1 - A)21e¥ 12, then

el 2 . (n}\ﬂue:w

AT nt ) onefre
(27)
_ AT = M)? el
4 then A2(1 = A)2 fley 17
an
_lfiﬂji_ N _liiili_
hefulz lelh2

Thus we have the first half of the theorem.

If there exists an integer i¥ such that P, P and the line
defined by A(p,0) intersect at (Q},q*), i.e.

A%2(1 — A) + A2(1 — M)
A+ X = 2AX

Pz*
(28)
A3(1 = A) +A%(1 - 0)
A+ A = 20

OL’x

then it is easily seen that

12
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(29) (p; %) = (pys9), for any i ¢ N*,
that is, The point (%*,%¥) is a stationary point of the discrete

dynamical system defined by (10) and (12); Generally we have
(OJ,O[) + (QX,QQO-

Assume that both Poy and Pewpn are in the same line segment LS?*

or LS™, the we have either
0 < - H(p 59 ,A1) < H(p;,0; ,Ap)

or 0 H(pz' » O, ’)\'-') < - H(pL' ,0‘; »A1),

L

which means %33;695’053 = P, or PI,‘contradicting (27).
Thus Pyd¢ and Peyen are separated by the line A(p,c) = 0, and
(Q*’%$) is an unstable stationary point of (10) and.(lZ).

This completes the proof.

For solving (1), 'Back and Forth' technique often yields
iterative processes with symmetric iteration matrices Q [2][6].
If two iterationsof the process with nondefinite symmetric
matrix Q are taken as a single step, the resulting iteration
has a nonnegative definite iteration matrix. So our accelerat-
ion algorithﬁ is appiicable to most of linear iterative process-
es. Moreover it is . applicable to already accelerated

processes such as Extrapolated Jacobi, SOR and Richardson

methods.

13
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3. Practical Considerétion

In practical computations, it often happens that some
leading digits of x;; and X/ coiﬁside With one another, then
cancelation occurs in the computation of e;; . But this is
remedied , without destroying the acceleration schema (10), by
transferring x to another memory locations and by cdntinuing
the original iterations (4) in the schema (10) with new right
hand side b* = b - Ax , just as in the iterative improvement
process.

We have generally

2
< eils Cg it < el Newm. .

But the computation with finite precision violates occasionally

this inequality resulting o, < 0, when A is close to 1. 1In

this case we put

(30) a0, = Lo |7 :
Neacl® = <oy > emi”

instead of the fourth equality of the algorithm (10), noting that

= 1 : - 2
@, = — , when o, = ;-
1 - p;
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Page Line O01d : ' New
3 9 5 is the restriction of Q 3 = QPImA*’ PimA*c I"PKerA'
onto ImA*. .
s by el = Lei, i Leii, €ii— Bin,i>
I8im.; — €iil? @i - Epy.e I?

7 b7 (f,6:)eCHR " ,Pe). (P.63) € CH(P B Jor-ce N,
8 vz bAieull + U Coa.inl Bdie, il + UCL.Li

s b1 Alli+ SOMGl CH IR

o1 ATE sl AT E (KA1 1

9 2 A_z':’*z K lleoeﬁ ﬁLK “eoon.

_ oot £ _ |
o 3 K= ‘__A‘+A>O<..+5‘,. K= "l‘-:“'A":"'>O<LfL+l

19



