goooboooogn
0 1300 19710 142-165

Analytic proparties of the lattice Green's function
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Abstract. Theory of functionz of a complex variable is applied
to show that the lattiee Green's function Gd(t;r) is an analytic
function of the variabie ¢, except when ¢ is associated with a
critical point. Singular behaviour of Gd(t;r) is given for ¢
around its singular voints @, for the case vhere W, is associated
with the non-degenerate critizal points., For the vne-dimensional
system, the singular behayiour is given also for the degenerate
cri;ical points. Possibility of cancellation of the singular

behaviour is suggested for some of the sites r. The singular

behavicur derived for Im Gd(t;O) is the same as given by Van HKove,
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1. Introduction

We consider a regular lattice. The lattice Green's function is

defined as the solution of the difference equation of the form:

t G (t;r) - g Jy Gylesrea) =8 " (1.1)

r,o

where t is a complex variable, r denotes a lattice site, and @ are vectors
from the lattice site r te its neighbours. d denotes 1, 2, or 3 according
as the lattice is one-, two-, or three-dimensional. The boundary value

of'Gd(t;r) is zero when irl+ =, The solution is of the form:

1 Eikw'_
Gd(t;i’) = *T:-; Iﬂ dk ?—:"W . (1.2)

where the integral is taken ever the fitstwgk first sevexal Brillouin
zones in the K-space and the denominator Vd denotes its volume. wd(k)

is given by
w k) =7 3 k2 (1.3)
d N 3 a H . °

which is a pericdic function of k; the pefiods are the reciprocal lat-
tice vectors X, which satisfy K-a = 2r times an integer for all a.

The imaginary part of the value at the origin of the lattice
Greén's function, Im Gd(s—ia; 0), is the level density g(s) of the

system of harmonically coupled oscillators;
g(s) = Im G (s - ic; 0) , C(L.8)

where s takes on real values and ¢ is an infinitesimal positive number.
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General properties of the level density g(s) have been discﬁssed by

Van Hove (1953) in terms of behaviours of the surface of constant wd(k)

in k-space. 1In the present paper,‘we present a general discussion of
Gd(t;r) as a complex function of complex t on the bésis of the general
theory of a complex variable. The basic assampﬁion is that wd(k)
occurring in (1.2) is an analytic function of each of the components of

k; say kx’ ky, as well as kz for the three—ﬂimensional case, when we assume
complex values for these variables. This assumption is satisfied for
wd(k) defined by (1.3) if J, is of finite range: e.g. if there exists

a distance R such that

g, = 0 if la] > Rr. (1.5)

We notice that the lattice Green'é functions for two- and three-~
dimensional lattices are integrals of. the ones for one- and two-
dimensional lattices, respectively. With this observation, we first
investigate the one~dimension;l case in detail, and then proceed to the
two- and three-dimensional cases. The purposes of the following threec
sections are to give a proof that Gd(t;r) is analytic with respect to t
when t is not associated with the critical point kc where t = wd(kc)
and awd(kc)/akc = 0 . Sections 2, 3 and 4 are devoted tc the linear,
square, and cubic lattices, respectively. In section 5, the singular
behaviour due to the non-degenerate critical point is given for Gd(t;r)-
For one-dimensional lattice, the singular behaviour due to the degenerate
criticél point is given in section 2 and the Appendix. Section 6 is for

conclusion.



2. 0ne~di1ne1isiona1 lattice

We consider a linear chain with equally spaced lattice sites. By
using the spacing of the lattice sites as ‘the unit of lehgth, the lattice
Green's function for this system is given by

. - _iL_ T cOS nz :

where the variable t takes on complex values and n is an integer..

By definition (1.3, wl(z) is a periodic function of z with period 2w,
and so is the integrand of (2.1). Hence the limits of the integration -w
and 7 may be replaced by ‘an arbitrary angle ¢ and o+2w. Tﬁe function
wl(z) is assumed to be an analytic'function of z for éomplex variable z.
The intégrand itself is, therefore, én anlytic fuﬁéti&ﬂ of‘z éxcéptlgp
‘the poles which can oécur at the zeros of t—wl(Z). ‘We shall den§;q‘¢hev

ZeXos as z_:

0
t-w (z) = o I (2.
or
-1 ,
zg = 0, (t) e i R ; (2.3)

For a real or a complex value of t, some of z, will be real and some

0

others will be complex.

First we consider the case when Im z, is finite for all z The -

0 0-.

analytic function t=wl(z0) and its inverse zo=mzl (t) induce continuous

mappings. Hence when t is in a s&all'rggion A around the given value of
t, Im‘zo remains finite; cf. Fig. l(a)rand (b). 1In that cése, the inte-

grand of (2.1) and its derivative with respect to t are aunzlytic functions

7
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of both variables t and z for t inside of A and z on the path of the in-
tegration (2.1), and we confirm that G(t;n) is analytic with respect to

t at its given value (see e.g., Whittaker and Watson 1935).

Fig. 1

In the second place, we consider the case where some‘of z, occur on
the real axis or in its immediate neighbourhood and they are isolated
by & finite distance from each other. Then we can deform the path of
the intégration from the straight line to a curved line which is separated
by a finite distance from all the zofs; cf. Fig. 1{(c). When -v and w are

“in an immediate neighbourhood of one of z, 's, we choose the starting

0

point of the integration to an angle ¢ which is not near to any of

z,'a; cf. Fig. 1(d). By such a choice of the path of integration, we

0
confirm that the integral is anélytic for this case also, where the

same argument as in the preceding paragraph is used.

. Now the cases excluded from the above discussions are the cases

when twe or more 2, appear on the real axis or in its immediate neigh-

G
bourhood with an infinitesimal distance between them; that is t=wl(zo)
and wl(zo+6)~ml(z0)=0 where 8=0; cf. Fig. 1i(e). As wl(z) is an analytic

function we have

d v
t = wl(ZO) » '3;8 wl(zo)- = 0 (2.4)

for this case. Such is the only case when we cannot prove that Gl(t;n)
is enalytic with respect to t. The t given by the first equation of (2.4)
will be denoted by w, when the latter equation is satisfied by a real

value of z, .



147

Let a real z4 be a zero of vth order of the denominator of (2.1)
and v22, when t=wc. Then in the neighbourhood of zZq ﬁhere are y z for
which wl(z) is equal to t if_t-wéso by a well-known theorem of the theory
of analytic functions (see e.g., Ahlfors 1953). 1In fact, when t-mévo,v

. \J . WL '
the zero of t ml(z) (tfwc)+a(z—zo) +0(z—zo) occurs at z=zd+{(wc~t+

0(z—zo)v+1)/a]1/v l/v+ O(wc-t)zlv, where a ig a non-

= <4 -

2o+ (w ~t)/a]
zero constant. For a suitable choice of the t~mc, some of the zeres
appear above the real axis and gome below the real axis if Im t=0. If

we deform the path of integration to a finite distance from Zgs the

integral becomes an analytic function of t, but we have an additional

contribution from the poles which weie passed through the reuté of the
deformation of the path. If one deforms the path to the above of the

real axis, one obtains the following contribution from eackh pele just

above the real axis:

COsS nz

‘ 0 '
i {1 + 0[{w _~t)
allv v(wc—t)l‘lf{ e

/v

1} @.5)

or
sin m'zO'.‘53;;3{n[(:.;;.c---t:)/a]l'/‘J + (')(mc--t)zlV }

al/v v(wc—t)lwllv i/v

-1

{1+ OI(wc-t) 1} ) (2.6)

according as cos nzo¢0 or cos nz.=0, where Im{(mc~t)/a}1/v)»0» In

0

order to obtain the singular behaviour at t:wc, we have to take a sum—

mation of (2.5) or (2.6) over all z, which satisfy.(z.é) for a given value

of t=0 . In particular we notice that, if (2.4) is satisfied at a Zg»
c v

it is also satisfied at -2, for our lattice. When the contributions

for N and -z, are summed, (2.5) contributes twice of that expression

but (2.6) cancels exactly. That means wé do not have a singularity if



cos nz,=0 is satisfied even if (2.4) is satisfied.

0
~ We conclude this section by the following theorem: Gl(t;n) is an
analytic function of t except when: there exists such a real z, that equa-
tions wl(zo)=t and wl'(zo)=9 as well as cos nzo#O are satisfied. fIf such
is the case, the singular term is obtained by taking a summation of the

contributions (2.5) over all vth roots [(mc-t)/alllv with a positive

imaginary part for all z satisfiing (2.4). An alternative expression

0
for (2.5) is given in the Appendix for even values of v.
For real Zy t=wl(zo) is real. Hence Gi(t;n) can be singular at

t on the real axis and is always analytic if Im t is not zero.



3.. Square lattices

The lattice Green's function for the square (rectangular) lattice

is expressed as an integral

1 . _ .
ngt;m,n) = 5 {: dy cos my Gl(t;n;y)s S (3.1)

where the integrand is the lattice Green's function for a one-dimensicnal .
system:

. I S : —_—
Gl(t,n,y) = 5o [" dz cos nz T o wz(y,z) . (3.2)

"Here m and n are integers.

' The spacings of the layers occupied by the lattice sites are used as
the units of length for the y—’and z-directions, respectively. By
1'using the arguments in the preceding section, we see that Gi(t;n;y) de~
fined by (3.2) is analytic with respect to t as well as with rgépect
“to v, except when a real value z, exists such that
' du, (¥,2,)

t = wz(y,zo) R ‘0= azo (3.3a)

and cos nzO#O. 7

We now consider the integral (3.1) for a fixed t inside a_neighbour;
hood A of ; given point on the t-plane. If all the singular points of
the function Gl(fgn;y) as a function of y are éither complex with a
finite imaginary part or are isolated when they are on the real axis
or in its immediate neighbourhooq, one can chooée the path of integration
 in éuch a way that tﬁe integrand of (3.1) and its derivative with respect
to t are analytic functions of both variables t and y'for t inside of

4 ang ¥y on the path of integration. Thenvoae confirms as in the pre-
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ceding section that the integral (3.1) is analytic as a function of t
“in the neighbourhood of the point in the t-plane under consideration.
The only points t at which the integral cannot be shown to be analytic
are the cases where the two or more singu%arities of Gl(t;n;y) as a

function of y exist with an infinitesimal separation § on the real

axis or in its immediate neighbourhood. For such a case, we shall assume
that those singularities'occur at yq and Yo + 8. - The conditions that the
integral Gl(t;n;y) given by (3.2) is singular at Y=y, is given by (3.3a).
The corresponding condition for the point Yo + 6 is the existence of

real z; such that

t = mz(y0‘+ S, zl) s 0 = .321 (3.3b)‘

and cos nzl¥0.
Here we shall assume that Yo and yd+8 are the only singular points,
on the real axis or in its neighbourhood, of Gl(t;n;y), and that real

z, and z, satisfying (3.3a) and (3.3b) are uniquely determined. Further-

more we assume that the ZO and zi occurring in (3.3) are different from

each other. 1In that case, we divide Gl(t;n;y) into two parts as follows:

G, (tsn5y) = Gfl)(t;n;y) + Giz)(t;n;y) s (3.4)

a,,.... | (z.4+z.)/2 . cos nz . (3.5)
Gl (t)n,y) 27 !'" 0 "1 dz “"“"_'t ~ wz‘("y,z_)

(2) 1 T cos nz (3.6)
G (t;n;y) = e f dz ——————=. ’

1 2% (zd+zl)/2 t - wz(y,z)

where we assume zg <2, without loss of generality. The first integral (3.5)



has a singularity at Y=Yq Qnd the second (3.6) at y=yd+6. When (3.4)
is substituted into (3.1), one finds that the contributions due to each
of (3.5) énd (3.6) and hence the total (3.1) are analytic with respect
to t in the neighbourhood of the t under coﬁsideration.

=z_ ., -Then (3.3)

We cannot show that G2(t;m,n) is analytic if 25=2;

reduces to

. : 3w, (Y nsZna) w, (y.52,)
270°70 2V0°70
t | wz(yo,zo), ay0 0 9 azo .0 ‘ (3-7)

and cos nzo¢0. The above analysis is concluded by the theorem that, if

and only if there exist a set of real Yo and real z, which satisfy (3.7),

0

t=w2(y0,zo) is a singular point of the lattice Green's function Gz(t;m,n).-
When cos,my0=0, we interchange the roles of y and z in the above
discussion. Then one concludes that the t is not a singularity even if

(3.7) is satisfied for a set of values of Yo and 20

The argument given at the end of the preceding section is applied

to show that Gz(t;m,n) can be singular only at t on the real axis and

is analytic if Im t is finite.

/0



52

[
{

4. Cubic lattices

We express the lattice Green's function for the cubic (oxthorhombic)

lattices as follows:

G3(t;£,m,n) = '5%—- f“‘dx cos &x Gz(t;m,n;x) s (4.1)
. -7
where
1 ™ i cos my COS nz
G, (t;m,n;x) = L dy f dz - . (4.2)
2 (Zn)z I - t w3(x,y,z)

and 2, m and n are integers.

When one proceeds as in the preceding section, one first sees that

G3(t;£,m,n) can be singular only if

3(03(1(0:}'0’20) - aw3(x0,}'0:20) =k

o

0

t = ‘:w3(x0’y0!zo) H

ayo azo _ :
- (4.3)
. ; +
£ = x40,y .53 aw3(xo + 6,y1,z1) } 8m3(x0 é,yl,zl) o
- “n 'V ’ ’ ;
30 1’71 Byl 3;1
and cos myO#O, cos nzo#O, cos myl#O and cos nzl¢0. If Yo and ¥1 are
different, we divide the integral (4.2) over y into two parts and find
‘that G3(t;z,m,n) must be analytic, etc., by the same argument as in the
preceding section. As a result, we conclude that GS(t;l,m,n) is singular
at t only if there exists a set of real Xgs Yo and z, such that
t o= uglxgygzg) 5
Bug(xgsygezg)  Buglxpaygezg)  Bug(xg,y,,20)
3x = 2 - az =0 4.4
0 Yo _ 0

and cos EXO#O, cos myo%o and cos nzo#O. .

By the argument given at the end of section 2, one sees that the

sin%ularities of 93(t;2,m,n) occur only at real values of t.

/!



5. Non-degenerate critical points

The conclusion of the preceding sections iz that the lattice Green's

function G(t;r) is analytic if Im t is finite.

If w
c

is one of the

singularities, it is associated with a kc with real components satisfying

amd(k )
(
c d‘\e ak

(5.1)’represents either (2.4), (3.7), or (4.4).

(5.1)

kc for which awd(kc)/akc=o

is satisfied is called a critical point. It is called a "non—degenerate"

critical point, if the determinant of the second derivativcc, the Hessian,

of wd(kc) is not zero.

We shall give the behaviour of Gd(t;r) at t near 0, which is associated

ouly with non-degenerate critical points. We shall denote the total

number of those critical points kc that wd(kc) is equal to the given value

ws by n, and the n values of kc b

1)y (@
ykc _skc s

d k(n). We
c

divide the total region Q of the integration in (1.2) into small regions

(i) toa T
A, around kc s and the remaining Q'=Q Xi=lA

ik r
Catesr) = {,{ R )

s

-+

n

i=1

[

A

i

dk

ik.r
e

t - wd(k)

}, 5.2)

If t is so near to 0, that It-w (k)l is finite as far as k is outside of

the small regions A;» we confirm that the first term on the right-hand

side is analytic with the aid of an argument similar to that given in the

~ the preceding sections.

In evaluating the contributions from the integral over Ai’ we expand

wd(k) in powers of k-kéi), choose suitable coordinates and write as

/2
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wd(k) = w - aJ. gi2+ 0(53) (5.3)

[

j=1

(Van Hove 1953). The coefficients aj_may be positive or negative. The

total number of positive @, is called the index of the critical point

h
of wd(k) at kél) and is denoted by A (0SASd). When w, is the maximum
value of w,(k), A=d, and when w. is the minimum, A=0. If 23d and

d G .
O<x<d, wc corresponds.to a saddle point of the plane or hyper-plane

wd(k) as a function k. "The integrations with respect to Ej are taken

over the region A The singular behaviours are expressed in terms

i‘
: d 1
of the parameters v, Ad=nj=l|ajli and the Jacobian J of the variable

transformatiocn from k«kél) to £,. € in the following expressions are

]
complex constants.
(i) One dimension:
T 0Y ~ i nJ 1
6 (e50) =€+ T v )% (5.4)

i 11 (- w,

I

where A= 0 or 1. (t - mc)!5 d;notes the positive square root JFE-:—EZ
when g -, is positive. When t is assumed to be a complex number with
negative imaginary part, the argument of t = mc‘is between 0 and -n

and that of (¢t - wc)k is chosen between 0 and -%/2, for the reason of

analyticity. It follows that

1
c C
)’2'

(t - w, = (5.5)

if t = s - ie (€20). When we have only one of each of minimum and

maximum values of mlﬂ<) where A=C and 1, respectively, the curves of

the real and imaginary parts of the lattice Green's function Cl(s-is;r)

/3
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take the same singular characters as Fig. 2. One notices that (5.4)
must be equivalent to (2.5) if n=0 and v=2, where J=1 and v1=2n. A
reduction of (2.5) to the form of (5.4) is given in the Appendix, for the

case when v is even.

Fig. 2

(11) Two dimension:

G,(t30,0) = C+ k’” (e -w) . (5.6)

i AZVZ

where A=(Q, lvor 2. n(t ~wc) is real when t - w, is positive. If t is
complex with negative imaginary part, the imaginary part of &n{t - “é) is
chosen between 0 and -w for the analyticity of the function. Im particular,
one has |

.| (s - wc) . .8 > .

fa(t - wc) = (5.7)

ln(mc - s) -wi s < s

if t =38 - 1e(ez0). When we have only one of each of these critical
points with A=0,1 and 2, respectively, we have the same singular charac-
ters for the real and imaginary parts of Gz(s—ie,r) as the curves given in

Fig. 3; those curves were first given by Katsura and Inawashiro (1971).

Fig. 3

/&



(iii) Three dimension:

‘ 17 7373

(t - wc ? . (508)
where A=0, 1,2 or 3. When we have one of each of the critical poiﬂts

.with A=0, 1, 2 and 3, respectively, the curves for the real and imagi-

nary parts of G3(s-ie;r) take the same singular characters as given by

Fig. 4.

Fig. 4

The singular behavipurs (5.4), i3;6) and (5.8) due to the

critical point kéi) are for Gd(t;PQO); If r#0, the right hand sides
of these equations must be multiplied by the constant exp ikii)'r.

In order to obtain the singular behaviour at a singularity W,
a summation must be taken over all the contributions due to the critical
points kg#) associated with.tﬁe singular point W, Occasion may happen
that the singular behaviour 1s exactly cencelled. 1In the pfeceding
s=ctions, we found that-if cos Kc-T=O, the c¢ritical point does not
result in a singularity. In that case, the singular behaviours at
kc and at -kc are found to cancel with each otﬁer exactly;bnote that
--kc is a critical point if so is kc for lattices with the inversion
symmetry as considered in the preceding seétions. Another example of
such cancellation will;be:discussed in a subsequent paper.

The singular beﬁaviours of the iﬁaginary part of the expressions
obtained for Gz(s—ie;0,0) and G3(s-ie;0,0,0) are in agreement with those

givéﬁ by Van Hove (1953).

/8
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6. Conclusion

The discussions of the lattice Green's function in the textrare
given for the linear, square and cubic lattices. For other latticesw
also, the lgtticg Green's function is expressed as a multipie integral
over real variables and the integrand can be regarded as an analytic
function of those variables when complex values are assumed to them.
Then we can apply the same argument to the integral. It may become
necessary in the arguments to recall the fact that the region of the
integration is the first ome of several Brillouin zones in the recipro-
cal lattice spaceuand the integrand is a periodic function in.that space.
As the consequence, we reach the saﬁe conclusion: ~ The lattice Green's
function becomes singular, only if the integrand has a pole of second
or higher ordec a¢ a function of each integratifou variable st a set
of real values of the variabies. )

The singular behaviours dye to the non-degenerate critical
points gre given in section 5, where the leading terms only are listed.
The higher-order terms and its analysis in comparison with the curves

will be given in a separate paper.

/b
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Appendix.  Reduction of (2.5) and (2.6) to the form of (5.4)

It is shown in section 2 that the leading term with singular

behaviour at w, = wl(ZO) is obtained as the sum of contributions of all

the poles around Zg just above the real axis, or as the sum due to those
just below the real axis. The contribution from each pole is given by

cos nz
0

£i |
v, - G, - /]

where the sum must be taken over all different vth roots satisfying

In [(u - )7a1} 20, (A.2)

The results obtained by adopting the upper and the lower sign, respec-
tively, must be the same. We restrict the following discussion to even

7

values of v.

If a<0, we shall choose the lower signs and then (A.1l) with (A.2)

reads as follows:

- cos nzO
i (A.3)
v|a]1/v(t - wc)l—llv |
where
Im(t _'wc)l/v <0. (A.4)

When a<0, A=0 and (A.3) coincides with (5.4).

If a>0, we use the upper signs in (A.1) and (A.2), and we have

cos nz
] 0
i

vla|Y V@, - 0

1-1/v (A.5)

/7



where

l/v‘

Im(w - £)77 > 0. - (A.6)

We notice here that, when Im t=In (t ~ mc} ié negative, all the vth

/v

roots (wc - t) which satiefy (A.6) are obtained by the relation:

(mc - t)ll" = ;-—;}- (t - wc)l/v < NG (A.7}A
v .

from the vth roots (¢t - mc)l/v which satisfy (A.4), where iv s exp (wi/v)

and hence 12 = i. Substituting (A.7) into (A.5), we obtain

Cos nz
4]

. | (A.8)
all/\?(t _ me)l-l/\) ) ,

i

ooy
The singular behaviour of Gl(t;n) at t~w = “1(20) is now given by the
‘sum of (A.8) over all (t - wc)llv satisfying (A.4), for the case of

a>0, (A.3) and (A.8) are combined to the form:

. cos nz
i 0

(iv)A 'vlall/v(t - wc)

1-1/v (4.9)

where A=0 or 1 according as a<0 or a>0. (A.9) with (A.4) glves (5.4)

when v=2 and n=0.

/&
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Figure captions

Fig. 1. (a) Small region 4 in the t-plane and (b)-(e) various

cases of its mapping in the z.-plane and the path of integral from

0
-5 to w or from o to o+2w for (2.1)

Fig. 2. The real and imaginary parts of Gl(s-ie;O) for the one-dimen-
sional lattice with the nearest neighbour interaction; GR and GI denote

the real and the imaginéry part, respectively.

Fig. 3. The real and imaginary parts of G2(s~ie;0,0) for the square

lattice with nearest neighbour interaction; G_. and GI denote the real

R
and the imaginary part, respectively (from Foriguchi et al. 1972).

Fig. 4. The real and imaginaryAparts of Gs(s"iE;I,0,0) for the simple
cubic lattice with the nearest neighbour interaction; GR and GI denote

the real and the imaginary part, respectively (from Horiguchi 1971).
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