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§0. Introduciion.

Let p be a prime. A simply connected CW complex X is
called "mod p decomposable into r spaces" if there exist
simpiy connected CW complexes Xi’ lgifr, with H*(Xi:Zp)#O,
and there exists a p-equivalence f£: R X;— X A mod p
decomposition is called irredﬁcible i%ﬂéach Xi is not mod P
decomposable.

In the present note, we shall consider the mod p decom-
position of SU(n) and other simple . Lie groups. For n<2p
or n=®, the mod p decomposition of SU(n) has been given by
J. P. Serre [7], M. Mimura-H. Toda [4] and F. P. Peterson [2].
Then our result is as follows: Let G be a compact simply
- connected simply connected simple Lie group. Suppose that H*(G)
has no ‘p-torsion. Hence H*(G:Zb) - A(xn se+:X_ ) 1is the

1 g

exterior algebra with deg x =2ni—1. Let r(G) be the number

n.
1

of n;'s which are distinct mod p-1.

Main Theorem. Let G be as above and suppose that H (G)

has no p—torsion. Then G 1is mod p decomposable irreducibly
into r(G) spaces if G # Spin(4n). Spin(4n) is mod decomposable
irreducibly into 1r(G)+1 spaces for odd p.

The auther wishes to thank Prof. H. Toda and Prof: M. Mimura

for many available conversations.

§1. Localization of CW-complexes.

In this section, we review some results of [3]. Let P
be a subset of all prime numbers. Let QP be the ring of the
fractions whose denominator, in the lowest term, is prime to p

for any peP. The void set will Be denoted by (0), and hence
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Q QJQ(O) is the field of rational numbers. If P 1is void,
then a P-equivalence is called a O-equivalence.

Let Cl (resp.jfcl) be the homotopy category of l-connected
(resp. l-connected with finitely generated homology groups in

each dimension ) CW-complexes. Then we have

Theorem 1.1 (Theorem 2.4 and 2.5 in [2]). Let P be a

subset of all prime numbers. Then there exists a functor LP:
?Qz.——~7cl (we denote LP(X) and LP(f) briefly by XP and
fp) and a natural indusion jX X — XP satisfying the
following conditions. »

(i) £f:X — Y in 3&31 is a P-equivalence if and only
if f?;XP —_ YP is a homotopy equivalence.

(i1) T4(Xp) 27500 ® Qp and (50414 (X) — 71, (Xp)
coincides 1® 3 : 1, (X) ® Z —> m(X) ® QP’ where j is the
canonical injection.

(111) Hy(Xp) = Ho(X) ® Qp and  (jy) £=19j :H, (X)®L — H, (X)8Qp,|

For the proof, see [3]. But roughly speaking, the
construction of XIP is as follows: For a space X, we
f
associate a direct system {X 2, XA}’ where £, varies all

p-equivalences. Then we can define an appropriate linearly
ordered cofinal subsystem {Xn’ fn} with X0=X, called a P-
sequence in [3]. Then Xip is defined by the telescope

construction of Adams [1].

Remark D. Sullivan has defined the localization functor
for more general category, by use of the Postnikov system.
Now we call a countable CW-complex X finite [P-1local

if HL(X) 1is a finitely gencrated Qp—module.
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Theorem 1.2. Let P, and PZ be such -that Plf\Pz = (0)

1
and P, VP, = {all primes}. Let X(Pi) i=1,2, be finite 'Pi—

local complexesand let X(0) be a finite Oflocal complex. .

Assume that we are given 0O-equivalences gi:X(Pi) — X(0).

Put X=X(P1)XX(O)X(P2),‘the pull—bgck of X(Pi), oygr X(0).
Then X has a homotopy type of a finite CW complex and

Xp > X(P;), i=1,2.

By

For a prbof, see [3].

Theorem 1.3. Let &Z._ denote Z/pZ if p 1is a prime

. % * U

and Q if p=0. ‘Thenr Iy H (XP:Zp) —3> H (X;Zp) is

isomorphic if peP or p=0. If p&P, then H (XP:ZP) ~ 0.
Eyoof. Note that 'Hom(QP, Zp) ;:zp Cif pe P or p=0.

and Hom(QP, Zp)‘: 0 if pé& P. :Then the théorem-immediatelyb
N * . . L N
follows from the isomorphisms H (XP:ZP);Hom(H*(XP:ZP),Zp) ~

Hom (H, (X: Zp)@QP,'Zp} ;’Hom(Hs(X; Zp)f Hom(QP, Zp)).

§2. A result of D. Sullivan.

Theorem 2.1.‘(Su11ivan). Let n be an integer and let

q be a prime such that qg>n. Then there exists a map~,Wq:
BU(n) — BU(n) such that (\yq)xci = qlgi, where

cié:HZi(BU(n):vZ) is the Chern class.
For ,é proof, see Chapter 5, of [i7].
Now we shall state some easy consequences of Theorem 2.1.
First consider the map av?: U(n) — U(n).‘ As is well-known
H*(U(n)q ) ~ A(hl,...,hn) is the exterior algebra generated

%
by the universal transgressive generators hi' Since (¥ x
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= qu for any x‘stm(BU(n):Z) by Theorem 2.1, we have clearly
N, = gln. .
QY™ h; = q"h;..

Let kr : U(n) —— U(n) be the map defined by ki(x) =
r :

- *
x4 for xe¢U(n). As is easily checked, kr(hi) = —qrhi.

We consider the map for n < q and any r

= q .
Aq,r QY o+ kr : U(n) —> U(n)

where the symbol+indicates the sum defined by the multiplication

of U(n).

. | * - i T
Proposition 2.2. (Aq,r) (hi) (q7-q )hi'
Proof. Aq , 1s defined as the composition

q
QY 'xk
um) 2% Um)xUm) ———5 U(n)xU(n) -2 U(n)
where A is the diagonal map and p  is the multiplication.
£ * q * ES '
= [ o =
Then (Aq’r) (hi) A o (QY xkr) u (hi)
87s (0K ) (h.@1+18h.) = A (q h.21+19(-q)h.) = (qt-qT)h.
r i | i~ i i’
since hi is primitive.
Now notice that we can define a map Aq r on SU(n)
3
satisfying the property of Proposition 2.2. For we have the

canonical homeomorphism SU(n)Xsl'; U(n).

§3. Mod p decomposition of SU(n).

In this section, provided with the map A we do the

q,r’
similar arguments in §9 of [3].

Lemma 3.1. Lét n be a positive integer and let p be

a prime. Then there exists a prime g such that q > n and
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q 1is a primitive root mod p.

Proof. Let k be a primitive root mod p. Then so is
k+pt for any positive integer t. Since (k,p)=1, there
exist infinitely many ﬁrime numbers of the form k+pt, by the

classical theorem of Dirichlet. This proves the lemma.

Lemma 3.2. Let q be a primitive root mod p. Then

qi_qr = 0(p) if and only if i-r = 0(p-1).

Proof. It is enough to show that qm-l = 0(p) if and
only if m = 0(p-1). But this is just the definition of the

primitive root.

Proposition 3.3. Let n and p be as above. Then for

each m such as. 2<m<p and m<n, there exists .a l-connected
finite CW-complex Xm(n) and there exists a map fm:SU(n)
—> Xm(n) satisfying

(i) H* (Xm(n) . Zp) ~ A(xm,xm+p_1; veey xm+s(p~1)')

where deg x;= 2i-1 and s = [%}%] is the largest integer
n-m
S p1

(1) £ (x;) = h,

Proof. Let q be a prime as in Lemma 3.1. Then by
Theorem 2.1 and the remark at the end of §2, we can define
Aq’r:SU(n) —> SU(n) satisfying the property of Proposition 2.2.
It is clear that Aq,r isla 0-equivalence if r is 1arg¢

enough. Put ¢ N large enough and 2<m<p.

m~*q; (p-1)N+m”
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Then by Proposition 2.2, g; : HN(SU(n):Zp) —> H'(SU(n):Zp)
satisfies g;hi = (qi—qm)hi and by Lemma 3.2, q--q" = 0(p)
0(p-1).

Now SU(n) 1is p-universal since it is an H-space, see

i

if and only if 1i-m

Theorem 1.7 of [/]. Then by Theorem 5.3 of [*], there exists
a p-sequence {Xi’hi} oﬁ SU(n) sucg that X; = SU(n) for
any i, namely SU(n) ~——ia SU(n) ——~Za SU(n) —> ...

Then by inserting g; into the above sequence, infinitely
nany time; in any manner for each i#m, we have a sequence

and the telescope Ym' Note that this sequence is considered
as a '"sub" sequence of a 0-sequence of SU(n). Then by taking

the telescopes, we have the maps for 2<m<p, [3],

am bm
SUM) (1) > Y, > SU) (gy-

It is clear that Y, 1is finite p-local. Then by Theorem 1.2,

th - . = = : -
e pull-back Xm(n) meSU(n)(O)SU(n)P’ P {all primes -p},

is a l-connected CW complex and there exists a map fm:SU(n)
'*Te Xm(n) such. that (fm)(p)?'am' Then by the property of

= *
83 and by the ‘definition of Ym’ we have H (Ym: Zp) ~

s _n-m
My, y ,Ym+s(p_1)), where deg y;=2i-1 and S—[ETT]

m+(§—1),"'
x®
and am(yi)=hi. Then by Theorem 1.2, we can see evidently that

* * .
H (Xm: Zp) and fm have the required properties. Q. E. D.

' P P
Now put £ = 11 £ : SU(n) — 1T X (n) with the
o m m
m=2 m=2
convention Xm(n)=* and fm is the trivial map if m > n.
It is clear by the above proposition that € is a p¥equivalence.

Since SU(n) is p-universal for any p, there exists a converse
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- p-equivalence

p
g+ 0

Xm(n) —~—3 SU(n).
m

2
‘ , ' ‘h P
Consider the composition g& : Xm(n) — . I Xi(n) -£,
B i=2

- SU(n) SUEN SU(n)/SU(m-1), where 15 and 7 are obvious maps.
* *
Clearly gl : H (SU(n)/SU(m-1): Z) —H () L) s

epimorphic., Thus X, (n) is the space .Bﬁ_l(p) defined in [6],

where k =’{;:?]+1. Thus we have obtained:

Theorem 3.4. Let p be a‘prime and let m, 1 <m< p,
be an integer. Then for any integer %k, there exists a space

Bﬁ(p) in [6] and there exists a p-equivalence

p-1 k .
g: 1 B™MM(p) —— SUMm)
m=1 : :

It

= n-m-1 j.

where kn,m_ 51

Corollary 3.5 Let p and m be as above. Then for

any integer Kk, Bk(p) is an H-space mod p.
y g n

§4., Mod p. decomposition of the other ciassical groups.

In this section, p denotes always an odd prime. - Let
F-ie E 25 B be a fibration. A map s:B—> E 'is called
a cross-section mod p if poes is a p-equivalénce. va E is

an H-space mod p and if p:E —s B admits a cross-section

mod p- Let u be the multiplication of E. Then if F, E
and B are l-connected finite = CW complexes, then FxB xS,

ExE Y5 E gives a p-equivalence by the Serre's class theory.
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Consider the canonical bundles associated classical groups,
Sp(n) — SU(2n) — SU(2n)/Sp(n)

Spin(2n+1) — SU(2n+1) — SU(2n+1)/Spin(2n+1)

Spin(2n-1) —> Spin(2n) —> 2071,

B. Harris [2] has shown that such bundles have cross-section

mod p for odd p. Hence we have p-equivalences
Sp(n) x (SU(2n)/Sp(n)) ~ SU(2n),

Spin(2n¥1) x (SU(2n+1)/Spin(2n+1) fB/ SU(2n+1) and

Z2n-1

Spin(2n-1) x S /B/ Spin(2n).

It is also known [4] that Sp(n)foSpin (2n+1).

Theorem 4.1. Let p be an odd pfime. Let k =

Ta,b.
[Z(Z_b)] + 1. Then there exist the following p-equivalences

Sp(n)f~'Sp1n(2n+1)¢5

2
Spin(Zn)foszn_l x 1

k
SU(2n+l)/Sp(2n+1)'\/ I "(p).
) m—l /

Proof is straightforward from Theorem 3.4 and will be

left to the reader.
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§5. Proof of the Main Theorem.

spaces. Let p be odd, then Sp(n) and Spin(2n+l1l) have no
mod p decompoéition into .E%l spaces. Sp(n) has no mod 2

decomposition into 2 spaces.

Proof. Assume that SU(n) is mod p decomposable into

p
P spaces,i.e., I Xi "£E SU(n). It is easy to see that

i=1
. .
H (Xi:Zp) is an exterior algebra and hence there exists a
number t such that the degree of the lowest generator of
*
H (Xt:Zp) is greater than 2p+l1. Let x be such a generator

and let k=deg x. Then clearly the mod p Hurewicz homo-
morphism h:wk(HXiXDZp —_ Hk(HXi;Zp) is non trivial.

Hence so is h:ﬂk(SU(n))gﬂp —_— Hk(SU(n):Zp). But since
k>2p+1, this is a contradiction. For Sp(n) and Spin(2n+1),

the proof is quite similar. gq.e.d.

Proof of Main Theorem. By Theorem 5.1, apparently the

mod p decompositions of the classical Lie groups given in
Theorem 3.4 and 4.1 are irreducible. Also it is easy to see
that the number of spaces in the decompostion is <t (G) by the
definition of Bﬁ(p). For exceptional Lie groups, Main
Theorem foliows from Theorem 4.2 [6] and Theorem 6.1 [7].

This completes the proof.
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