A remark on characters of unitary representations of semi-simple Lie groups

Masaki Kashiwara

Suppose we have a real semi-simple Lie group G and an irreducible unitary representation (ρ, f) of G. It is then well known that the 'trace' of the representation can be defined in a natural way to be a distribution (and hence a hyperfunction) on G, and is called the character of the representation. We denote the character by χ .

The purpose of this note is to show that, if K is a maximal compact subgroup of G, the restriction $\chi \mid K$ of χ does make sense to be a hyperfunction (in fact a distribution) on K in a very natural way, and that the fact is an easy corollary of a general result in hyperfunction theory.

For the reader's convenience we first quote some of general results in the theory of hyperfunctions ([1],[2],[3] and [4]).

Let M be a real analytic manifold, \mathcal{U}_{M} be a sheaf of germs of real analytic functions. Then we can define the sheaf of germs of hyperfunctions over M, denoted by \mathcal{D}_{M} . \mathcal{B}_{M} satisfies following properties;

- i) \mathcal{B}_{M} is a left \mathcal{U}_{M} -Module. Moreover, if we denote by \mathcal{B}_{M} the shaf of rings of germs of linear differential operators of finite order with real analytic coefficients, then \mathcal{B}_{M} is a left \mathcal{E}_{M} -module.
- ii) There is a canonical \mathcal{B}_{M} -linear injection $\alpha\colon\,\mathcal{U}_{M}\to\mathcal{B}_{M}$ iii) \mathcal{B}_{M} is a flabby sheaf.
- iv) \mathcal{B}_{M} contains a sheaf of germs of distributions in the sense of L. Schwartz.

Let T*M be a cotangent bundle of M, S*M=(T*M-M)/R⁺ be the sphere bundle corresponding to T*M, called cotangential sphere bundle of M, where R⁺ is a multiplicative group of positive real numbers. Fixing a local coordinate of M, the point of T*M is represented by (x,η) , where x is a coordinate of M, and η is a cotangent vector. In this notation, we denote by $(x,\sqrt{-1}\eta\infty)$ the corresponding point in S*M. We denote by $\pi\colon S*M\to M$ the natural projection. We can construct the sheaf \mathcal{C}_M of S*M. \mathcal{C}_M is a sheaf describing singularities of hyperfunctions. \mathcal{C}_M has following properties;

- v) $\mathcal{C}_{\rm M}$ is a left $\pi^{-1}\mathcal{O}_{\rm M}$ -Module. Moreover, $\mathcal{C}_{\rm M}$ is a left $\pi^{-1}\mathcal{D}_{\rm M}$ -Module.
- vi) There is a canonical \mathcal{R}_M -linear homomorphism β : $\mathcal{B}_M \to \pi_* \, \mathcal{C}_M$, such that

$$0 \rightarrow \mathcal{A}_{M}^{\alpha} \rightarrow \mathcal{B}_{M}^{\beta} \rightarrow \pi_{*} \mathcal{L}_{M} \rightarrow 0$$

is exact.

vii) \mathcal{C}_{M} is a flabby sheaf.

Let u(x) be a hyperfunction on M. We denote by sing.supp. $_{M}(u)$ the smallest closed subset of M such that u is real analytic in its complementary set. The support of $\beta(u) \in \Gamma(S^*M; \mathcal{C}_{M})$ is denoted by S-S(u), which is a closed subset of S^*M . By vi), we have $\pi(S-S(u)) = \operatorname{sing}$. $\sup p(u)$.

We use following two theorems. Let N be a real analytic submanifold of M. $T_N^{\star}M$ is a conormal bundle

of N, that is, the kernel of N \times T*M \to T*N. We put M $S_N^*M = (T_N^*M^-N)/\mathbb{R}^+. S_N^*M \text{ is a closed subset of } S^*M.$

Theorem A Let u(x) be a hyperfunction on M satisfying $S - S(u) \cap S_N^*M = \phi$. Then we can canonically define the restriction $u|_N$ of u to N. $u|_N$ is a hyperfunction on N.

Theorem B Let $P(x,D_X)$ be a linear differential operator with real analytic coefficients of order m. Let $\sigma(P)$ be a principal symbol of P, which is a function on T*M, homogeneous of degree m. We put

$$F = \{(x,\sqrt{-1}\eta\infty) \in S^*M; \ \sigma(P)(x,\eta) = 0\}$$

This is a closed set of S*M. Then, for every hyperfunction u(x) on M, we have S - $S(u) \subset F \cup S$ - S(Pu). Especially, if Pu is a real analytic function, then we have S- $S(u) \subset F$.

Now, we apply the preceding theory to the theory of unitary representation.

Let G be a real semi-simple Lie group, \mathcal{J} be a Lie algebra of G. Let $\mathcal{J} = \mathcal{K} + \mathcal{J}$ be a Cartan decomposition of \mathcal{J} , K be a compact subgroup of G corresponding to the compact Lie subalgebra \mathcal{K} . It is well known that the Killing form is positive definite on \mathcal{J} and negative definite on \mathcal{K} . Let C be the Casimir operator of G, which is a bi-invariant linear differential operator on G of order 2. Let (U, \mathcal{J}) be an irreducible unitary

representation of G. χ be its character. By the result of Harish-Chandra, χ is a distribution (and hence a hyperfunction) on G, satisfying;

- a) $\chi(gxg^{-1}) = \chi(x)$ for any $(g,x) \in G \times G$
- b) $C\chi = a\chi$ for some $a \in \mathbb{C}$

Harish-Chandra has also proved that unitary representation is uniquely determined by its character.

Our purpose is to show the following theorem;

Theorem Let $\chi(x)$ be a hyperfunction on G satisfying; (b) $C\chi(x) = a\chi(x)$ for some $a \in \mathbb{C}$. Then we can canonically define the restriction $\chi \mid K$ of χ to the maximal compact subgroup K of G, which is a hyperfunction on K.

Proof

Let e be the neutral element of \mathcal{G} . Then $T^*G_e = \mathcal{G}^*$, $T^*_KG_e = \mathcal{F}^* \subset \mathcal{G}^*$. Let $\sigma(C)$ be a principal symbol of C, which is bi-invariant. At e, $\sigma(C)$ can be considered as a quadratic form on \mathcal{G}^* , which coincides with the dual form of the Killing form. Therefore $\sigma(C)$ is positive definite on \mathcal{F}^* . It follows that $\sigma(C)$ never vanishes on $T^*_KG_e$. Since $\sigma(C)$ is bi-invariant, $\sigma(C)$ vanishes nowhere on T^*_KG . By the theorem B, S - $S(\chi) \cap S^*_KG = \phi$. Using the theorem A, $\chi \mid K$ can be defined. q. e. d.

Remark.

Recently, L. Hörmander has proved an analogue of the theorem A and the theorem B in the category of distribution ([5]). Therefore, in Theorem, if χ is a distribution satisfying (b), $\chi \mid K$ is also a distribution on K.

Reference

- [1] M. Sato (noted by M. Kashiwara): On the structure of hyperfunctions, Sūgaku no Ayumi 15-1, 1970(Japanese)
- [2] M. Sato: Regularity of hyperfunction solution of partial differential equations, To appear in Actes Congrès Intern. Math. Nice 1970
- [3] M. Sato (noted by Y. Namikawa): On the hyperfunctions and the sheaf C, To appear as the series of Lecture notes of RIMS (Japanese)
- [4] M. Kashiwara-T. Kawai: Pseudo-differential operators in the theory of hyperfunctions, Proc. Jap. Acad. vol 46, 1970
- [5] L. Hörmander: Fourier integral operator I, Acta Math. vol 127, 1971