CERTAIN DOUBLE COSET SPACES OF ALGEBRAIC GROUPS AND
RATIONAL BOUNDARY COMPONENTS OF SYMMETRIC BOUNDED DOMAINS

# Kenishi IYANAGA

Ι

In part I we consider the problem of determining the order of double cosets rad/P, where G is a certain k-algebraic group, P is its k-parabolic subgroup and ris its arithmetic subgroup. A detailed discussion on the subject is found in [5].

Let k be an algebraic number field of finite degree, and K be either a quadratic extension of k or k itself, and  $\sigma$  the involution of K stabilizing each element of k. Let V be a finite dimensional vector space over K supplied with a non-degenerate k-bilinear form  $F: V \times V \longrightarrow K$  such that  $F(ax,by) = a^{\sigma}F(x,y)b$  for  $a,b \in K$ ,  $x,y \in V$  and that  $F(x,y)^{\sigma} = eF(y,x)$ ,  $e = \pm 1$ .

We set  $G = \{g \in GL(V); F(g(x),g(y)) = F(x,y), x,y \in V\}$  and  $G^1 = G \cap SL(V)$ . Then the groups G and  $G^1$  are k-algebraic groups.

Suppose that there exists a proper non-zero subspace W of V such that  $F(w,w')=0 \text{ for all } w,w'\in W \text{ (i.e. W is a totally isotropic subspace of V)}.$  We set  $G_W=\left\{g\in G;\ g(W)=W\right\}$ . This is a maximal k-parabolic subgroup of G.

Let  $\mathcal{O}_K$  be the ring of integers in K and let L be an  $\mathcal{O}_K$ -lattice in V. We set  $G_L = \{g \in G; g(L) = L\}$ . This is an arithmetic subgroup of G.

Similarly, we get a maximal k-parabolic subgroup  $G_W^1$  and an arithmetic subgroup  $G_L^1$  of  $G_L^1$ .

Now, given any subgroup H of G and  $G_K$ -submodules X,Y of V, we write X  $\widetilde{H}$  Y if and only if there exists an element h of H such that h(X) = Y.

We denote the set of  $\mathcal{O}_K$ -submodules Y such that X  $\cong$  Y by (X)<sub>H</sub>. Then, the double coset space  $G_L \setminus G/G_W$  is in a bijective correspondence with either one of the sets (W)<sub>G</sub>/ $\cong$ <sub>L</sub>, or (L)<sub>G</sub>/ $\cong$ <sub>W</sub>. Thus the problem of determining the order  $|G_L \setminus G/G_W|$  is reduced to a certain classification problem of lattices. The determination of the order  $|G_L \setminus G/G_W|$  is, to a great extent, reduced to the determination of  $|G_L \setminus G/G_W|$ .

Associated to the lattice L we have a fractional ideal in K\_generated by F(x,y) for  $x,y \in L$ . The lattice L is called a  $(\mathcal{N}_O(L)-)$  modular if  $L = \{x \in V; F(x,L) \subset \mathcal{N}_O(L)\}$ .

Then we have the following decomposition theorem:

Let L be an  $\mathcal{G}$ -modular lattice in V. Then there exist  $\mathcal{O}_{K}$ -ideals  $\mathcal{O}_{1}$ ,...,  $\mathcal{O}_{S}$ , a basis  $\{w_{1}, \ldots, w_{s}\}$  of W, and elements  $w'_{1}, \ldots, w'_{s}$  of V such that  $L = \sum_{i=1}^{s} (\mathcal{O}_{i} \mathcal{J} w_{i} + \mathcal{O}_{i} w'_{i}) + L', \text{ where } \mathcal{O}_{1} > \mathcal{O}_{2} > \ldots > \mathcal{O}_{S},$   $w_{i} \in L$ ,  $F(w_{i}, w'_{j}) = \delta_{ij}$ ,  $F(w'_{i}, w'_{j}) = m_{i} \delta_{ij}$  for all i,j.

In the above, when  $m_1=0$  for all i (e.g. when e=-1), it is easy to determine the order  $G_L G/G_W$ . When e=1, it becomes necessary to investigate the properties of the submodule  $S(\mathcal{O}_K)=\left\{N(x)+Tr(y);x,y\in\mathcal{O}_K\right\}$  of  $\mathcal{O}_K$ , and submodule  $S(L,W,\mathcal{M})=\left\{F(ax,ax)+Tr(b);a\in\mathcal{M}^1,x\in L^1,b\in\mathcal{M}^{1-\sigma}\right\}$  for the module  $S(L,\mathcal{M})=\left\langle F(ax,ax)+Tr(b);a\in\mathcal{M}^{-1},x\in L,b\in\mathcal{M}^{-1-\sigma}\right\rangle$  for  $\mathcal{O}_K$ -ideals  $\mathcal{M}$ . It can be shown that if K is a quadratic extension of k, then  $S(\mathcal{O}_K)=\mathcal{O}_K$ , and that the order  $\left|S(L,\mathcal{M})/S(L,W,\mathcal{M})\right|$  is generally independent of the choice of the ideal  $\mathcal{M}$ ; we denote the order by S(L,W).

The order  $|G_L \setminus G/G_W|$  for an  $\mathcal{J}$ -modular lattice L can be evaluated in terms of h(K) (= the class number of K), h(L') (= G-class number of L'), s(L,W) etc. Specifically, we have the following estimation:

1) When K = k and e = -1, then  $|G_L \setminus G/G_W| = h(k)$ .

2) If  $S((\mathcal{G}_K) = \mathcal{G}_k$ , and s(M,W) = 1 for all M belonging to the same G-genus as L, then  $|G_L \setminus G/G_W| \le h(K)h(L')$ , and if moreover, all  $\mathcal{J}$  -modular lattices in V are G-equivalent, then  $|G_L \setminus G/G_W| = h(K)h(L')$ .

The latter case occurs, for example, in the following situations:

- 1) K = k, dim V is odd,  $S(\mathcal{O}_k) = \mathcal{O}_k$ , h(k) = 1,
- 2) K is a quadratic extension of k,  $\dim_K V$  is odd, and every ideal class in K is represented by a  $\sigma$ -invariant ideal.

# **EXAMPLES:**

1) k = Q,  $K = Q(\sqrt{-1})$ ,  $\dim_K V$  is odd and V has a basis  $\{v_1, \dots, v_n\}$  such that  $(F(v_i, v_j)) = \operatorname{diag.}(l_p, -l_q)$ , and  $L = \sum_{i=1}^{n} \mathcal{O}_K v_i$ . In this case,

$$|G_{L}\backslash G/G_{W}| = h(L') \leq |G_{L}\backslash G^{1}/G_{W}| \leq 2h(L'),$$

h(L') = 1 when  $W^{\perp}/W$  is indefinite ([9]), or the rank of L' < 5 [4] >1 when the rank of L'  $\geq$  5, = 2 when the rank of L' = 5, = 4 when the rank of L' = 7.

2) k = Q,  $K = Q(\sqrt{-p})$ ,  $p \equiv 3 \mod 4$ ,  $\dim_{V} V$  is odd.and V has a basis  $\{v_{1}, \dots, v_{n}\}$  such that  $(F(v_{1}, v_{j})) = \operatorname{diag.}(l_{n-1}, -1)$ , and  $L = \overline{Z} \mathcal{O}_{K} v_{1}$ . Then  $|G_{L} \setminus G / G_{W}| = |G_{L}^{1} \setminus G^{1} / G_{W}^{1}| = h(K)$ .

### II

We assume that  $G^1$  is simply connected (hence,  $G^1$  is either SU(V,H) or Sp(V,A)). We assume further that the Lie group  $(\mathcal{R}_{k/\mathbb{Q}}(G^1))_R$  admits a maximal compact subgroup K such that  $D = (\mathcal{R}_{k/\mathbb{Q}}(G^1))_R/K$  has the structure of a symmetric bounded domain (hence, k is totally real, and K is either k itself or a totally imaginary quadratic extension of k).

In this case, the subspace W corresponds to a rational boundary component B(W) of  $\overline{D}$ , and conversely, for any rational boundary component of  $\overline{D}$  there exists a totally isotropic subspace W' of V such that the boundary component may be written as B(W') (cf. [1]); the dimension of such a subspace W' is determined by the given boundary component which we shall call the type of the boundary component. Let  $\widetilde{B}(W)$  be the set of rational boundary components of  $\widetilde{D}$  having the same type as B(W).  $\widetilde{B}(W)$  is a  $G^1$ -orbit space. The double coset space  $G^1_L\backslash G^1/G^1_W$  is in a bijective correspondence with the set of  $G^1_L$ -orbits among  $\widetilde{B}(W)$ .

#### III

may make We give a remark concerning our previous work in [2] and [3]. Let  $D^* = D \bigvee \{ \text{rational boundary components of } D \}$  supplied with Satake topology, and let  $V^* = G_L^1 \setminus D^*$ . Then  $V^*$  has the structure of a projective variety.

Consider a functor sending the category of Hermitian vector spaces (V,H) to the category of alternating vector spaces (V',A), where  $V'=\mathcal{R}_{K/K}V$  and A is the "imaginary part" of H. This functor naturally induces a rational homomorphism sending  $G^1=SU(V,H)$  into G'=Sp(V',A); lattices L in V naturally correspond to lattices L' in V'.

When L is modular and  $\bigwedge_{0}^{h}(L)$  is an ideal in k, then the corresponding lattice L' is maximal in V'. When, in general, L is  $\int$ -modular, the elementary divisors of L' may be explicitly described in terms of  $\int$  if (2) is a prime ideal in k (cf. [6]).

Let D, D' be the symmetric bounded domains corresponding to  $G^1$ ,  $G^1$ . Assume that  $(\mathcal{R}_{k/Q} f)(\mathcal{K}) \subset \mathcal{K}'$ , then f induces a holomorphic imbedding of D into D' (cf. [7]); this f further induces a morphism of the variety

 $V^* \text{ into } V^*_{\Lambda}. \text{ (We have } f(G_L^1) \subset G_L^1,.)$ 

We may ask here, when automorphic forms an D with respect to G<sub>L</sub>.

may be extendable to automorphic forms an D' with respect to G'<sub>L</sub>.? The above I, II may be helpful to consider this problem.

In particular, the field of rational functions  $C(V^*)$ , which is identified with the field of automorphic functions on D with respect to  $G_L^1$ , hay be identified with a subfield of  $C(F(V^*))$ , and their relations may be described in terms of certain Galais cohomology group (cf. [2], [3]).

Especially, when k=Q,  $K=Q(\sqrt{-p})$ ,  $p\equiv 3\mod 4$ , p>3,  $\dim_K V$  is odd then  $C(V^*)=C(f(V^*))$ .

# REFERENCES

- 1) W.L.Baily, Jr. and A.Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (3), 84 (1966), 442-528.
- 2) K. Iyanaga, Arithmetic of special unitary groups and their symplactic representations, J. Fac. Sci. Univ. Tokyo, 15 (1968), 35-69.
- 3)\_\_\_\_\_,Symplectic 表现上保型肉数,数理解析研究的講究所以 86-55
- 4) \_\_\_\_\_, Class numbers of definite Hermitian forms, J. Math. Soc. Japan, 21 (1969), 359-374.
- 5) \_\_\_\_\_, On certain double coset spaces of algebraic groups, J.Math. Soc. Japan, 23 (1971), 103-122.
- 6) \_\_\_\_\_, Arithmetic of Hermitian forms and related forms, to appear.
- 7) I.Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer.J.Math., 87 (1964), 425-461.
- 8) \_\_\_\_\_, A note on holomorphic imbeddings and compactifications of symmetric domains, Amer.J.Math. 90 (1968),231-247.
- 9) G. Shimura, Arithmetic of unitary groups, Ann. of Math., (2) 79 (1964), 369-409.