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CERTAIN DOUBLE COSET SPACES OF ALGEBRAIC GROUPS AND

RATIONAL BOUNDARY COMPONENTS OF SYMMETRIC BOUNDED DOMAINS

Keniehi IYANAGA
I

In part I wzr%gnsider the problem of determining the order of double
eosets p\G/P, where G is a eertain k-algebraie group, P is its k-parabolie
subgroup and [ is iﬁs arithmetie subgroup. A detailed diseussion on the sab-
jeet is found in (51

Let k be an algebraie number field of finite degree, and K be either a
quadratie extension of k or k itself, and ¢ the involutivm of K stabilizing
eaeh element of k. Let V be a finite dimensional vector spaee over K supplied
iith a non-degenerate k-bilinear form F:V X V —» K such that F(ax,by) = drF(i,y)b
for a,b €K, x,7€V and that F(x,y)r = eF(y,x), e = +1.

We set G = { g€ GL(V); F(g(x),8(y))= F(x,¥), x,7e¢ V\I and G* = G SL(V).
Then the groups G and G* are k-algebraie groups.

Suppose that there exists a proper non-zero subspage W of V sueh that
F(w,w'} = O for all w,w'e¢ W (i.e. W is a totally isotropie subspace of V).

W
Let (PK be the ring of integers in K and let L be an OK-lattiee in V.

We set G, = igé-G; g(W) = Wi . This is a maximal k-parabolie subgroup of G.

We set GL =1gé(3; g(L) = L}. This is an arithmetic subgroup of G.

Similarly, we get a maximal k-parabolie subgroup G% and an arithmetise

subgroup Gi of Gl.

Now, given any subgroup H of G and G&;submodules X,Y of V, we grite

X‘E’Y if and only if there exists an element h of H suech that h(X) = Y.
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We denote the set of Ok-submodules Y such that X~E’Y by (X)H. Then,
the double coset space GL\G/GW is in a bijestive correspondence witk

either one of the sets (W)./~Y , or (L)./~ . Thus the problem of
‘ G GL G Gw T

determining the‘order‘Gi\G/GW\ is reduced to é eertain elassification
problem of lattices. The determination of the order [G%\Gl/Gél is,'ﬁb
a great extent, redueced to the determination of ]Gt\G/wa. JLi

Assoeiated to the lattiee L we have a frastional idealfin Kggene~
rated by F(x,y) for x,y €L. The lattice L is ealled a gﬁg(L)—)mpdular
1f L =dxeV; F(x,L)c (1)),

Then we have the following decomposition theorem:

Let L be an :?—modularvlattieeyin V. Then there exisf‘ﬁk-ideals 0&,.,.,
0, a vasis {wl',. . ,,ﬁs‘(“of W, and elements wi,...,w! of V sueh ’th,}at

S
L =570 4 /AN +(lywy) + L, mhere f1D (1,5 ...0 o,

"y €L, P(w,wi) = d'ij, F(wy,w!) = mi(rij for all i,j.
In the above, when my = O for all i (e.g. when e = -1), it is easy

to determine the order Gi\G/GW . When e = 1, it beeomes neeessary'to

inveétigate the properties of the submodule S(€¢K) = {N(x) + Tr(y);x,yédk%

of 0, and submodule S(L,W, () = {F(ax,ax) + Tr(b)jaefl*,x eLt, bep{l“’:j’;«

of the module S(L, ) = {F(ax,ax) + Tr(b);ac-’m‘l,x eL,b ¢ m‘l"’_j’} for

@k-ideals fl . It ean be shown that if K is a quadratie extension of ,

k, then S((FK) = 0k’ and that the order )S(L,&Z)/S(L,W,d‘)} is generally

independent of the ehoice of the ideal {; we denote the order by s(L,W).
The order ]GL\G/Gwl for an\y ~modular lattice L‘can be evaluated

in terms of h(K) (= the ¢lass number of K), h(L') (= G-¢lass number of

L), s(L,W) etc. Speeifically, we have the following estimation:

1) When K = k and e = -1, then [61\&/Gy | = h(k).

2
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2) 11 s((y) = 0,, and s(¥,%) = 1 for all M belonging to the same G-genus
as L, then ]G:\G/Gw(g n(K)n(L'), and if, moreover, allhf -modular lattices
in V are G-equivalent, then \GL\G/GWI = h(K)h(L').

The latter case oecurs, for example, in the following situations:

1) K = k, dim V is odd, S(Gk) = ., h(k) =1,

k,
2) K is a quadratie extension of k, dimKV is odd, and every ideal c¢lass

in K is represented by a ¢-invariant ideal.

EXAMPLES:

1) k = Q, K = 9(F1), dim

KV is odd and V has a basis {vl,...,vn? such

o = i -1 :M ¥
that (F(ri,vj)) dlag.(lp, ‘o)’ and L = 7_ UKvi' In this ease,

16, N6/G, | = m(L1) § 16N\ /Gy |< 201D,

h(L'){= 1 when Wh/W is indefinite ([9]),or the rank of L'< 5 (45
> 1 when the rank of L' 2 5,
— 2 when the rank of L' = 5,
=4 when the rank of L' = 7.
2) k = Q, K=Q~p), p=23 mod 4, dim,V is odd.and V has a basis{.vl,..-,
vn}such thatw(F(vi,vj)) = diag.(ln_l,-l),and L =2f(ﬂxvi. Then

1
W

1.1,
leN\e/G, [ = lep\6 /6, | = n(K).
II
We assume that Gl is simoly connected (hence, Gl is either SU(V,H)
or S»(V,A)). e assume further thst tre Lie gronp (ﬂzk/b(Gl))R admits
a maximal comvact subgroup {( s ch that L = (K (sl)) / has the
: P S K/G g/ /C "2s ta

strueture of a symmetric bounded domain (hence, k is totally real, and

K is either k itself or a totally imaginary quadratic extension of k).

<.
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In this case, the subspace W corresponds to a rational boundary chponegt
B(W) of 5, and eonversely, for any rational boundény‘component of 5v

there exists a totally isotropfc subspace Wt of V such that the boundary
component may be written as B(W') (ef. (l]f; the dimension of sush a
subspage W' is determined by the given boundary somponent whieh we shall
eall the type of the boundary somponent. Let ﬁ?w) be ﬁhe set of rational
poundary components of D kaving the same type as B(W). ﬁ?W) is a Gl-arbit
space. Thke double eoset space Gi\Gl/Gi is in a’Bijé?ti?e e0rrespondenee

1 o,
with the set of G- -orbits among B(W).

L

III
may. malte , »

We a remark concerning our previous'wovk'inf[23 and [3].
Let D* = D b@rational boundary eomponents,ef'D> supplied with Satake
topology, and let V* = Gi\D*, Then ?* has the stpuetuwe 0f a projes¢tive
variety. |

Consicer a functor sending the category of Hermitian veetor spages
(V,H) to the category of alternating veetor spases (V’,A), where V! né?%ﬁkv
and A is.the "imaginary part" of H. This funetor naturally induees a

rational homomorphism sending Gl

= SU(V,H) into G' = Sp(V',A); latiiees
L in V naturally soerespond to lattices L' in Ve,

When I is modular and//%(L) is an ideal in k, then the sorresponding
lattice L' is maximal in V', When, in general, L 1sﬂ¢émodular, the elemen~
tary divisors of L' may be explicitly deseribed in terms ofhf'if (2) is
a prime ideal in k (e¢f. [61]).

Let-D, D' be the symmetrie bounded domains eorresponding to Gl, G'.
Assume that (Kk/Q f)(/<)(:,2<" then f induces a holomorphie 1mbé%ding

of D into D' (c¢f, [7]; this /’further indueces a morphlsm of the variety

4
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*
\'s

(¢f £81) |
into V' (We have ((G%‘)C G, .)

A Vi L'
are
We may ask here, when,automorphiec forms &n D with respec¢t to GL

mew=be extendable to automorphic forms &n D' with respect to G! ? The

Lte

above I, II may be helpful ég eonsideﬁgthis problem.

ified with the field of automorphic functions on D with respeet to Gl

7 *
In partieular, tHeifield of rational funetions C(V ),which is ident-

L!

hay be identified with a subfield of C(P(V®), and their relations may

be

described in terms of certain Galeis cohomology group (ef. [2), (3]19.

Espeeially, when k = Q, K = Q(JCE), p= 3 mod 4, p > 3, dimKV is odd

then c(v*) = c(((V*)).
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