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Markov processes in duaiity

Masatoshi Fukushima

§1. Introduction

Let X be a locally compact seperable Hausdorff space and m be
a positive Radon measure on X . Cohsider standard Markov processes
N A A . .

M= (Xt’ P) and M= (Xt’ Px) which are in duality with respect to

m in the sense that the equality

: N
(1. 1) - (fF, Ttg) = (th, g) t>0,
holds for any non-negative Borel functions f and g on X . Here

o . . R . “n
T, (resp. Tt) is the semi-group associated with M (resp. M) and

(f, g) 1is the integral g f(x)g(x)m(ax) . The quahtities relative
JX B .

to the dual process M are denoted with ™ and designated by the prefix
co- . Notice that the present duality is much weaker than that of
Blumenthal-Getoor [ 1 s V1] and we do ﬁot assume the absolute éontinuity
of resolvents or transition probabilities at all.

A set ACX is said to be almost polar if there is a Borel set
B such that AC B and | |
(1. 2) Px(oB ; t® ) = 0 for m-a.e. XEX,
where 95 is the hitting time inf{t>0; Xte;B} . "Quaéi—everywhere"
or "q. e." will mean "except on an almost polar set'.

Recently the notion of almost polarity was employed independently by

S. Port and C. Stone [3]1 for additive processes with m being the
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Haar measure and by the auther EZJ for general m-symmetric Markov
processes whose associated Dirichlet spéces are regular. An almost
polar set was called "essentially polar" in the former paper and "polar"
. in the latter. . In both papers, almost polar sets were identified
with the sets of A-capacity zero, the A-capacity being defined suitably
according to the respective situations.
In 52, we will study almost polar sets together with g.e. finely

~ continuous functions and present some fundamental properties that they

possess. Assertions (i)~ (x) of §2 are the generalizations of

those established in [ 9 ; §3, 4] , while (xi)~~(xiv) are our

versions of those in Blumenthal-Getoor [ 1 s V1l . The second assertion
states that each almost polar set is m-negligible. But the converse
is not necessarily true. Proposition (viii) asserts that the resolvent

of M is absolutely continuous with vespect to m if and only if
each almost polar set is semipolar. The final assertion states that

the next two conditions (C) and (C') are equivalent.

(C) Each semipolar set is almost polar,
(C') A function is q.e. finely continuous if and only if it is q.e.

cofinely continuous.

M)

In particular, condition (C) is met when M is m-symmetric (M =
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§2. Potential theory for M and M
Our assertions will be listed up.

(i) Let E be universally measurable.
The next three conditions are equivalent.
(a) . m(E) = 0
_(B) p(t, x, E)‘= 0 m-a.e. x X, Ffor each t >0 .
(v) Ga(x, E) =0 ma.e. x X, forevery o >0,
(equivalently for some o > 0) .
Here p(t, x, E) (resp. Gu(x, E)) is the transition probability

(resp. the resolvent kernel) of the process M .

_ Proof. . We only show the implication (B)=>(a) :
0 = lim f T, Ig(x)m(dx) = lim 5 Ttl(x)IB(x)m(dx)';'“j I (x)Im(dx).
tvo JX tio /% X '

where IE denotes the indicétor‘of B/

(ii) If N is almost polar, then m(N) =0 .

Proof. There is a Borel almost polar set' E DN . Then B
satisties (8) . Hence m(E) = 0 .

(iii) Let A be a Borel set and put

Ocin) = .
T E(x) = E (£(X) 5 t < OA,)

-00

o I A
HAfgx) = E (e £(X0,)) ,
Then we have
(2. 1) (£, ng) = (?:f, g, t>o0,
. AgA
(2. 2) (£, H:Gag) = (HG f, 8) , a>0,

for any non-negative Borel functions f and g Here 'Gu is the



resolvent of Tt .

Proof. (2. 2) is equivalent to (2. 1) . (2. 1) was proved
b§ Dynkin [ L4 3 Lemma 14. 1] for the Brownian motion by making use
of a method of time reversion. The same method has been extended
to m-symmetric Markov processes in [ jz_ 3 Theorem 3. 5] . " The
argument there is independent of the symmetry of Tt and only the relatiop
of duality (1. 1) ié enough’to get (2. 1) for open VA . 7‘ Next (2. 1)
for any Borel A éan be obfained just as in :[ 1; s pp 262] by noficing
that any semi—polar’set (resp. cosemi-polar set) is of potehtial zero

(resp. copotential zero) and hence m-negligible according to (i) .

For a nearly Borel set ECX , we will write

H

eg(x) Hgl.(x)

(2. 3)

ep(x) = HO'1(x) = P (o < +2) .

Here are two consequences of the relation (2. 2) .
(iv)  Almost polarity» and almost cdpolérify are equiirélei%.

Proof. Let E be Borel and almost polar. . Then,. for any

ge CO(X) (the space of continuous functions with compact supports) ,

' o AT ' T AN T A
0=(1, H.G g) (HEGal’ g) . Hence O. HG 12 HEGB]' m-a.e.
A0 . AmA
for all B2 a . But then ‘e (x) = lim BH G 1(x) = 0 for m-a.e.
B>t B

x€ X , proving that E is almost copolar.

(v) Let A be nearly Borel and finely open. Suppose that a Borel

subset EC A has the property that



e (x) =0 m-a.e. on A .

Then E is almost polar.

Proof. Take any compactum KCE . Since QK =0 m-a.e. on A
. A A a : .
we have 0 = (HKGaf’ IA) = (f, HKGaIA) _ fq?‘ any f & CO(X)~ . Therefore
H;GBIA =0 m-a.e. for all B2 a. H; is supported by K but
lim BGBIA(y) =1 for ye& K(C A) because A is finely open. We
Brt=
get e;(x) = 0 m-a.e. Now it suffices to find, for strictly

positive f &€ thx ; m) , an increasing sequence of compact sets
KnC E such that

oy .. o
(£, eE) = lim (£, ex ) .
n>4o n

Definition. A function f defined q.e. on ‘X is called gq.e.

finely continuous if the following conditions are satisfied :

there exists a nearly Borel almost polar set B such that X - B is
finely open and f is nearly Borel measurable -and finely continuocus on

X-B.

(vi) If £. is q.e. finely continuous and if £20 m-a.e. on X ,.

then £ >0 q.e. on X .

Proof. Let B be the set appeared in the above definition of
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q.e. fine continuity of f . Then the set A = (X - B){){x ; f(x).< 0}
is nearly Borel and finely open. By the assumption, m(A) =0 .

Since A is nearly Borel, there are, for a strictly positive function
h & Ll(X 3 M), some Borel sets A' and A" such that A'¢<C AC A"

"o oAt . = 3
and Ph’m(xte A A' for some t 2 0) 0 , . which means that

A

A" - A' is almost polar. Since m(A) = 0 , eyr =0 ma.e. on A
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trivially and A' is almost polar by (v) . Hence A" = A' + (A" - A')

is almost polar and so is A .

The following characterization of almost polar sets already appeared
in [ 2 ; Theorem 3. 12] . We say that a set E is M-invariant if

Px(Xté E for every t 2 0) =1 for every X CE .

(vii) A set N is almost polar if and only if there exists a Borel

set BN such that m(B) = 0 and X - B is M-invariant.

Proof. Let N be almost polar then there is a Borel set BO:) N

such that eq (x) = 0 ma.e. Since eq is excessive, it is
' 0 0

nearly Borel and finely continuous. Hence, by the previous assertion,

ep (x) =0 q.e. , that is, except on some Borel almost polar set B, .
0 ’ '

Apply the same argument to the function e . In this way,
BOLJBl :
we get a sequence Bo, Bl’ sey, Bk’ +++« of Borel almost polar sets.
-

It suffices to put B = L/ B .
k=0

Now we will give some criteria for the absolute continuity of the
resolvent in terms of the relationship among almost polarity, polarity

and semipolarity.

(viii) The following four conditions are mutually equivalent.

(a) A set is almost polar if and only if it is polar.

(B) Any almost polar set is semipolar.

(y) m is a reference measure for M : a set is of potential zero
if and only if it is m-negligible.

(8) Ga(x, . ) is absolutely continuous with respect to m for each
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a>0 and x& X .

Proof. (v) and (8) are equivalent in view of the first assertion

(i) . (@) implies -(B) . Suppose that theicondi_tion (B) is
 satisfied. Let E be an m-negligible Borel set,.'( ‘Then Ga(x, E) =0
m-a.e. xX& X. » Dby virtge of (1) . But Ga( . E) is a-excessive
and finely continuous. Hence Ga(x, E) = 0 q.e. by (vi) and
‘moreover except on a semipolar set by the present assumption. Since
any semipolar set is of potential zero, we have Ga(.x, E) =

:é.-i)E BGB_WGGIE(X) =0, x€EX, arr-iving at (§) . Evidently (8)
implies (a) . The proof is finished.

Remark | 1°.  Assertion (viii) is a genernl.i.zaFL:i_(m of L 2 3
Theorem 3. 13] .  Combining (vii) and (viii) ,  we get the
following cfiterion : Ga(x, ) is noi': absolutely continuous with
respect to m for some o > 0 » and x &€ X. if and only if ‘there exists’
an'm-negligible Borel set E such that X - E ;'Ls'M—inVéf.iant'bﬁf- E
is not thin. A
2°.  In the case that M = i s the ébove conditions in (viii) are _
also equivalent to the following one (e) ESj‘. ﬁ

(e) The transition probability p(t, x, *-) is absolutely continuous

'with respect to m for each t >0 and x€ X .

The next proposition says that we can reduce the nearly Borel measurability

of q.e. finely continuous functions to the Borel measurability.

(ix) A function f is q.e. finely continuous if and only if there

exists a Borel almost polar set B such that X - B -is M-invariant and
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f is Borel measurable and finely continuous on X - B .

Proof. Let f be q.e. finely continuous. Then by the definition
and (vii) , there is a Borel almost polar set B, such that X - B,
is M-invariant and f is nearly Borel and finely continuous on X - B0 .
For a fixed natural number M we define the trancated function fM of

£ by fM = (FAMV(-M) on X - B We extend fM by setting its

0

value to be zero on BO . by the fine continuity of fM on X - BO .

we have

lim nanM(x) = fM(x) , X&X-3B_.

n>o O
On the other hand, there are Borel functions fl and f2 such that
f. < fM < £, on X‘ and (F.(x) - £.(x))Im(dx) = 0 . But, for any
1= = "2 2 1
X
N
hec,(X) , (h, G (f, - £))=(Gh, f, - ) =0

yielding that anl = G_f, m-a.e. and hence q.e. owing to (vi) .-

n 2

Therefore there is a Borel almost polar set Bn such that

anM(x) = anl(x) for every x& X - Bn . Put BM = BO u U Bn , then
n=1
fM(x)=limntM(x)=limnG fl(x), Xx€X - B, .
e 1 preo O
Consequently fM is Borel measurable on X - BM . According to

(vii) , there is a Borel almost polar set B D (/ B, such that
M

X - B is M-invarinat. Then f£(x) = lim fM(x) is Borel measurable
Moo

on X - B, completing the proof.

(x) Let {fn} be a decreasing sequence of a-excessive functions

with limit f and suppose that f = 0 m-a.e. Then f = 0 q.e.

This proposition corresponds to Blumenthal-Getoor [ j_ ; V1(3., 2)1 .
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The proof is quite the same. We do not know whether in our case
every semipolar set is cosemipolar. But by making use of (x) and
following the same line as in Blumenthal-Getoor [ 1 ; V1 (1. 19)71 ,

‘we get

(xi) Each semipolar set is the sum of a cosemipolar set and an almost °

polar set.

(xii) TFor any Borel sets A and B , we have

N
AaAaG g, h)

o .0 -
(g, HyHgG,h) = (HBHA o

for any non-negative Borel functions g and h .

Proof. This is a consequence of (2. 2) . . Take non-negative
. . o, Nan . .
g and h in CO(X) . Since HBGah (resp. HAGag) is an o-excessive

(resp. a-coexcessive) function,” we have

1]

lim B(g, H%_HG h)
P A8 B o

(g, H?H%G h)
- 3 a - - el ’
= élT Blg, HAGa(I (B - a)CB)HBGah)

o

. /\u A A A .
= lim B(HBGu(I - (B - a)GB)HAGag, h)

Bt

Ay A ALA Ay Yo\ )
= lim B(HXG HYG g, h) = (HHYG g, h) .
Brpoo BB A e’ B A 0™’
(xiii) Let A be a Borel set. Denote by A" (resp. "A) the
totality of regular (resp. coregular) points of A . Then TA - AT

is written as

r r _
A-A = Nl + N2

with a Borel semi-polar set N, and a nearly Borel almost polar set N

1 2"

The same conclusion holds for AY - FA .



1038

. s ~
Proof. Since TA is co-nearly Borel, there are Borel sets A'
N N N A A
and A" such that A'C "ACCA" and A" - A' is almost copolar.
There are also Borel sets A' and A" such that A'C Ac A" and

N\

' - A' is almost polar. Put F = A' - A" s then F 1is a Borel

r ;
set, Fc T A - A" and the set (YA - A") - F is almost polar in view

of (iv) . By the preceding identity, we have
| (g, HEHYG h) = (ﬁgﬁg&ag, h)
Since FUVTFc A, we see that ?I;HAAAag = ﬁg{;\ag . Hence, by
(2. 2)., (g, “ﬂF"G h) = (g, H“G . Now choose h ~such that Gh F1
We have (g, H er %y = (g, e ) for every ge& C (X) " Using (vi)
we get e; = HAeF q.e. If x€F, then x¢& A" and
H e (x) H l(x) <1, Thus, there is an almost polar Borel set
N' such that ea(x) <1 for x€N, =F - NN is then a Borel
semipolar set because e (x) sep Yx) <1 for xe& N, . Now

Ta- A" =N +N, with N, = [(*A - AT) - F1 + FAN' is the desired

expression.

(xiv) The following two conditions are equivalent.

(C) Each semi.polar set is almost polar.
(C') A function is q.e. finely continuous if and only if it is q.e.

cofinely continuous.

Proof. Assume the condition (C) . Consider a q.e. finely
continuous function f . By (ix) , ‘there is an almost polai'

Borel set B such that X0 = X - B is finely open and f is Borel

measurable and finely continuous on X0 . For 4 real number a ,
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put E_ = {xe X f(x) < al . Since X - E_ is finely closed,
a 4

0 ;

_r _ Py _ _ r
N = X - Ea) - (X Ea)c: (X Ea) (X Ba)

which is almost polar on account of (xiii) and (C) . Notice
that E_ - N, =E_ - (x - Ea) is cofinely open.  Choose an almost

. A .
polar Borel set N;::)Na and set B0 =B L/( L/ Ny ) . By virtue

a: rational
of (vii) , there exists an almost polar Borel set BI)BO sueh that’
A ‘ _ :
X - B is M-invariant. Now, for any rational a , - the set
A AN, . A
{x€ X -8B ; £f(x) < al = E, - B is cofinely open because E,-B-=

A o~ . ,
(Ea - Na) N (X - B) and both Ea - Na and X —.B are cofinely open.

This shows that f is q.e. cofinely continuous.

Coming to the converse,  assume (c') . Consider a compact
thin set K and put B = {xe X ; e;(x) 21 —'-i'—} . ‘Then
(\Bn is empty. . Since e; “is a-excessive, it is éje. cofinely
continuous in view of (C') . Hence there is a Borel polar set N

such that B - N is Borel and cofinely closed for evéry nv(éwing to
(ix)) . On the other hand, we have (see Blumenthal-Getoor [ 1  ;
vl (4. 10)1)

H = e on X .

o

Let g be a strictly positive continuous and m-integrable function.

Then, = just as in the proof of (xii) , (ﬁg g, e;) = (g, e;) .

n

Since N is almost polar, the left hand side is equal to (ﬁg N &°
v . ‘ n—

e;) s which decreases to zero as n->+® , because the measures

] 4

Hy _ g (x, * ), =xE&X , are supported by a cofinely closed set

n .
Bn - N and [W(Bn'--N) is empty. Therefore e; = 0 m-a.e. ,

yielding that K is almost polar.
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