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Integration of partial differential equations with quadratures

by
Michihiko Matsuda
§1.. Integration with quadratures

Lagrange solved a partial differential eQuation of the

first order
(1) V(x, ¥y Zy Dy @) = 0, P = 3zk?xs» q= 23z/2y
as follows (1772)+ If we have a complete integral

f(x, y, z; a, b) = 0, a = constant, b = constant,

of the equation (1), then the general integral is obtained

by elimination of a from

2fr 3t o8

f =0, ba'l'.ab ,ba=0, b;}d(a),

where 9‘ is an arbitrary function of a.. To get the complete

integral, we take a solution F of [ F, V1 = 0, where

7x T Pz dyz?y+q3z’

* Note of the talk given in the Research Institute for Mathe-

matical Sciences, Kyoto University on March 23rd, 1971.



Then the system of partial differential equations of the

first order [ G, V] = [ G, F] = O with the unknown function

G is complete, and hence we can solve it. The complete integral
is obtained by elimination of p and g from V = O, ¥ = a, G = b,
A function F of (x, y, z, ps, q) is a solution of [ F, V]= 0,

if and only if it is constant along every integral curve of

the Lagrange-Charpit system

(2) dx _ dy _ dz _ _=dp _ _=dg
oV/op =~ 9V/2q  p2eV/2p + q2V/3q ~ dV/ax - av/dy”

Monge tried to reduce a partial differential equation

of the second order
(3) F(X, ¥4 2, Py G, T, 8, t) = O,
r = Bzz/alxa, s = Dzz/ax() yy, t = azz/ayz

to an equation of the first order V1~+ ﬂf(Vz) = O containing

an arbitrary function @ (1784). It is possible, if and only

if the equation (3) has the form

(W) Hr + 2Ks + Lt + M + N(rt - 52) = 0,

and the system of linear equations of the first order
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av 2V 3V
— e = Hom— = O
Ndy"')LZ?p 2q

has two functionally independent solutions Vl and V2 . Here

H, K, L, M, N are functions of (%, y, z, p, ), and }\l,Jka

are the roots of the quadratic equation

A2 - 2KA + HL - MN = O.

~ An equation of the form (4) is calTed Monge-Ampere”s equation.
Ampere tried to integrate partial differential equations

of the second order which can not be solved by Monge’s method,

and constructed the general integral on various examples (1813).

Generalizing his method, Darboux gave the following method of inte-

gration (1870): For a given equation (3) find two equations

Gi = O of the second order containing an arbitrary function

}di of one variable, i = 1, 2 so that the three equations

F = G1 = G2 = O forms a completely integrable system. Suppose

that it is possible. Then, integrating the completely integrable

system, we have the general integral of (3) containing two

grbitrary functions ﬂ&_and }K2.

§2. Involutive systems

Lagrange and Jacobi found a method of prolonging &
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system of partial differential equations of the first order
with one unknown function to a complete éystemﬁ Any system

is profonged to either a complete system or an incompatible
system by their method.. Generalizing the notion of a complete
system, Cartan and Kuranishi definéé an involutive system.

They gave a method of pTo}onging a system of partial differen-
tial equations of general type to an involutive system.'Eythfsrnetkad,
unfortunately, there exists a system which is protonged neither
to an involutive system nor an incompatible system. Combining
Cartan-Kuranishi’s‘piolongation and that of Lagrange and
Jacobi, we have a method of pioiOngation by which any system

of general type can be pYolonged to an involutive system or

to an incompatible system ('[{11, [121).
§3. Transformation of equations

It is Laplace who tried to transform an equation to
an integrable equation with quadratures, if the given equation
can not be solved with quadratures. For this purpose he
devised the following Léplace transformation which can be

applied to a linear hyperbolic equation
(5) s +ap +bg +cz = 0,

where a, b, ¢ are functions of x, ¥y (1777,[3)Chap.II] ):

The equation (5) is expressed in the form



J

-:a:-;(q-ﬁ— az) + b(q+ az) - H z = 0,

[e}

where

, da
HO =—?——;+ab = Ce

Hence the equation (5) is solved with guadratures, if Hb = 0.
Suppese H_ # C. Then we can transform (5) by the Laplace
transformation

zZy = 4+ az, Hoz = pl-k bzl

J

to
9(» ) + b( ) - H.z ’
5 x ql-k alzl + ql-f alzl - lzl = 0,
where
. _Dal*gb_'_ﬁ ’ . QlogH‘o
1 2x 27 o' 157 o2y *

The (n+ 1)-st Laplace invariant E%ris defined inductively
by

3a 9 .
n b
Hn = ?x “'_—"gy +Hn_1,

. = 0, where

-

unless H.
n—
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The given equation (5} is transformed to

J

_ﬂ(qn+ anzn) + b(qn'f anzn) - H =z

= 0
nn

by succesive application of the Laplace transformation.
if H =
n

A

Hence,
G, then we can solve (5} with guadratures.
"

transformation which acts on any partial differen-

tial equation was found by Lie (1875, [10]).

This is a contact
transformation defined as follows: A transformation

X, = Xi(xl" cee 3 X3 Zy Dy osee s pn)‘9 1£isn
7 = Z(xl, ees 3 X3 Zy Py oeee o pn)

P, =

i

Pi(xl. eee 3 Xy Zy Py

o0 e g pII)’ I

fiA
P.
A

is called a contact transformation, if it satisfies
>
24 Pyd Xy = pldz - Fpidxy)

identically, where © is a function of (xl, ceo 3 X_ 4 Z,

Pys eoey pn). The fundamental theorem of Lie is as follows:
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Given n functions X, 1£iZn, satisfying
[xj, xkj =0, 1=j, kEn.

Then we can find n+ 1 functiens Z, P,, 1Xh=n so that they
form a contact transformation with Xi, 1=isn. By this

theorem any equation of the first order

V(xl9 oo e § Xn, Z pl’ e:0.0v o pn) = O'

o= g =i<
p; = 3z/3xi, 1_1‘:._113

is transformed to P = g by a conlacl anm‘éwmm&m.

4
Bécklﬁé found the following transformation, investigating

transformations of a surface of constant negative curvature
(1882, [ 4, p.438]): Two partial differential equations
$ =0 and ¥ = 0 are called the original and the transformed

equation of a Bédcklund transformation
Fi(xs Js 29 Py Q3 x'ly yl’ %y Py ql) =0, 13Sish

respectively, if for any integral surface z =9(‘x, y) of _§= ]
we have a completely integrable system of the first order

eliminating x and y from

Fi(X, Js j’ s j"x,o }’y; Xy Yo 2y Py ql) = 0, ‘l§.i§4~,
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and if each solution of this system is an integral surface

of SE’: 0. For example, take

?
F, = py + bq - (1;% - ¢c)z.

Then it is the Laplace transformaticn (L. 7o apply this
n
BiacklWd transformation for integrating Monge-Ampere’s equations,

Imschenetsky generalized the Laplace transformation as follows.

([21): Take
Fo=% -x Fy=y) -y, Fy=12) - h(x, y, z, q),
F), = py = kix, v, 2z, a),

and assume that

?2 (h, k)

9h \
CER CR R

Then the equation

dh ?2h . 2nh
——ES‘%'—-Z-p“"———)Z—k:O

2n 2k dk ¢h dh 2k
== 8, = 0/ Q, + T— —— - == s
q 1 29 1 dy 2q dy 2gq



63

where we replace X, y, z, q by their values obtained from

xlzx)y:L:y!Zl:h’pl:k'

§4. Cauchy's problem

Cauchy proved that the initial value problem of an
equation of the first order V = 0 is solved by integratﬁng
the Lagrange-Charpit system (2). To prove this theorem he
showed that the Lagrange-Charpit system has the following
property: For any initial curve satisfying dz - pdx - qdy
= O and 4V = O, the integral surface of the Lagrange-Charpit
system satisfies dz - pdx - qdy = O.

The Cauchy problem of Monge-ﬁmpére’s equation is solved
by integrating the Lagrange-Charpit system of an intermediate
inteégral of the first order, if and only if Monge's method
of integration is applied to the given equation with success.

Goursat [6 ] tried to solve the Cauchy problem of a
partial differential equation of the second order which is
not of Monge-Ampére’s type by integrating the Lagrange-Charpit
system'cf an intermediate integral of the first order. In
this process he obtained the notion of characteristics, the
original idea of which is in the work of Ampere., The equation
of the second order whose Cauchy problem is solved by integrating
the Lagrange-Charpit system of‘an intermediate integral is

called the Goursat equation ([11).
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§5.. Integrable systems

Generalizing the Lagrangr-Charpit system, we defined
an integrable system in [13]. Consider a system of ordinary

differential equations

éx &y _dz _ _dp _dg

AP Ry B0 7D
in the space of (x, y, z, ps, q), where A, B, C, D are functions
of (x, ¥4+ 2z, Py q9). Then it is called an integrable system,

if for any initial curve satisfying dz - pdx - gdy = O and
Adp + Bdg —~ Cdx - Ddy = O, the integral surface of the system
satisfies dz - pdx - gdy = O. We showed that the Cauchy

ﬁ}s solved by integrable systems,

equatfon (%)

problem of the linear hyperbolic

if and only if Hi = O,

§6.. Darboux’s method
From this point of view, an equation of the form
(6) 58 + f(x, ¥, 2z, Py q) = O

is solved by Darboux’s method, if and only if the Cauchy
problem is solwved by integrable systems along each of the
two characteristics. Vessiot LI5] showed that if an equation

of the second ordei\is solved by Darboux®s method, it is

(3)
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transformed to an equation of the form (6) by a contact trans—
formation. The classification of equations of the form (6)
solved by Darboux’s method was made by Goursat[.glj.. This
result is a generalization of the following theorem of Lie

(L & , voir.6, pm295] )Y+ If an equation of the second order
is solved by Monge's method with respect to each of the two
characteristics, then it is transformed to s = 0 by a contact

transformation.
§7. Integrable systems of higher order

In this section and the following one we shail state
the results obtained in Uﬂqn Expanding the notion 6f an
integrable system, we ::::ﬂ define an integrable sygtem of
order n to solve the Cauchy problem of an equation of the
form (6) in the space of (X, ¥, Zy Py g5 eoe s Gp) containing

the derivatives of higher order q; = Dlz/Dylo, In this space

consider a system of ordinary differential equations

v , ! dq:. .
o ax dz _ dp _ . L1 _ < i
(7) dy et O‘) dy“ q19 dy - fi dy - i+ I) I<l§n’
S
dy ~ 7

and differential forms

w, = dz - pdx - qdy,



dq, + f. _,dx - q; ,dv, 1£i<n,

€

dx - udy,

&

dqn + fn-l

where u is a function of (x, y, Zy P, Gyo woo s qn)" to be

determined later, and fi is the function of (x, ¥, 2z, P, ql,

e s Gy I) defined inductively by
CE IS ot isI Jf,
= — — —— —— <3 =T
fi'+l T2y 3z % 2P f+ 5’1 ;q-j qj-i-l’ 03 i<n-1,
f = f.

o

We say that the system (7) is integrable, if for any initial

curve satisfying e = w; = W= 0, I12i<n, the integral

surface of the system (7) satisfies W, =Wy o= W =0, 12idn.

In this sense the integrble system defined in §5 is the integrable
system of the first order. We also say that the eguation
(6) is solved by integrable systems of order n, if for any

initial curve satisfying (“)o = ca)i =0, 12i<{ n, we can find

sucH a function u that satisfies « = 0 along the given initial
curve and makes the system (7) integrable. If we apply this
metliod of integration to the linear hyperbolic equation, then

we obtain the following theorem: The linear hyperbolic eéuation (5)

is solved by integrable systems of order n, if and only if H?n = O.



§8. Eguations of Laplace type

An equation of the form (6) is solved by Monge's method,

if and only if it has the form
(8) & + M(x, y, z, @)p + N(x, y, =, q) = O,
and if its first invariant

9N 2M 2N 2N
i A T Y

vanishes. An Imschenetsky transformation can be applied

to the equatien (8), if and only if ¥ # O. Iﬁ’iﬁis— case let

us ga&y that it is an equation of Imschenetsky type.. The
equation ¢f Imschenetsky type is solved by integrable systems
of tﬁe first order, if and only if each of the following four

gecond invariants vanishess:

11 - 2q ' 127 5q°

|
2

'L,
Mz =3y — My - 2" Hyy = g5 - ML - N - 2H,

where

2 2 J 9
R T R ER Tt
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2
I, = X,1log H+ —..

L:Zlogﬂf—,—a—a, > 1

We defined in [13] an equation of Laplace type as an equation

of Imschenetsky type whose transformed equation has the form
8, - (7pl+ S)ql - (Gp1+/8) = 0,

The equation

where &« , R, ?: S are functions of Xy Yyo Zqpe

of Imschenetsky type is of Laplace type, if and only if Hil =

H13 = O, We proved inlﬁfﬂ that the equation of Laplace type

is solved by integrable systems of the first order, if and
only if the transformed equation is solved by Monge's method.
Expanding this theorem we have the following theorem: The
equation of Laplace type is solved by integrable systems of
the second order, if and only if the transformed equation

is solved by integrable systems of the first order..
8§9,. Remarks

1. The equation (6) has the two characteristics dx = 0,
dp + fdy = O and dy = 0, dq + fdx = O, The same argument
as above can be made with respect to the other characteristics.
Z. - Lagrange's method o;éptaining the general integral
from a complete integral is applied with success to an equation

of the first order with n independent variables. However,
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it is not powerful for integratig an equation of higher order..
3. A contact transformation is prolonged uniquely

to the transformation which acts on the space of (xi, Zy

Py .45 Y2i, i, eee y i 20, ISrSm) containing
1° r =
P . = 92/ 9%, eee DX, , and satisfies ?den‘bfca]bl
Y, eoeo 1 1 x
I r 1 r
n
daP, . = ¥, P, ., dX
ll..oo- h & i=1 11.-0. lrl 1

n
«(dp, . - % p. . Ldx ),
Jl“' e ')S' J=1 Jl"' i JSJ J

1Sigy e iy wee 23 Sy ISTLm

Conversely the transformation satisfying this identity is
obtained as the prolongation qf a contact tr&nsformation,

"4k, .The Imschenetsky transformation is a bijective
transformation. In general, the BéckIund transformation
is not bijective. Results on general Bécklund transformations
are contained in Goursat's report [3.].

5. Results on integration with quadratures are con-

tained in qusyth’s book L5].. Goursat tried to treat them
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systematically by his theory of characteristics in his book
r?] ..
6. An integrable system of higher order can be defined

in the space of (%, y, z, Py 5 0f£i, jSn, I13i+j=n) con-

taining Pyj = 31+3z/ dx*2yJ, for integrating Monge-Ampére's

equation of general tyﬁe.
7. The Bdacklund transformation of Laplace type defined
in [13] is the same as the Imschenetsky transformation applied

to an equation of Laplace type.

§10. Problems on the Galois theory of Monge-Ampere's

equations

1. Determine the method of integration by which we can
define the solvability of an equation.

The method by integrable systems of order n is an answer
to this problem.

2. Define the Galois group of an equation. Apply
the Bidcklund transformation for constructing the Galois groupe.

If we define the Galois group as the subgroup of the
group of contact transformations which leaves the given equation
invariant, then it is not always an infinite Lie group, but
sometimes a finite Lie group.

3. Define the solvability of the Galois group, and
clarify the relation VY the two soivability of the group and

betweein
the equation..



11

Bibliography

C1r] E. Cartan, Les systemes de Pfaff a cinq variables et .
les equations aux dérivées~partie11es du second ordre, Ann.
Sci. fcole Norm. Sup. 27 (1910), 109-192.

L 2] J. clairin, Sur la transformation d’'Imschenetsky, Bull.
Soc., Math. France 41 (1913), 206-228.

{ 31 G. Darboux, Legons sur la theorie génerale des surfaces
et les applications gépmétriques du calcul infinitesimal II,
GauthieroVillars,'Paris (1889).

Lol

les applications géometriques du calcul infinitesimal .III,

s Legons sur la theorie générale des surfapes»et

Gauthier-Villars, Paris (1894).

L 5] k. R,,Forsyth. Theory of differential equations. ?art
IVs Partial differential equations, Cambri&ée Univ.APreés, |
London (1906). | |

{67 = Goursaf, Sur une class d’éﬁuatioha'au*tdérivéea:
partielies du sécbndkordre,‘et suf 1&:théorie.deavintégréies
intermediaires, AdEa ﬁéth. 19 6189539285-3h0. |

L 7]

. .
derivees partielles du second ordre & deux variables

, Legons sur l'integration des equations aux

independentes, Hermann, Paris, I (1896), II (1898)»
18]

partielles du second ordre; Ann. Fac. Sci. Univ., Toulouse,

0 . . '
s Recherches sur querques equations aux derives

Ser. II, 1 (1899).



78

L 9]

. Gauthier-Villars, Paris.(1925).

, Le probléme de Backlund, Memor. Sci. Math. 6,

[ 10 ] S. Lie, Theorie der Transformationsgruppen.II, Teubner,
Leipzig (1890).. '

{1z ] M. Matsuda, Cartan-Kuranishi's prolongation of differ-
ential systems combined with that of Lagrange and Jacobi, Publ,

Res. Inst. Math. Sci., Kyoto Univ., Ser. A, 3 (1967), 69-8L,

L 12 ] s On involutive systemsrof partial differential

equations,. Sugaku, 21 (1969) 161-177, (in Japanese)..
[13]

equations, Trans. Amer. Math. Soec. 150, July (1970), 327-343.

+ Two methods of integrating Monge-Amperé's

Cis]] + Two methods of iﬁtegrating Monge-Ampere's
equations, II, to appear. |

L 15] E. Vessiot; Sur les equations aux dérivees partielles
du second ordre, F(x,y,z,p,q,r,g,tf = 0, integrables par la

/\
Scr.7, 

méthode de Darboux, J. Math. Pures Appl. 21,(1942), 1-66.



