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FExistence Theorems in Conditional Gauss Variational Problems

M. YAMASAKI ( OKAYAMA UNIV, )

§ 1. Introduction

Let Q be a locally compact Hausdorff space and G be a Borel
measurable function on 2x2 which takes values in ( = e, ], We
assume that G(u, v) = G(v, u) for all u, v € o and G is bounded
below on every compact set. Such a function G is called a kernel,
A non-negative Radon measure pu with compact support Sp will be called
simply a measure. Denote by M (Q) the totality of measures on
and put M+(Su) = {v € M+(Q); Sv < Sﬁ}ifor n € M+(Q). Given measures

w, von Q , we define G(u, 1) and (v, 1) by

G(u, 1) j ¢(u, VIan(v),

(v, ) j G(u, w)av(u),

and call them the potential of p and the mutual energy of p and v
respectively. We call (u, u) simply the energy of n. Denote by E
the set of measures with finite energy.

We shall éay that a property holds n.e. (= nearly everywhere)
on a set B« Qif it holds on B' such that B' = B, u(K) = O for all
compact sets K« B -~ B' and p € E. A kernel G is termed to be of
positive type or positive semi-definite if ;

(=vy,u=v)=~_(u, n) + (v, v) =2(vy, p) 20
for all p, v € E, In case g and h are extended real-valued func—
tions on Q which are p—summable for all u € E, we set

g(u) = h(u) = 0
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at points u where g(u) = h(u) = = or g(u) = h(u) = - e,
Let B be a set in @ which is measurable with respect to every
p € E and satisfies the condition that Eé # {0}, where
Ep = {u € E; w(a - B) = 0},
Let £ and 8gs K = 1,°-+ , n, be real-valued functions on B which
]

are u-summable for every p € Ep and {ck; k=1,--+, n} be a set

of real numbers. For simplicity, we shall write
J fdun = < £, u >,

A mutual energy (1, v) can be written as < GGy n)y v >,
We shall consider the problem of minimizing the expression
(Gauss integral)
I(w) = (n, p) =2< £, p>
subject to u € Eé and < gk; W > = c, for each k. This is called
the conditional Gauss variational problem. Let A be the transfor-
mation froﬁ Eé into the n-dimensional Euclidean space R® defined by
Ap = (<gyy B>y o0ey < gy op )
and let z = (cl,--- » ¢,). Let us put
V = inf{I(n); u € 8},
S = {u € Ep; an =z},
S, = {ne€s; V=1l
In case So is nonempty, V is finite by'our'assumption for f.
Let u* € Eé. {gk; k = 1,--- , n} is called p*-independent
if there exists a set {mes k=1, ««+, n} in M*(Su*) such that
ut - (1 € M+(su*)~for each k and’det(< gj’ By >) ¥ O, where.det(aij)
means the determinant of a matrix (aij)o The set {u,; k = 1,.-. , n}

is called a system of components of n*.
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The following existence theorem was established by M. Ohtsuka
(f1], p. 213, Theorem 2. 1).

Theorem 1. Assume that u* € So and that (gk; k=1,°"*, n}
is p*-independent. Let {uk; k = 1,°*° , n} be a system of component
of u* and {rj; J=1, n} be the solution of the equations

o &

(1) 321 Ty < By Wy > = < GC oy w®) = £, uy >
Then it is valid that

(2) G(.’ u') 2 f + I‘kgk nN.€s ON B,

Moo e
= -

(3) G(-y u*) £ £+ rg, M a.e.

for each k.

The aim of this paper is to study the roles of p*-independence
in the conditional Gauss variational probiem.r"'We improve Theorem 1
and related results in f11. For applications of our results and

the existence of a measure of So’ we refer to the forthcoming paper

[21.

§ 2. Existence\theorems
A system of components {uk; k=1,:--, n} of p is called to
be full if p = k§1 . In this case we say that p has a full systeq
of components.
For p € E, we define C[ul by
Clul = (v € W' (S5 n - v € W (sp)).

It is shown by the symmetry of G that Clul is a convex subset of E.
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Let Q(p) be the convex cone generated by A(C[pl), i.e., z € Q(n)
if and only if there exist v € Clpl and a non-negative number t
guch that z = tAv, Denote by F° the interior of a set F in RY and
vy ((x, y))2 the usual inner product of x, y € RZ.

We have

Lemma 1. Let p* € s, If {gk§ k=1, -+, n} is p*-independent,
then z, € Q)%

Proof. Supposing the contrary, we see that Z, is a boundary
point of Q(n*). There exists a nonzero w = (ry,--- , r)) € R® vy
a well-known separation theorem such that
0 g ((z, W),

1, -+, n} be a system of components

((zyy w))5
for all z € Q(u*). Let {n,; k

"

of w*. From p, € Clu*] and p* - By € Clp®] for each k, it follows

that
0 g ((Any, W), g ((Ap*, W), = ((z,, W), = O,
8o that
~ ~ n
0 = ((Auk’ W))z = jz-"]_ rj < gj? uk >,

Since det(< B30 Vi >) # 0, we conclude that Ty = 0 for each j.
This is a contradiction. Therefore Z, € Qn®)°.

Lemma 2, Let u® € S and assume that (gk; k=1, , n} is
p*-independent. Then p* has a full system of components.

Proof. Since z, € Q(u‘)o by Lemma 1, we can find a set {Vk;‘
k=1,-+, n} of measures of C[n'3.and a set {sk; k=1, v.¢, n}
of strictly positive numbers such thﬁt {Avk; k= 1,00, n} is line-

arly independent and
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In case 8o kzl 8, £ 1, we have p kzl BV € S and v = u u

M*(Su‘). Choosing ui = 5V * v/n for each k, we see that {ui; k =

X, *-+, n} is a full system of components of w*. In case 50 > 1,
let us put tk = sk/sO for each k and consider W, = kil tkvk’ Then
® = = ® * o

By € Clu*] and Ap zo/so. Taking v = n B, and up = v, +

vo/n, we can show thatffni; k=1,--- , n} is a full system of com—

ponents of u*.

)

For p* € S , we denote by S;(u‘) the set of points w = (rl, e T

which satisfy the following relations (4) and (5):

n
(4) GG, n*) 2 £+ 2 T8 n.e. on B,
- k=1
o &
(5) G(., u‘) g £+ kzl rkgk uw -a.e,

If w € S;(u'), then it is valid that
(6) <G(-, u*) = £, u* > = ((Zo, W))Z’
(7) Vs I = ((zg, W), = < £, p* > = 2((z,, W), - (B, w*).
It is easily seen that (4) and (6) imply (5).

We shall prove

Theorem 2. Assume that u* € S_ and that {gk; k=1,..., n}
is u‘-independent. Then S;(u‘) consists of only one point w(u*) =
(r1’°7' s rn). If {uk; k=1, «.-, n} is a system of components of

we, then {rj; j=1, --+, n} is the solution of the equations

(8) r-<8-,uk>=<G('iua)-f’uk>;

1 J dJd
-5«

e~

J



111
Proof. Let {uy; k = 1,--- , n} be a full system of components

of p* and define {rj; j=1,--+ , n} by
n

y T, <g.

ha = ° ® - ® .
sy T3 By M7 TS GCy ™) = £, uy >

1t follows from Theorem 1 that

n
(9 G(-y n*) 2 £ ¢+ j;l rig; D.e. On B,
n
(10) G(-y u*) < £ + 'Zl ri6; w*-a.e.,
J:
since p* = kzl Bye Therefore w = (ry, -++, r ) € SI(n*). If w=
(80 °°" » 8y) € Sg(p*), then
n 2 ‘ny B L 3 n L
321 8y < Byr M > = <Gy w¥) = £y uy > = le Ty < 850 P 7
so that
3 &
. = T1.) . > = 0.
jzl (SJ rJ) < gJ’ Yx o

Since det(< 85 uy >) # 0, we have w = w. Namely S;(u')_consists
of only one point. Let {uk; k=1, ---, n} be a system of components
of u*. Then we have (8) by (9) and (10). This completes the proof.

Theorem 3. Assume that Eﬁ is convex and that p* € So‘ If
[gk; k=1,.-. , n} is p~independent for some p € S, then S;(u‘) is
nonempty.

Proof. From our assumption that Eé is convex, it follows that
S is convex. It is shown that

< G(ey n*) - £, 0* > < <G(oy p*) - £, v>
for a1l v € S, Writing g, = G(-, u*) - £, we have
-5 =



M=<g,n >=min{< Bor V>3 V€ s},

V=<g. e > =< £, u* >,
Our assumption that {gk; k=1, **+, n} is u~independent for some
L € S is equivalent to the condition z € A(Eﬁ)o, By means of a
duality theorem in semi-infinite programs, we see that there exists
w € R% such that
((Av, %))2 $<gy v>

for all v € Ep and M = ((z,, E))Z. It is shown that w € Sg(n*).

Ep is convex if and only if (u, v) is finite for all u, v € Ep.
It is clear that Eé is convex whenever G is of positive type or G is

bounded on Bx B,
Theorem 4. Assume that G is of positive type and that p* and

v* are elements of 8,» Then it is valid that Sg(u‘) = Sg(v‘)s
Proof. From I(p*) = I(v*) = V and (p® + v®)/2 € S, it follows
" that
I(u*) € I((u® + v*)/2) = I(u®*) - (p* = v*, p* = v*)/4,

and hence (p* = v*, u* - v*) < 0., Since G is of positive type, we
have (p* = v®*, u* = v*) = 0 and G(-, p*) = G(-, v®*) n.e. in Q.
Consequently (n*, n®) = (u%, v®) = (v*, v*) and < £, p* > = < £, v* >,
Assume that w = (rl, ces rn) e S;(u‘). By the above observation,

we see that

n
G(ey v¥) = £ =G(, »*) = £2 kzl r,g, n.e. on B,
n
- k7k
k=1
e <o oo e < ] e
= Ty < gy VO > =< r.g, ., v' >
ksl KR gl DB ’
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and hence

n
G(ey V) = £ = | g vi-a.e,,
’ k=1 KK
g0 that w € S;(v‘). Therefore Sg(u*) = S;(y‘). Since the discus-

gion is symmetric, we have S;(v*) < S;(u°) and hence Sg(u‘) = S;(v'),

Corollary. Assume that G is of positive type‘and let u* and
v* be elements of S . If {gk; k=1, «-+, n} is u‘—indgpendent and
© y*-independent, then it is valid that w(n®) = w(v®).
We observe that Theorem 4 and its corollary are not always

valid if G is not of positive type.
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