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A Refinement to a Theorem of Davenport and Lewis.

Y.-N. Nakai at Nagoya

The theorem of H. Davenport and D. J. Lewis cited is in the paper
"Exponential Sums in Many Variables " in American Journal of Mathematics,
vol. 84, 1962, pp. 649/665. Let Fp be the Galois field with p elements,
where p is a large prime. Let F(X) be a cubic polynomial in 4 variables

X = (X, ,ee0, X) with coefficients in F . Here we suppose F(X) to be
n p

1
non-degenerate, i.e. that p(X) cannot be transformed into a polynomial
with fewer variables by any non—singplar linear transformations. Let Fp(X)
be expressed as F(X) = ¢(X) + g(X) + (X) + constant term, where. Cs ©
and [ are cubic, quadratic and linear part respectively. We define

h = w(C) to be the least number for which ¢(X) is representable identically

as
Ll.Ql + so0e + Lh.Qh’

where Ll,--- and Ql,--- are linear and quadratic forms respectively with
coefficients in Fp. Obviously #%(¢) 1is an invariant of ¢, and

0<h(c) <C, and K(C) = 0 if and only if ¢ vanishes identically, and
h(C) = n if and only if (¢ does not represent 0 non-trivially in F .
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Then they state, as Theorem 1 of their paper, the

[Theorem] (Davenport-Lewis) For a non-degenerate cubic polynomial ’F(X) with

coefficients in F , we have
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Here and in the followings #n 1is supposed to be fixed and the implied
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constants depend only on n. As usual, e(x) = ¢

For the proof

they use a polarization of ((X).
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We show that, for cubic forms, the exponent can be diminished by y if

n(c) >0, by using Gauss sums, i.e., we have

[Theorem 1] Let (C(X) be a non-degenerate cubic form with coefficients

in Fp,' then we have
1
n-—(h(C)+1)

1
| 2 e(=zCx))| <«<p ,
xeF: p

if n(o) > 1.

In the féllowings we suppose ((X) to be non-degenerate in Fp’ and

p > 3.

(Lemma 1) Let @Q(X) be a quadratic form with coefficients in Fp’ then

we have
n-A
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where # - ) is the rank &, ¢ = +1 in general, ¢

( é') if A =0
p

1 or 3 mod 4.

with A=det ¢, and € =1 or % according as p
p N

Proof : Well-known.
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Let (¢(X) be expressed as ¢, . X XX , where the coefficients
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I cijkxk as its (Z, J)-th entry. The determinant . E(X) of “ﬁ(X) is the
k

Hessian of C(X).

are symmetrical in Z,J,k. Define # x7n matrix ‘é(X) with

(Lemma 2) The number of points Yy e F; for which the matrix ’{9, (y) has
the rank 7n - A in Fp is of an order O(pzn-h(c)-x) if 7 > A =2 n-h(0)+1,

1 if A=n, and O0(p" 1) if 7 -H(O) > > 1.

Proof : The first is a restatement of Lemma 3 in the paper of
Davenport and Lewis. The case A = n 1is suggested on the page 662
th th ) :
between the 11 and 8 lines from below. For the last statement
we use the fact that, if ZH(Y) = 0 as a polynomial and p > m+l, then

C(X) 1is degenerate in Fp.

(Lemma 3} We have

1
e
H(6X 2
ST e C00) << p
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if n>1 and C(C(X) has non-trivial coefficients. Here (=) is the

Legendre symbol.
Proof : Easy.

Now we proceed to the proof of the Theorem.
We have
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by putting X=X +Y, =x-Yy. If n>n() >1, the above sum is
equal to
n n+A
= n-h(C) -
H(6 2 2 -1
o5 Ayt ooy + 3 0p ) x 0™ h
pyeF p A=1
p
n+A
n-1 2 Mm-K(C)-h.  n
+ T 0 ") x0(p Yy +p
A=n-h () +1
=0(p) x0( ) +0( ) xo0(p )
" 1
7 +(2n-h(C))-§'(n-h ()+1) ”
+ 0(p }+p
2n-Ln(oy+n)
=0(p 2 ).
If K(C) = n, the sum is equal to
n n+A
no H(6Y). 2 2 nl 5 ndA. m
& L) preCCOW) + L 0 7)) x0@ ) +p
yeF p p A=1
p
1
Zn—E{n+1)
=0(p ).

And we have the stated result.



