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Notes on the topology of analytic sets

By. S. Morita

§ 0. Introduction.

In this note, we will collect some results on the topology of
analytic sets. First, in §].we will construct hypersurfaces
Ve et
for all n 24, 2n is not of the form 2% -2 for any a, having
the following properties.
(i) v" has exactly‘one Brieskorn type isolated singularity.

(ii) vl is a compact topological manifold without boundary.

(iii) V" admits no differentiable structure.

The cénstpuction is due to Kuiper [10], who has constructed
this kind of hypersurfaces for.the case n = A,i Indeed this was
my starting point.

The proof of the property (iii) depends on the Brumfiel's
work on 7t (PL/0) =]—'*, the group of oriented differentiable
structures on the spheres [3], and on Brumfigl;iMadsén, Milgram's
recent work [5].

In § 2, we will consider the problem:

How to calculate various numerical invariants of compact
complex analytic variety, such as various characteristic numbers (if-
they exist), the Euler characteristic énd the signature?

This problem has been solved by Kato [9] for the pfojective

hypersurfaces with isolated singularity and by Hirzebruch [7] for
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the signature of (some kind of) compact normal complex variety of
complex dimension two.

Using Kato's work, we will calculate numerical invariants of
the hypersurfaces constructed in § 1,

In § 3, we will remark some elementary properties of recently
introduced characteristic homology classes for analytic varieties.

The author would like to express his hearty thanks to Professor
M. Kato for introducing me to this area of subjects with many
stimulating lectures and discussions. He also would like to thank

Professor G. Brumfiel for kind letters.

§ 1. Some hypersurfaces in €Pn+1.

We define a hypersurface v, A , a)C CP“+1 (n 2 4) by
the following homogeneous polynomiai of degree . d-
a, d-a a, d-a a, d-a n
d .0 "0, "1 "1, ., %8 "o d
£a,a (302210 02 q1) = %0 2o +»‘,"1‘zn—a-jl:+ e 2 *iz::o)\izi
where a, is an integer 2 2;‘Nd1§ éiyufor"all i=0,1, ***, n

n
and [ }\i # 0.
i=0

Then it is easy to verify that if we choose A\ = (Ags A7p»
‘..’)\~n) carefully, then Vn(d,§\ s, & ) has exactly one Brieskorn
type singularity defined by the following polynomial

a a a
0

- 1.... n
8, (zo, ,_zn) zg +zl + +zn

=‘0‘
(c£. [10]).

We fix A (which of course depends on n, d and a) so
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that the condition (i) is satisfied and write Vn(d, a) for
vn(d,/\; , a).

Let [" (a) be the graph of a (in the sense of Milnor).
Then by Brieskorn, Vn(d, a) 1is a topological madifold if and
only if [T (a) satisfies some condition, which we may call the
"Brieskorn condition" [2], [8].

Henceforth we assume that [~ (&) satisfies this condition.
Thus Vn(d, a8) 1is a compact topdlogical manifold without boundary.
Moreover Vn(d, a) Q{XO} has a structure oﬁ complex,analytic mani-
fold, where Xg = (0, O, *++, 0, 1] is the singular point of
vi(d, a).

To étudy the property (iii), we consider the following gener#l .
problem.

Problem. Let M&n-(n £ 2) be a compact topological mapifoid'
without boundary such that Man'-(point} admits a differentiable
structure. Then when M admits a global differentiable structure.
(which may not coincide the original onekon' M-—{poiht})?

A partial answer to thié problem can be obtained from the
following theorem of Brumfiel;

Theorem (Brumfiel [3]). The Kervaire-Milnor exact sequence

0— [, . Om) ?rlm_l — cok J — 0

splits and a canonical splitting f can be obtained as fbllows.
Let Z;4n-1€§ an-1~ be a homotopy sphere. Then by a result in
the spin cobordism ring .Q:Pm, _Zlm-l bounds a spin manifold

N4n, '
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aNlm - Zlm-l

Moreover, by a slightly extended version of the Hattori-Stong
theorem, we may assume that all the decomposable Pontrjagin numbers
of N4n vanish. Then

n-1, _ 1 . 4n

£(h) = Feign (") mod [, (BT

where sign(Nan) is the signature of N4n and # rwén-l(a7t) is
the order of the cyclic group r“[m_l(aﬁ).

From this theorem, we conclude the following proposition (see

also [4]).

Proposition 1-1. Let MZm (n 2 2) be a compact spin topological
manifold with a differentiable structure on M -{point}. Let 2134
be the homotopy sphere in the neighborhood of the "point". Then

82y = - 22725 0 (oA - A
mod # [, _;(270),

where M is a closed spin manifold whose decompqsable Poptrjagin
numbers are equal to those of M and a@&M) is the Borel-Hirzebruch's
uﬂilgenus of M.

As corollaries, we obtain

Corollary 1-2. Let M be as above., If {CZ:M) is ﬁot diffeo-

Slm-l

morphic to the standard sphere , then M admits no differen-

tiable structure.
Corollary 1-3. Let Mlm (n =2 or 3) be a closed spin
topological manifold which admits a differentiable structure on

M -"{’ point}. Then M admits a differentiable structure if and only if

r,4?\(Mlm) =4 a'nM
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where & = 1 if n =0 (mod 2) and a = 2 if n=1 (mod 2). .

Noﬁ we go back to the original problem.

We constructed hypersurfaces

vi(d, a) GPn+1
such that Vn(d, a) satisfies the conditioné (i) and (ii). Thus
v?(d, a) 1is a closed topological manifold. Let Z:v be the
homotopy sphere in-the neighborhood of the singular point Xge
Then we have

Theorem 1-4.

(i) If n=d =0 (mod 2) with n 24, then V'(d, a) admits
‘a differentiable structure if and only if ‘Z:V is difféomorphic
to the natural sphere.

(ii) If n =1 (mod 2) and 2n 1is not of the. form 22 -2 for
any a, then Vn(d, a)  admits a differentiable structufe if and
only if Z:V is diffeomorphic to the natural sphefe.\

Proof. It is easy to verify that Vn(d, a) 1is a spin mani- .
fold if and only if n =d (mod 2). Then (i) follows from dorollary
1-2. (ii) follows from the‘recent result of Brumfiel, Madsen and -
Milgram [5], that the Kervaire manifold Klm-‘-2 (4n+2 18 not of the

form 2%-2 for any a) is not topologically bordant to smooth

manifold. | ’ Q. E. D.

§ 2. Numerical invariants of analytic varieties.

In this section, we will calculate various numerical invariants
of Vn(d, a) constructed in § 1. The calculation depends on the

Kato's topological resolution theory [9].

-5 -



1 be the Kato's topological resolution of

-~ +
Let V'(d, a)C ¢p”
Vn(d, &). Roughly speaking, it can be obtained from VQ(d, a) by

deleting a closed small neighborhood of the singular point X and

"pasting" (in CP“+1) the non-singular affine variety Va defined
by
: a a a
g, = z00+zll+ etz 7= 1.

1

Vn(d, a) 1is an almost compiex submanifold of GPn+ and the

Poincaré dual of the fundamental class [Vn] is do, where

oe nlcp™!

; 2) 1s the standard generator.

Therefore various numerical invariants of ‘Vn(d, a) such as
characteristic number, the Euler characteristic and the signature are
calculable and are equal to those of the non-singular hypersurface
of degree d, which we will write Vn(d).

Since Va is parallelizable, we have the following result
- essentially due to Kato.

Proposition 2-1.

(i) All the Stiefel-Whitney classes except WZn of Vp(d, a)
pulled back to CPn+1 by the Gysin homomorphism are equal to
those of V' (d).

In particular all the decomposable Stiefel-Whitney numbers of
Vn(d, a) are equal to those of Vn(d).

(i1) The Euler characteristic is given by

n
24 (w2)d - 1 + (1™ (o) - 1)

i=0

X"@, ) =1 a-0

Now assume n 1is even, say n = 2k. Then
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(iii) All the Pontrjagin classes except Pk of Vn(d, a) pulled
back to 'CPn+1 by the Gysin homomorphism are equal to thbse of
y7(d). In particular, all the decomposable Pontrjagin numbers of
v7(d, a) are equal to those of Vn(d).

(iv) The signature of Vn(d, a) 1is given by
sign Vn(d,_a) = gign Vn(d) - sign Va'
(v) The Pontrjagin élass Pk(Vn(d, a)) 1is determined by (iii)
and the requirement that sign Vn(d, 8) 1is equal to the L-genus of

vid, a).

§ 3. Some remarks on the characteristic homology classes for analytic

variety.

In this section, we will study the recently introduced charac-
teristic homology classes for analytic varieties. But we can say
something only for the varieties whose singularities are isolated.

Now we recall the definition of the Stiefel-Sullivan homology
classes for compact real analytic variety [11].

Definition 3-1. A triangulated compact pair (K, L) is said
to be a relative Euler (resp. mod 2 Euler) space if the Euler charac-
teristic (resp. mod 2 Euler characteristic) of the link of any vertex
of K-L is equal to zero. In case L =g, ’w‘e say that K is an
Euler (resp. mod 2 Euler) space. |

This definition was ﬁotivated by the following theorem.

Theorem (Sullivan [11]). Let V be a compact complex (real)

analytic variety and fix a Lojasiewicz triangulation. Then V is
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b)

an Euler (mod 2 Euler) space.

Now the Stiefel-Sullivan homology classes for relative mod 2
Euler space (K, L) are defined as follows. Let S3K be the
first barycentric subdivision of K. Let cie Ci(SdK’ SqLs 2/2)

be the chain defined by

c; = . ot |
6 -
]ESdK S 4L

Then it can be shown that c is actually a cycle. We define the
i-th Stiefel-Sullivan class Si(K’ LY Hi(K’ L; Z/2) by
Si(K’ L) = [ci].

Now let M" be a closed smooth manifold and fix akcl-triangula-
tion. Then clearly M is a mod 2 Euler space. Thus we have the
Stiefel-Sullivan class si(M)EE Hi(M; Z/2). But this is nothing but
the Poincaré dual of the Stiefel Whitney class wn_i(M)eg Hn-i(M; 272).
This fact was first observed by Whitney and recently proved by Cheeger.

Now assume M' is a compact complex manifold of complex dimen-
sion n. Then there is the 'Chern homology class"

?:‘ie HZi(M; Z)
which is the Poincaré dual of the ordinary Chern class Cn~ie
Hzn-Zi(M;\Z). Observing the following facts
| (i) 52i+l(M) =0 for all i,

(ii) SZi(M) = EE(M) mod 2,
we consider the following question :

Question 3-2. Does this situation hold also for compact complex

. . . n .
variety? i.e. if V  is a compact complex variety of complex dimen-

sion n, then
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(i) 521+1(V) =0 for all 1i?

(ii). Can we define the "Chern homology‘class" E} € HZi(V; z) -

so that
E} mod 2 = SZi(M)?

The notion of "Chern homology class", 1 take from Sullivan's
note [11], in which he says Deligne has constructed a candidate for
the Chern homology classes.

Now we remark the following observation.

Proposition 3-3. Let v!' be a compact complex variety of
complex dimension n. Then

(i) 32i+1(V) =0 for all 1i §uch that 2it+l > 2 di.mc 2.V,

(ii) If i> dimC >V, then we can uniquely define the Chern
homology class

T, € Hy; (V5 2).
In particular, SZn-l(V)»= 0 for any V and‘if 2.,V 1is isolated,
then the question 3-2 is solved. (We put EB(V) =X (), if- V. is
connected.) |

Proof. We first oﬁserve Lemma 3-4. Let M' be a compact
differentiable manifold with boundary | oM#+B. Fix ba-C‘l-tri‘-.
‘angulation on M. Then

si(M,. o M) € H, (M, DM; 2/2)
is the Poincaré dual of the Stiefel Whitney class
v )6 i 2/2).

Proof. This can be reduced to the absolute caée by considering.

the double of- M. |

Proof of Proposition 3-3. Let N be a regular neighborhood

«9 -
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of 5.V and put W = V-Int N. We may assume that W is an almost
complex manifold. Consider the following exact sequence. (Coef-

ficient is &/2 or Z.)

i - j* a ‘o e @
o = H (N) —*)Hi(v) -——PH]._(\;, N) =—H, ;(N) —
Il
Hi<w’ W)

Now clearly
58, (V) = s, (W, DW).
But since W 1is an almost complex manifold, by Lemma 3-4, we have
0 i =1 (mod 2)
s; (W, 2 W) = {
E&(W) mod 2 i = 2k,

where Ek(W) is the Poincaré dual of the Chern class cn_k(W)Eg

HZ“'Zk(w; z).

Now if i > 2 dimm 2.V, then j, is a monomorphism, for

Hi(N) ;’Hi(ZLV) 0.
Hence we have
321+1(V) =0 for 2i+l > 2 dlmC > V.
Next we define E;(V) 6.H2i(V; Z) for i dimC 2.V. Clearly
if we could define Ei(VX, then we should have
INCAONERAGE
Since j, 1is a monomorphism, we have only to show that
) ci(W) =0 .

We prove this for all i. Let J: V —>V be a resolution

of V. Consider the following diagram

L6,

- 10 -



Hi(W, oW)
) Is ,
\ V) 5wV, N) 2o H, L (N) — e
—> H, ( 1 (Vs i-1
T"l’* TSW:* \T?C*
TN © N v oo
* _>H]'.(V) ?: Hi(vs N) _—->Hi"1(N) —

where N = 7t-1(N).
Now to show aé’i(W) = 0, it suffices to show that a‘ft;l(é'i(W))
= 0. But clearly, |
"'1 ~ T A~ 0
Ty (g W) = jye; (V),
where Ea(V) is the i-th Chern homology class of V. Hence

ag; (W) = 0. | Q. E. D.
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